
International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 27

Journal Homepage: www.ijcst.org

Asif Ali
1
 and Zahid Anwar

2

1,2
Department of Computer Science, COMSATS Institute of Information Technology, Vehari, Pakistan

1
asifali@ciitvehari.edu.pk,

2
zahidanwar@ciitvehari.edu.pk

Abstract— Performance Improvements and decreasing

execution time had been started half a century ago, along with

the development of new chipsets and microprocessors with

increased clock speeds, the software engineers have also

developed ways to increase the performance of their developed

systems by introducing new language constructs and other

performance improvements. As we know there are many

software modules that are complex like airline monitoring

systems, multi-variable differential equations, AutoCAD 3D

drawing, and HD graphics video games that require immense

computations that a single processor could not perform. The

solution to this problem is to utilize the ubiquitous commodity of

modern world – The Multi-Core Processors. A major hurdle in

utilizing this commodity is the overhead needed at the developer

end to convert a single threaded application into a multi-

threaded application. This paper intends to find a

comprehensive model that could be used to overcome this hurdle

by introducing new pragmas in existing code, or tweaking in the

compiler so that automatic parallelization is introduced at the

compiler level.

Index Terms— Automatic Parallelization, Multi-Threaded

Execution and Performance Improvements

I. INTRODUCTION

N today’s modern world speed is the foremost priority in

every sphere of our life, be it travelling, delivering

products, shipments, sending of data, or its processing.

With the world heading towards a global community merged

together by technology in each aspect of its inhabitants’ lives,

speed of delivering meaningful information has become

compulsory. The most important part of delivering data is the

ability of the sender to firstly encode the information it needs

to send using software made for the encoding process. The

software that encodes the data is executed by a computer that

has a processor installed. The processor executes the software

and encodes the data. It has become mandatory to increase the

processing speed of every software if we want to move fast in

the modern world. The main purpose of this research study is

to increase the speed of execution of the programs. We can

achieve this by either increasing the clock frequency of the

processors that we use in our computers or introduce more

processors or cores on a single chipset. The chipsets now

available have maximum number of cores deployed on one or

more processors. To exploit the number of cores available to

the software is a major problem to the users and developers

alike. Previously developed programs were made keeping in

the mind the sequential nature of the execution of every

processor available then. With the emergence of multi-core

processors we need to exploit the extra cores now included in

the chipset. Unfortunately the cores available are usually

unemployed or underemployed by the variety of programs.

For utilizing the complete prowess of these powerful chipset

we need to parallelize our execution flow so that each

processor and each of its cores are used during the flow of

execution of our program.

There are libraries available in different languages that

enable us to utilize each processor but using them while

developing is an overhead at the developer’s end. We try

exploiting parallelism in software but it requires different

design decisions, significant programmer effort and other

difficulties should be overcome before exploitation. The

solution to this problem is Automatic parallelization. It is a

promising approach that if used effectively brings drastic

performance improvements in the world of computing just by

using all the cores already available. But as all great things

come with a price, it is a really challenging approach.

Migrating single threaded applications to multicore platform

is a difficult task and automating their executions in a parallel

environment is much more challenging.

Fig. 1: Single Thread vs. Multi Thread

I

Automatic Parallelization Model for Processors

ISSN 2047-3338

Asif Ali and Zahid Anwar 28

Fig. 1 shows us what we can achieve using the Multi-

Threaded environment of the multi-core processors made now

a days. It clearly depicts that if all the cores are utilized than

the performance gain be multiple that is directly proportional

to the number of cores inside the processor or chipset. Each

processor or its core has its own cache, a set of registers used

while executions as well as its own stack and data given to it.

To attain this individuality of code, data, and the processing

result is the main challenge encounter by the modern world.

