
International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 1

Journal Homepage: www.ijcst.org

Faiza Anwer
1
, Shabib Aftab

2
, Syed Shah Muhammad Shah

3
 and Usman Waheed

4

1-4
Department of Computer Science, Virtual University of Pakistan

1
faiza.anwer28@gmail.com,

2
shabib.aftab@gmail.com

Abstract— Since last two decades, agile software development

methodologies have been one of the most debating topics for

researchers. These are called light weight development methods

because of informal, adaptive and flexible approach. These

models are based on the collection of best practices which help to

handle problems related to changing requirements, customer

satisfaction, and product quality. A number of agile models are

available to meet the needs of different projects. However

Extreme Programming and Scrum are two most familiar and

commonly used models. This study makes a valuable contribution

by exploring these models in detail. In this paper a detailed

comparison of Extreme programming and Scrum is conducted to

find their similarities, differences and explores those features

which complement each other.

Index Terms— Extreme Programming, Scrum, Agile Models

and Comparison

I. INTRODUCTION

GILE software development methodologies provide an

iterative and evolutionary development paradigm with

more emphasis on changing requirements, customer

satisfaction, and team collaboration [1]. These methodologies

emerged in 2001 in response to limitations of plan driven

methodologies [1]. High rate of failed, cancelled and delayed

projects forced software practitioners to reconcile the

development principles and practices. Agile models are

actually collection of best practices and principles of software

engineering. These principles may not be new for software

industry but in agile modeling these are used with different

approach that makes them more flexible and adaptive during

development. These agile principles can accommodate rapid

software development needs.

Due to their simplicity, flexibility, and suitability to present

needs of software development, agile models are getting

popularity from last few decades. Many agile models like

Extreme programming (XP), Scrum, Feature driven

development (FDD), Dynamic system development method

(DSDM), Kanban, Lean software development (LSD),

Adaptive software development (ASD) are available.

Extreme Programming (XP) and Scrum are most widely

used agile models especially for small scale projects. These

are called light weight development methodologies because of

excluding formal activities from development process for the

sake of simplicity and agility. Both of these models have some

common and contrasting features. This study is conducted to

explore and compare them in detail. This comparison provides

a deep insight about these two methodologies that will greatly

helpful for developers and researchers.

Rest of the paper is organized in following sections; Section

II and III explain extreme programming and scrum in detail

respectively. Section IV provides a detailed comparison of

these two methodologies. Section V presents critical analysis

and section VI finally concludes this paper.

II. EXTREME PROGRAMMING

Extreme programming (XP) is an agile software

development methodology developed by Kent Beck in 1996

while working on a C3 payroll project. Later in 1999, Kent

Beck published his book “Extreme Programming Explained”

to present a refined form of XP. It is a lightweight, more

flexible and low risk disciplined approach of software

development with ability to manage vague or rapidly changing

requirements [2]. It is considered more suitable for small and

medium sized teams [3]. XP is a collection of values,

principles and practices that are applied in a disciplined way

[4]. It is called “Extreme Programming”, because of the fact

that it took those practices to extreme which were considered

helpful in developing high quality software [5]. XP accentuate

greatly on customer satisfaction. Rapid feedback and frequent

releases help in managing the defects near to its origin. Lower

defect rate reduce the cost of development and result in a

more acceptable final product at lower cost.

A. XP Phases

Whole development process consists of six phases:

Exploration phase, Planning phase, Iteration to release phase,

Productionizing phase, Maintenance phase and Death phase

Fig. 1.

A

Comparative Analysis of Two Popular Agile Process

Models: Extreme Programming and Scrum

ISSN 2047-3338

Faiza Anwer et al. 2

Exploration Phase: Exploration phase is first phase of XP life

cycle which deals with requirement and architecture modeling

of the system. In this phase, user requirements, architecture,

tools and technology are defined. A meeting among customer,

users and developers is arranged to plan release. Customer

writes user stories on stories cards that provide requirement

about software. These user story cards comprises of short

name, priority of story and one or two text paragraph without

technical detail [5]. User story should be detailed enough that

help the developers to understand system requirement and also

in making estimates. Time estimation means time required to

implement a story. If a story require longer implementation

time that story can be converted in to small stories by

customer. For architecture modeling metaphors are created

during architectural spike to consider different alternative

solutions. Metaphor is not a complete architecture but a

framework with basic objects and their interfaces. Exploration

phase can last from few weeks to few months. However in [5]

Kent Beck suggests that at the end of exploration phase

enough material should be available from user stories that can

provide a good start for first product release and developer

should have confidence about cost and time estimation of

tasks to be implemented.

Fig. 1: Life Cycle of Extreme Programming [6]

Planning Phase: After exploration phase, planning phase

starts that aimed to find the answers of two questions

basically; what can be built within due date that have some

business value And what is the plan to do for next iteration? If

exploration phase was gone well then planning phase only

demand a day or two to complete [5]. During planning phase,

task are drawn from user stories and written on task cards.

In XP, planning process is called planning game that further

performed in two parts: Release planning and Iteration

planning. During planning phase decision about team size,

code ownership, schedule, working hours are taken [7].

Release Planning: Basic objective of release planning is to

find out the features to be needed in the system and delivery

schedule of these features. Both customer and developers

participate in release planning meeting. Release planning

consists of three phases: exploration phase, commitment phase

and steering phase [5]. Customer writes story cards to identify

the required features of system. These features are then sorted

according to their importance and a smaller set of story cards

for the recent release is selected. This is an iterative process

that can be adjusted by adding, removing, merging or splitting

some stories.

Iteration Planning: Each iteration starts with iteration

planning. In this phase, developers prepare a plan of their

activities to implement required features of the current release.

Like release planning, iteration planning also has exploration,

commitment and steering phases but customer is not involved

in this step [5], [8]. During iteration planning programmer

select tasks to implement and estimates required cost, time

and effort for selected task. Tasks can be given to other

programmers to balance the workload.

Iteration to Release Phase: This phase incorporate the basic

development activities like designing, coding, testing and

integration [9]. This is an iterative phase in which each

iteration can span over one to four weeks. Each iteration starts

with iteration planning. In first iteration, such stories are

selected that make overall architecture of the system [5].

Tasks selected for current iteration are actually implemented

by a pair of programmers. Programmers select tasks, make a

simple design and code it. After coding, functional testing is

performed and then code is integrated. Code refactoring is

used if developed code does not fulfill requirements. Final

development may take several iterations in which coding,

testing, listening and designing is performed repeatedly.

Standup meeting are used to discuss development progress or

any issues that need to be resolved [5]. After final iteration

code is ready for production.

Productionizing Phase: Being an iterative and incremental

process, XP delivers software in small releases. A release is a

small part of planned software that implements some business

needs. Frequent releases in XP allow to build required system

in increments. A release cycle can consists of a number of

iteration that can span from 1 to 4 weeks [10]. Productionizing

phase is about deployment of the software in small releases.

To check, whether the software is ready for production,

acceptance testing, system testing and load testing is

performed. During this phase, programmers slow down the

rate at which system evolves. As the risk become more

important whether a change should go to next release or

not [8].

Maintenance Phase: Maintenance is a natural phenomenon

for software systems. In XP, software continues to evolve over

a period of time. In this phase new functionality is built while

keeping the old one running [5]. New architectural design and

technologies can be introduced however XP team has to do

more care as the system is in production also. The changes

that cause production problems are stopped immediately [6].

Death Phase: This is the last phase of XP. There are two

possible situations in which a software system reaches to death

phase. In first case, if the developed software has all the

needed functionality and customer is satisfied and has no more

stories, then it is time to finally release the system. A small

International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 3

document of five to ten pages is created, about the system for

future use. In other case, customer may require a set of

features that cannot be developed economically. In such

situation, it will be better to close the software development

which is called entropic death of system [5].