We intend to find a complete model that firstly solves the

problem of parallelization and secondly uses an automatic

technique for parallelizing the flow of execution by assigning

each task to a core or processer so that execution is done in a

multi-threaded manner. Our ultimate purpose of this research

is to find a model that automatically collects program

information without requiring any modification in the

program design or developer involvement and automates the

processing of the program. There are many ways to get a

multi-threaded environment but converting existing

environments and code is definitely a challenge. We want to

achieve parallelization by introducing necessary tweaks in

either the kernel or compiler so that the parallelization is

automatic. There is less developer overhead and more

performance improvement. We can even insert new code in

appropriate places in the application using automatic

parallelization techniques so we overcome the challenges that

have a detrimental impact on compile-time analysis required

for automatic parallelization.

This paper will have different sections, Section II will

discuss the concept of parallelization in detail, Section III

deals with the parallelization of different statements,

conditional and repetition constructs present in the different

programming languages. Section IV discusses the automatic

parallelization study and research done in different

programming languages. It explains the automatic

parallelization in popular languages like C, JAVA, and other

languages. Section V will discuss the comprehensive model

that could be used for automatic parallelization. Section VI

concludes the findings of the research and discusses the

impact of automatic parallelization of the software products if

the proposed comprehensive model is implemented and be

followed.

II. CONCEPT OF PARALLELIZATION

 The concept of Parallelization involves two major phases.

The first phase is the actual process of designing and writing a

computer program or software that has the ability to process

the given data in parallel. Parallel processing means that the

code written by the programmer is actually self-capable of

using multiple cores to perform its execution. For most of our

lives we have seen that the computer programs perform

computation serially. Serially means they perform one

computation first and then move towards performing another

computation. Similarly this process of executing or

performing a computation one after another is followed until

the program execution is not complete. If a code written by

the developer or the complete software is parallelized, then

the code itself divides the process, the complete process to be

precise in sub-processes. These processes can then be

executed independently and the computations are performed

in a parallel fashion by different microprocessors. The main

idea behind this concept is to convert serial or sequential

processing into parallel processing. If a programmer

introduces the parallelization in its code and then optimize the

code specifically for parallel computation then the software

can perform all the computations in a much faster way as

compared to the simple serial flow of computation used

now a day.

The concept of Parallelization is incorporated in the

computing realm for many years. This concept and its use

were usually limited to their use in the field of

supercomputing. In the last ten years, the micro-processors

have reached their physical capacity. This capacity is the

clock frequency, or in simple words the execution of number

if instructions in one clock cycle. Sure the clock frequency

can still be increased but it is not feasible for personal

computers. The reason for it being the power consumption

and heat generation due to a more powerful micro-processor

comes with these drawbacks. The technology now has to

mature in other parts of computation rather than just the clock

cycle or speed of the processor. This is a major design

decision in handhelds, PCs, and even mobiles. In today’s

world most of the smartphones, personal computers/laptops

and modern desktop computers have multiple cores and even

processors on their CPU that enable the parallel processing

within the operating system using either software additions or

some software tweaks.

The concept of parallelization should be applied, but

sometimes the total time taken in the execution of a program

with parallelization embedded exceeds the one with no

parallelization. This is due to the fact that parallelization

comes with a price. It has its own overhead of managing the

data, memory, and cache across the different cores and

processors. The overhead is in fact directly proportional to the

number of cores and threads in a system. If we have a Dual

Core CPU then we have to manage two cores along with their

cache and the data among them. Similarly if the cores are

increased to 8, then the management overhead also increases

with the number of cores. Now the data between the 8 cores

as well as the 8 cores themselves have to be managed. This

decreases the efficiency of the computer and the program

takes much more time during its execution compared to a

simple processor with only one CPU. The most time

consuming activity in parallelization is the synchronization of

data during the whole execution. The data has to be

synchronized completely after the execution of each statement

by each of the processor to ensure that the data is consistent.

Before the advent of multi-core processors, when a large

amount of computations were needed to solve a complex

problem, the scientists or the users usually waited for the

arrival of a new micro-processor that has a higher clock cycle

and would be much more efficient so that there computation

would be performed. The people waited owing to the

understanding of Moore's Technological Advancement Law,

which they interpreted to mean that the speed of computers

would approximately be doubled about after every two years.