B. XP Practices

There are twelve XP practices that distinguish XP from

other software process models. These practices are used

during software development under the guidance values and

principles of XP.

Planning Game: System requirements are collected on story

cards that are used for further planning. Different team roles,

team size, working hours and overall schedule is defined

during planning game [11]. Planning game is performed in

two parts called release planning and iteration planning.

Small Releases: In each release a set of requirements are

developed that have some business and development value

[5]. Small releases make the system open and available for

evaluation by the customer. Small releases help in getting

immediate customer’s feedback about system.

Metaphor: It is the architectural design of the system that

describes how system should works. For developers, It is very

important way to understand the system [11].

 Simple Design: Simple design is a great practice of XP that

helps to design basic required functionality of the system and

avoids unnecessary details. It focuses on currently needed

features not on future requirements.

Continuous Testing: Continuous testing provide quick

feedback. XP uses unit testing and acceptance testing

continuously.

Refactoring: Refactoring is restructuring the system without

changing its behavior [11]. It is performed to improve the

quality and flexibility of design. It is a routine activity of XP

developers to make the code quality better.

Pair Programming: It is very interesting feature of XP that

distinguish it from other development approaches. In XP,

coding is performed by the two programmers at same machine

[5], [28]. The idea behind pair programming is to develop

high quality software at lower cost. As most of the errors are

captured and corrected within seconds by the companion

programmer.

Collective Ownership: Any programmer can access any part

of code any time to improve it. This is called collective

ownership of code. Code review by number of programmers;

enhance the quality of software to be developed.

Continuous Integration: After completing every task,

system is integrated and tested. It may happen many times a

day. This reduces integration problems and improves software

quality.

40-Hour Week: XP discourages extra-long working hours

for developers [6]. Tired and bored programmers make more

mistakes that’s why unnecessary overtimes are avoided in XP.

It is a rule of XP, to work 40 hours a week not more than this.

On-Site Customer: A customer’s representative is a part of

XP team and remains on site all the time [6]. He/ she is

usually a domain expert that can decide about system's desired

features, answer the questions and can steer the development

process. On-site presence help to reduce communication gap

between developers and customer. A quick feedback remains

available to developers about desired software.

Coding Standards: Coding standards are followed in XP.

Code is owned collectively and can be accessed or changed by

any programmer. To share the code among programmers, it is

necessary to follow some common coding standards [5].

C. XP Values

There are five XP values which are focused while XP

practices are applied. These values are simplicity,

communication, feedback, courage and respect [5], [10].

Simplicity: XP keeps things simple like simple plan, simple

design and simple code. It prefer on designing simple solution

of the problem. No extra functionality is added until customer

asked for [5]. Simple and small iteration of XP helps to avoid

the risk of project distraction.

Communication: Instead of documentation, XP uses active

and continuous communication among team members. All the

team member and customer present on site and communicate

continuously to find more suitable and economical solution of

the problem.

Feedback: XP uses feedback that span on different time

scale from second to months. Unit testing and integration

testing is performed on daily bases, provide quick feedback

about system. Feedback and communication help to keep

project on the right way. On site presence of customer is a

distinguishing feature of XP that helps to get rapid feedback

about the developing software.

Courage: XP practices require courage. Sometime it is

needed to refactor the code or design that was completed after

great effort. It also means that making such decision that never

been made before for the system.

Respect is another important value of XP introduced in

[12]. Self-respect and respect for other members is equally

important that make it possible to implement XP practices

(like pair programming, collective code ownership). Showing

respect towards work can force the developers to do high

quality work.

 D. XP Roles

XP define seven roles of team members with their qualities

and responsibilities that they must have to perform in team

[5], [6].

Faiza Anwer et al. 4

Programmer: This is most important role in XP team.

Coding is main activity in XP which is performed by

programmer. There is no analyst, designer or architect in XP

team, all these tasks should be performed by programmer.

Customer: Customer is another very important member of

XP team who plays an active role throughout the development

process. He writes stories, derive functional test and verify

these test.

Coach: Coach is a person that should have both managerial

and technical skills. Good communication and decision power

help the coach to keep the team members together and on right

track.

Tracker: Duty of tracker is to gather metrics like load factor

and functional test scores about the project. Tracker collect

data from each developer after two or three days and record

how much time is spent on a task and how much is still

required to complete it. It is tracker’s responsibility to check

that iteration and commitment schedule are realistic and can

be meet [5].

Tester: The responsibility of tester is to guide and help

customers to write functional tests and verify them. As in XP,

unit testing is performed by the programmers so tester has a

very little to do.

Consultant: XP team has no specialist but in some cases

team needs technical guidance from an expert, in that case a

consultant can be hired for a time being. Two or more

developers discuss with consultant in a meeting to learn about

solution of the problem.

Big Boss: He is a coordinator of the project that has

responsibilities of team building, providing necessary

resources, equipment and tools. Big boss has to show courage

while supporting team’s decision that is never experienced

before.

III. SCRUM

Scrum is most widely used agile software development

model. It provides an iterative and incremental framework for

software development that is based on best practices used in

Japanese industry. In 1995 Jeff Sutherland and Ken Schwaber

introduced the Scrum methodology that was later presented by

Ken Schwaber and Mike Beedle in a Book named “Agile

Software Development with Scrum” in 2001. The idea behind

scrum was to handle drawbacks of traditional development

methodologies. In scrum each product release is planned

according to customer requirements, time pressure,

competition, product quality and available resources.

Scrum is an empirical approach that is based on process

control theory to add flexibility, adoptability and productivity

in the development process [13], [28]. The strength of scrum

lies in three points transparency, inspection and adaptation.

Transparency means that every aspect of process that affect

the result should be visible to all members involved in product

development. Inspection means keep eye on process to detect

any unacceptable deviation. Finally adaptation helps in

adjusting the process in case of any unacceptable deviation

[13], [14]. Scrum provides an iterative and incremental

framework of development that builds software product in

small cycles called Sprints. Sprints have one month or less

duration. Scrum framework consists of three roles, four

ceremonies and three artifacts Fig. 2.

Fig. 2: Scrum Framework [14]

A. Scrum Phases

Scrum activities can be grouped in three phases called

Pregame, Game and Postgame [15], [16].

Pregame: This phase starts by defining the vision of the

project which may be unclear initially but can be refined

further in later sprints. Product owner is responsible to define

the vision and prepared a prioritized list of functional and

nonfunctional requirements for the software. This prioritized

list of required features is called Product Backlog [13]. A plan

that includes the time and cost estimation is also prepared in

this phase with final product delivery date and number of

releases in which final product will be delivered. A high level

architectural design is developed that tells how to implement

different tasks, defined in product backlog. Some other

important task completed in this phase includes risk

assessment, definition of development team, validation of

development tools and verification of approval and funds.

Game: This is actual development phase of the scrum which

is performed in small iterations called sprints. Sprint is a time

boxed development period ranges from one week to four

weeks based on complexity and risk involved. Each sprint

incorporates activities like develop, wrap, review and

adjust [15].

Postgame: This is a closure phase. After implementing the

desired features during development phase, final release

occurs. A release is declared closed when all the goals defined

during pregame phase are met. In closure phase final

integration testing is performed, user manuals and training

materials are prepared for the final release.

International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 5

 B. Sprint Cycle

Scrum works in sprints that are a time boxed duration in

which team actually develop the software according to

product backlog [15], [17]. During sprint, scrum team works

on product backlog under the guidance of scrum master to

develop functional software which will be delivered at the end

of sprint. Following activities are performed during sprint.

Sprint Planning: Each sprint starts from sprint planning that

is completed in two phases. In part one, product owner and

scrum master review the product backlog tasks that are most

important. They decide the objectives and context of the high

priority tasks which help the team members to understands the

product needs clearly. Part one of this meeting mainly focuses

on the aspect of product.