But analyzing the recent advancements in the technological

sphere of science, Moore’s Law does not hold any longer. For

instance, if we took a micro-processor installed inside a

International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 29

desktop computer that is two years old and check its speed it

usually results to be 2.5 to 3.0 GHz. So according to the

Moore’s law this speed should have been 5.0 GHz to 6.0

GHz. But this is wrong, the speed has barely increased if it is

else we can now find many flagship processors and chipsets

with lesser frequency and speed. The main reason behind this

was the failure to develop processors with such high speeds

with lower power consumption suitable for personal use and

to be low cost as well. So the computer manufacturers have

doubled even tripled the number of processors or cores on a

single chip. Even very cheap smartphones now have

OctaCore-8 cores (processors), similarly we can CPU chips

with 16 cores, and this number will soon increase. Now a day

even graphics processing units (GPUs) are bundled with over

100 highly specialized processors used specifically for

Graphics processing. This is another example of Moore’s

technological law.

He used to say that the number of transistors would keep

doubling every two year. This has made the rate of

improvement slow down, but there is a significant increase in

the number of transistors. This trend should continue for at

least ten more years until we advance in some other direction.

If there is a small number of computing cores inside the

microprocessor of the computer then it is simple to find tasks

that can be done in a parallel fashion, such as waiting for

keystrokes and running a browser. But as we increase the

number of processors or cores, the parallelization problems

such as synchronization of data between the processors

becomes a very large overhead.

III. AUTOMATIC PARALLELIZATION OF

DIFFERENT STATEMENTS

Automatic Parallelization is difficult to achieve. Similarly

parallelizing each and every module of our computer program

is more problematic and increases the overhead so much, that

there is no performance improvement. Sometimes the

performance is reduced and the program takes more time in

execution when automatic parallelization is employed. This

section discusses the reasons, techniques, and the result of

automatic parallelization for different types of statements and

functions in popular programming languages such as JAVA

and C.

A) Multi-Threaded Execution of For Loops

The most important statement usually during the

computation is a loop. Loops are mostly the most time

consuming activity during the course of execution. The time-

complexity of any algorithm depends upon the number of

loops and nested loops employed in its implementation by the

developer. Monitoring the “for” loop closely, gives us enough

evidence that our loop structure is very slow and we need to

add parallelization to speed up our loop by using multi threads

or cores.

The concept of parallelization can be added after we

analyze “for loops” in C code using Open MP API. To add

the parallelization automatically we insert and use two of the

following data structures:

 Variable Table

 Loop Table

According to the research” Towards Automatic

Parallelization of “for” Loops”, Automatic parallelization is

achieved by a simple algorithm designed in the research itself.

The algorithm takes as input a sequential C code, performs

some computations, inserts some lines of code that becomes

an overhead in real-time processing and then outputs a C

Code which has parallelization incorporated in it and is ready

for parallel execution on a multi-core processor machine or

multi processors. The algorithm devised in the

aforementioned research paper converts a sequential C code

into a parallel executable program using the following steps,

these steps ensure pure parallelization is achieved. The steps

followed by the program are discussed next.

The parallel executable program is created using the

following steps:

 In the first step the header of the C code – i.e. the first

statement used in the “for” loop is analyzed by the

algorithm. The header must have a signed integer,

comparators – for the condition validation and a variable

that is compared should either be incremented or

decremented.

 In the second step the data that is defined, altered and

used in the loop’s Scope is analyzed. The variables are

checked and their entries are made in the Variable

Table, so that they can be updated during the parallel

execution.

 The third step is a basically a check. A check that is

used to in determining whether the loop given to the

algorithm to be parallelized, is parallelizable or not by

the algorithm. This check is formally a dependency

check.

 The fourth step is the determination of the efficiency

gain achieved by the Loop Parallelization process. This

gain can be decrease in total Time Taken by the loop in

its execution, the number of context switching occurred

in Threads, Synchronization needed to be performed

between the multiple threads, or the time taken in the

initialization of variables in each of the thread.

 The last step in the process of parallelization of “for”

loop is the generation of OpenMP Clause that is to be

inserted inside the code of the “for” loop. These clauses

are inserted in appropriate places inside the sequential

code which in turn enable the parallelism in it.

After the code given to the algorithm in the research, new

code is generated which is parallel executable. This code

could be executed on any multi-core processor. The number

of cores or threads does not necessarily increase the

performance of the execution as there as an overhead in

executing a serial program in a parallel fashion. The

synchronization time is increased directly with the increase in

the number of threads and cores. For the evaluation of the

algorithm and analysis of automatic parallelization we used

the algorithm and performed tests on a piece of code written

in C language. The code took the input either by a file or by

on screen input. The input includes 8 arrays and the function

needed to be performed on these arrays. The function can

Asif Ali and Zahid Anwar 30

either be the reversal of an array or sorting of an array. The

sorting function employs two loops in which one is nested

inside the first loop, whereas reversal employs only one loop

that reverses the inputted array. The code file is written in C

language and employs a sequential execution technique. The

code written is given to the algorithm devised in the research;

the resultant code is a new program that should be run in a

parallel fashion using a multi-core processor or a micro-

processor that has more than one thread installed on its chip.

For the purpose of finding out the results of the effectiveness

of the algorithm we executed the program on three different

computers. The results are explained below:

Results: The program was first executed on an Intel i7-

2670QM CPU, which had 8 threads each clocked @ 2.20GHz

and with a Random Access Memory of 8GB. The L1 cache

was 256KB, L2 cache was 1MB and L3 cache was 3.0MB.

Execution Time in serial program = 11.758s

Execution Time in parallel execution = 2.877s

This clearly shows that the performance of the program

developed for this research has increased if it is executed in a

multi-threaded environment.

The program was then executed on an Intel i5-2430M CPU,

which had 4 threads each clocked @ 2.40GHz and with a

Random Access Memory of 6GB. The L1 cache was 128KB,

L2 cache was 512KB and L3 cache was 3.0MB.

Execution Time in serial program = 9.85s

Execution Time in parallel execution = 3.56s

This clearly shows that the performance of the program

developed for this research has increased if it is executed in a

multi-threaded environment. The important thing to note here

is that the overhead that occurs does have a significant effect

on the execution time. The execution time should have

increased two times as the first PC had an 8 thread CPU to

perform the execution as compared to this PC with only 4

threads, but the performance gain occurred in first PC was 1.5

instead of 2. This shows that it overhead of parallelization has

a significant impact on the PC

The program was at last executed on an Intel Pentium B950

CPU, which had 2 threads each clocked @ 2.50GHz and with

a Random Access Memory of 2GB. The L1 cache was 64KB

and L2 cache was 256KB. The L3 cache of this computer was

only 1MB

Execution Time in serial program = 8.79s

Execution Time in parallel execution =4.57s

This clearly shows that the performance of the program

developed for this research has increased if it is executed in a

multi-threaded environment. The important thing to note here

is that the overhead that occurred is much more significant as

compared to the previous computers. The execution time

should have increased two times as the second PC had a 4

thread CPU to perform the execution as compared to this PC

with only 2 threads, but the performance gain occurred in

second PC was 1.25 instead of 2. This shows that it overhead

of parallelization has a significant impact on the PC.

B) Multi-Threaded Execution of Recursive Calls

Automatic parallelization of sequential programs has been

introduced to provide programmers with the ability to

parallelize applications easily. In the paper “An Automatic

Parallelization Tool for Recursive Calls” the author have

discussed the parallelization for recursive function calls. He

has identified and analyzed recursive function calls to get the

characteristics of the recursive functions including the number

of recursive calls a function issues, its size in terms of

statements, memory or space usage, data synchronizations,

stack management etc. The previous work done on

parallelization is restricted. It does not deal with recursive

calls which have data dependency inside the functions and it

must have void return type. So, the purpose of the research

was to develop an algorithm to deal with this situation i.e.

recursive functions parallelization and for better performance

of recursive call using parallelization. The author had tested

many algorithms, specially the ones that had recursive

algorithms and the results are different for different input

programs. In some of the cases the Execution time is

increased of parallelized program than sequential program and

it decreases in some other cases.

For most of the input sizes, parallel implementation takes

less time compared to the sequential program. The

AUTOPAR algorithm used by the author had the following

source code, the functions called did exactly what their name

was. The IDENTIFY-FUNCTION-DEFINITIONS took the

source as input and returned the total functions definitions

that were present in the code. The IDENTIFY-FUNCTION-

CALLS took the source as input and returned the total

functions calls that were present in the code. The IDENTIFY-

RECURSIVE-CALL took the source as input and returned the

total recursive calls that were made in the code. The

ANALYZE-RECURSIVE-CALLS took the source as input

and returned the analysis of all the recursive calls that were

made in the code. INTRODUCE-OPENMP was the last

function and it introduced OpenMp pragmas in the recursive

functions where they were necessary for the parallelization.

The function took the calls themselves, and their analysis,

along with the code as its input. The output code was the new

source. The output code was a transformation of the

sequential code to a code that could be executed in a parallel

fashion.

The AUTOPAR algorithm structure or the baseline is given

in the next paragraph.

AUTOPAR(Source)

defs ? IDENTIFY-FUNCTION DEFINITIONS(Source)

calls ? IDENTIFY-FUNCTION-CALLS(Source, defs)

recs ? IDENTIFY-RECURSIVE-CALLS(defs, calls)

anls ? ANALYZE-RECURSIVE-CALLS(recs, calls)

International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 31

Source ? INTRODUCE-OPENMP(Source, recs, anls)

return Source

end

C) Executing Different Functions Using PAP

PAP known as the Pluto Automatic Parallelizer is a tool

that generates parallelized code. This code is automatically

parallelized and does not involve any developer effort for the

use of parallelization on a multi-processor system. In the

paper “Automatic Parallelization Experiments on 16PE”

automatic parallelization experiments are performed. The

code is generated using the PAP as mentioned above. The

computer on which the experiments were performed is a 16PE

NOC based MPSOC which was designed and implemented on

a single FPGA chip it had an integrated sixteen Micro Blaze

based Processing Elements (PE) Tiles System in itself.

To test this multiprocessor system, four major experiments

are performed.

1) Matrix multiplication 128 * 128

Matrix multiplication is among others the most

parallelizable application because of its high data

independency. The maximum reduction in time-complexity

has resulted in Big-Oh of n raise to the power 2.78, hence it is

a problem that needs efficient solutions the most. The

parallelized code generated by Pluto is actually a block based

matrix multiplication. The resulting matrix is divided into

blocks. The results of this experiment showed, on the one

hand, the NoC (Network on Chip) is far from saturation as

proved by the near perfect scalability and still have space for

even heavier traffic loads, and on the other hand, the

possibility o f hide the communication latency with

calculation is a promising technique for better performance.

2) Seidel 128 *128

The seidel problem is also a known problem in computing

realm so the author also used a PAP generated parallelized

code for experiment. The cycle counts for different processor

numbers show a relatively low but still satisfying

parallelizability of Seidel Algorithm compared to that of the

Matrix Multiplication. The performance scaling keeps track of

resource scaling until 8 cores. When passing from 8 cores to

16, we introduce only 27% cycle reduction.

3) DCT (Blocksize: 4*4)

In this application, data block size is fixed to 4 *4. This was

also observed that beyond 8 nodes, additional processor does

not introduce any performance improvement.

4) Jacobi_1d (Vector size: 1000 Iteration: 2)

It is noted that there is a limitation of the PLuTo parallelizer

for this particular application and some others (LV

decomposition), can enjoy an efficient parallelization only

when the Iteration number is great or when the work load is

large, respectively. Processors, instead of working in parallel,

take turns to execute different parts of the work bringing out

the same performance as one processor taking charge of all

the work.

All reported results from above performed experiments show

that speed-up becomes limited beyond 8 processors in this

external memory constrained environment.

IV. PARALLELIZATION IN DIFFERENT

PROGRAMMING LANGUAGES

Characteristics of full applications found in scientific

computing industries today lead to challenges that are not

addressed by state-of-the-art approaches to automatic

parallelization. These characteristics are not present in CPU

kernel codes non linear algebra libraries, requiring a fresh

look at how to make automatic parallelization apply to

today’s computational industries using full applications.

Therefore, parallelization that is specific to a Language and is

optimized for that language is necessary. For multifunctional

applications, the compiler must assume that all combinations

of choices are possible since the compiler cannot determine

which of the choices a user will select. Multi-functionality

causes the amount of compile-time analysis required to

multiply as the compiler attempts to account for many

possible control flow paths, precise analysis can become

infeasible in terms of the analysis techniques required to

compare array access patterns across control flow paths, even

though the paths may never be taken within the same

execution in practice.

Consequently, the compiler makes conservative

assumptions which can reduce the compiler’s ability of

finding significant parallelism. To enable reuse and iterative

development without requiring recoding of the application’s

execution framework, a layer of abstraction is added between

the main execution process and the sub processes containing

the computational techniques. Due to a layer of abstraction,

compiler analysis and transformations must function with

limited knowledge of the control flow across computational

modules. The compiler can determine the control flow for

portions of the code, such as the control flow within the code

of a computational module in SEISMIC, but it is not feasible

for the compiler to determine the full global control flow of

large application suites since any computational module may

follow any other. Without control flow information, analysis

techniques, such as dataflow analysis, cannot be performed

across a layer of abstraction. Data structures can be shared

across the layer of abstraction. Consequently, the same data

structures, allocated in outer contexts, may be used by

multiple computational modules to house different types of

data. State-of-the-art automatic parallelization techniques fail

to perform precise comparisons among an array’s accesses

when the size and multidimensional shape of the

representation of an array’s accesses are not clearly defined

portions of the size and shape used to describe the array’s

declaration. The result is that the compiler makes conservative

assumptions that may limit the amount of parallelism the

compiler is able to discover.

A larger loop nesting depth requires additional symbolic

analysis for data dependence and array privatization analysis,

resulting in a greater compile-time complexity for

parallelization. Since the compiler analyzes an array reference

for cross-iteration dependencies for each enclosing loop, the

Range Test permutes the loops in a loop nest to determine

Asif Ali and Zahid Anwar 32

which loops are parallel, and the compiler compares array

references in different loops when the loops share a common

enclosing loop, the amount of symbolic analysis required

relates to the loop nesting depth. The amount of symbolic

analysis required also relates to the subroutine nesting depth

since inter-procedural analysis or in-lining must be used to

translate array access patterns within subroutines into the

calling contexts of the subroutines in order to analyze cross-

iteration dependencies in any loops enclosing the subroutine

calls. Subroutines enclosing a loop can require symbolic

analysis if an array referenced within the loop is declared in a

calling subroutine. In order for automatic parallelization to

become utilized in today’s scientific computing industries, the

mentioned challenges described must be addressed. During

the course of this study I have studied many language specific

parallelization technique. The best of each parallelization

technique are discussed below.

A) Parallelization in the Language C

In the paper “Towards Effective Automatic Parallelization

for Multicore” automatic parallelization is achieved by using

polyhedral model. This is big challenge to automate

parallelization of sequential codes. In C compiler

parallelization also used but virtually but this is rare used by

developer because it is not effected. In this method

polyhedral model is used to program transformation and for

data dependencies. Automatic parallelization has been

available in commercial compilers for many years. But unlike

vectorization technology, which was indeed heavily used in

practice by developers of production application codes on

vector machines, automatic parallelization across multiple

processors has not yet been sufficiently effective to draw

much interest from application developers. Intel’s production

compiler incorporates automatic parallelization and automatic

vectorization. But in its automatic vectorization capability is

very good, its automatic parallelization is not effective.

The polyhedral model provides a powerful abstraction to

reason about transformations on such loop nests by viewing a

dynamic instance (iteration) of each statement as an integer

point in a well-defined space called the statement’s

polyhedron. The optimization of polyhedral model on

parallelization is viewed in three terms.

1) Static dependence analysis of the input program

2) Transformations in the polyhedral abstraction

3) Generation of code for the transformed program

Now a day’s larger number of processing elements are on

single chip. That led to multi-core architecture and

parallelization. At the end researcher summarize that the

polyhedral model for transformation provides a powerful

basis for the system, and recent advances have made it

feasible to use with non-toy codes and also researcher work

with programmers to automate parallelization to achieve

efficient and effective parallelization.

B) Parallelization in JAVA

The paper proposes and evaluates an approach for

automatic parallelization which uses traces as units of parallel

work. A trace is a sequence of unique basic blocks which are

executed in sequential order during the execution of a

program. A trace collection system is used to monitor a

program’s execution and generate traces based on it. It starts

recording a trace when occurrences of certain events exceed a

specific threshold. Once the traces are collected, they are used

for optimization.

An offline feedback directed system is used which monitors

the execution of a program and collects information that is

used to optimize the program. It requires two executions as

preliminary and primary. The preliminary execution is the one

in which the information is collected. The primary execution

is the execution of the program after it is optimized using this

information. Offline feedback systems analyze collected

information more thoroughly since they do not compete with

the executing program for resources in contrast with online

systems which require only one execution of a program but

have to compete for resources.

Using traces as automatic parallelization offer benefits

firstly traces are based on a binary representation of a

program without the need of examine the source code.

Secondly traces include loop iterations and methods as units

of parallel work exhibiting both data and task level

parallelism. Thirdly traces are collected by keeping track of

program execution and are relatively simple to identify.

Collecting traces, extracting and packaging traces, selecting

the traces that are to execute in parallel, scheduling the

selected traces to execute on multiple processors and

executing the scheduled traces are five steps to execute trace

in parallel. Each step has its own challenges. First challenge is

to collect traces efficiently, secondly to package traces into a

form that can execute in parallel.

Third challenge is to determine the likely successors of

trace; fourth challenge is to effectively distribute traces

among multiple processors while the last challenge is to

provide a mechanism for executing traces on multiple

processors. A single threaded program is transformed by

extracting its traces and packaging them into methods that are

suitable for parallel execution. The transformation performs

six steps for each trace that exists in a method: two to extract

individual traces and four to package them. An infrastructure

is created that extracts packages and executes traces. When a

program’s frequently executed methods are optimized,

infrastructure is called and transforms the methods by

extracting traces from these methods and packaging the traces

in their own methods. Methods are compiled one at a time

and they cannot share intermediate representation data such as

instructions and variables.

The overall improvements in performance of the

applications are measured by techniques using speedup.

Speedup is the ratio of the sequential execution time to the

execution time of the parallel version of the program.

Experimental evaluation indicates that system effectively

parallelizes a number of programs that exhibit data level

parallelism. The geometric mean of the speedups on four

processors is 2.03, and the best speedup is 2.76. Results

indicate that grouping of traces is essential to good

performance. Thus, this indicates that trace based

parallelization is promising and can be realized efficiently.

International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 33

C) A Compile-time Cost Model for Automatic OpenMP

Decoupled Software Pipelining Parallelization

In the paper “A Compile-time Cost Model for Automatic

OpenMP Decoupled Software Pipelining Parallelization” it is

proposed to use pipeline parallelism in ordinary programs that

cannot be dealt with by traditional techniques. Here a

compile-time cost model for automatic parallelization is used

for profit estimate by extending the existing cost model in

Open64 loop nest optimizer (LNO). The researchers improved

this DSWP model to increase the efficiency of parallelization.

Researcher said that we evaluate our cost model with loops

containing complex memory access patterns and control flow

structure but Load balance is necessary for parallelization

otherwise this is not effective.

This algorithm is not restricted by CPU architecture and

hardware support it means that this algorithm is not platform

limited. This algorithm has two overheads one is scheduling

problem and the other is bad load balance. Keeping load

balancing among parallel threads is a key problem in

achieving performance. OpenMP is also implemented by

DSWP transformation. In this paper existing model Open64

model is used to partition threads, this is also used in program

transformation that also improve the automatic parallelization

process. In this paper researchers include cost model.

By experience they improve this model by including this

cost. This model is applicable and efficient. “Performing a

profit analysis both accurately and efficiently is very hard,

since whether or not a parallel program is profitable relies on

many factors, including its available parallelism and the

manner in which it is exploited, compiler optimizations,

runtime support, data layout, operating system noise, and

workload balancing and so on. Many compilers and runtime

libraries have an internal cost model that helps evaluate

compiler transformations, guides the compiler in its

optimization process and helps achieve load balancing”. It can

be further improved by extending the processor model and

Cache model for multicore platforms.

V. CONCLUSION

A number of factors were found that affect the performance

of the automatic parallelization. First is for programmer has to

write the program in such a way that is easily divisible into

multiple independent parts that are easily parallelized

automatically but this tough job. Migration overhead also

included in this system because in multicore system program

threads are move from one processor to other. Main purpose

is to increase the speed of execution of the program that is

achieved by increasing the clock frequency and also increased

by cores of processors. We increase performance by

parallelization. Solution is to utilize the ubiquitous

commodity of the modern world-The Multicore Processors.

But it is a great challenge to convert single thread into

multiple threads. This clearly shows that the performance of

the program developed for this research has increased if it is

executed in a multi-threaded environment. The important

thing to note here is that the overhead that occurs does have a

significant effect on the execution time. The execution time

should have increased two times as the first PC had an 8

thread CPU to perform the execution as compared to this PC

with only 4 threads. But when we calculate the results more

precisely then this result are unpredictable in some cases but

we improve these results in future by using different

techniques of automatic parallelization.

REFERENCES

[1] Bøegh, Jørgen, Stefano Depanfilis, Barbara Kitchenham, and

Alberto Pasquini. "A method for software quality planning,

control, and evaluation." IEEE software 2 (1999): 69-77.

[2] Huo, Ming, June Verner, Liming Zhu, and Muhammad Ali

Babar. "Software quality and agile methods." In Computer

Software and Applications Conference, 2004. COMPSAC

2004. Proceedings of the 28th Annual International, pp. 520-

525. IEEE, 2004.

[3] Boehm, Barry W. "A spiral model of software development

and enhancement." Computer 21, no. 5 (1988): 61-72.

[4] Mnkandla, Ernest, and Barry Dwolatzky. "Defining agile

software quality assurance." In Software Engineering

Advances, International Conference on, pp. 36-36. IEEE,

2006.

[5] Royce, Walker. "CMM vs. CMMI: From conventional to

modern software management." The Rational Edge (2002): 2-

9.

[6] Hong, G. Y., and T. N. Goh. "Six Sigma in software quality."

The TQM Magazine 15, no. 6 (2003): 364-373.

[7] Manzoni, Lisandra V., and Roberto T. Price. "Identifying

extensions required by RUP (rational unified process) to

comply with CMM (capability maturity model) levels 2 and

3." Software Engineering, IEEE Transactions on 29, no. 2

(2003): 181-192.

[8] Ince, Darrel C. Introduction to software quality assurance and

its implementation. McGraw-Hill, Inc., 1995.

[9] Rowlingson, Robert, and Richard Winsborrow. "A comparison

of the Payment Card Industry data security standard with

ISO17799." Computer Fraud & Security 2006, no. 3 (2006):

16-19.

[10] Mathur, Aditya P. "Performance, effectiveness, and reliability

issues in software testing." In Computer Software and

Applications Conference, 1991. COMPSAC'91, Proceedings of

the Fifteenth Annual International, pp. 604-605. IEEE, 1991.