In second part of meeting focus is shifted on how to build

task till the end of sprint. Team reviews the probability of task

completion irrespective to product owner decision. Then team

commit to complete the work in decided time period. Scrum

teams are self-organizing that divide the tasks and

responsibilities according to their interest.

Daily Scrum: Scrum team member daily conduct a 10 to 15

minutes meeting called daily scrum. This meeting helps the

team members to know about the project progress. Team

members can find the cause of any speed interruption and take

corrective action accordingly. In this meeting every member

tries to answer the following three questions [14].

What did I do yesterday to achieve the sprint goal?

What will I do today to achieve the sprint goal?

Is there any hindrance in doing what I planned to do?

First two questions help to understand the project progress and

last question helps to find the solution of problem that is

causing delay in the project progress.

Sprint Development: During this phase activities like

design, development and testing is carried out for each tasks

in product backlog. These tasks are implemented according to

their priority defined by product owner.

Sprint Review: At the end of each sprint, a review of the

developed product is conducted. This is inspected and adopt

phase of product. In this review meeting product owner judge

whether the development is going according to needs.

Detailed conversation among product owner, scrum master

and team members help to get feedback about product which

may change the development directions [13].

Sprint Retrospective: Sprint retrospective is inspect and

adopt phase for the process. During this phase, scrum master

and team members discuss what is working and what is not

working in the process. This helps in deciding what practices

should be carried out in next sprint and what should be

changed in next sprint. This meeting greatly helps in

improving the process.

 C. Scrum Roles

There are three roles in scrum called product owner, scrum

master and team [14], [17].

Product Owner: Product owner is a customer’s

representative who has overall responsibility of product. He

creates and prioritizes the list of required features to be

developed in the form of product backlog. He can reposition

the item in product backlog according to changing business

needs. He decides the project schedule and is responsible of

providing finance accordingly. He negotiates with scrum team

to convey the interests of all stakeholders. Product owner is a

person accountable for the profit or loss of the product. A

scrum team can have only one product owner. To fulfill his

duties, product owner must have clear understanding of

business, engineering and marketing. Good communication

skills are very important to deal with different stakeholders

having different interests.

Scrum Master: Scrum master is a team facilitator who

makes sure that team members are following scrum practices,

rules and values to gain the business value. His role is

different from traditional project manager. He conducts a

brief meeting with team daily, called daily scrum to watch the

progress. He is responsible of protecting team form outside

intervention and provides good circumstance to work. At the

end of each sprint, an evaluation meeting called scrum

retrospective is conducted. In this meeting all the members

share their experience and lesson learned during sprint. This

greatly helps in enhancing team knowledge and deciding what

should be done in next sprint.

Team: Scrum teams are self-organizing which consists of 3

to 9 members. In scrum team, specific roles are not assigned

to members. They can divide tasks among them according to

their interest. The entire team should have skills in designing,

developing, testing or documenting the product. These are the

people who are responsible of delivering a working product

after each sprint.

IV. COMPARISON OF XP AND SCRUM

Both XP and Scrum are well-known, widely used agile

models with some similarities and differences. To explore

them from different perspectives a detailed comparison is

conducted by considering different factors and features in

Table I. This comparison can be very useful for researcher and

developers to make a good choice according to project needs.

For the sake of comparison we have consulted a number of

research papers and studies which include [1], [3], [5], [6],

[15]–[25], [27]-[32], [33].

V. CRITICAL ANALYSIS

Detailed comparison of XP and Scrum reveals very

interesting facts about both models. Both of these have some

common and some distinguishing aspects. It is observed that

both models are focused towards building fully functional

software using an adaptive approach. Both have incremental

and iterative nature however iteration duration is different.

XP has set of twelve principles that provide a concrete

guidance about whole development process whereas in Scrum

selection of development practices is left on team members

Faiza Anwer et al. 6

[6], [21]. Scrum provides a framework rather than concrete

development practices. That’s why Scrum greatly depends

upon developers’ skill and experience [3]. XP mainly focus on

engineering aspects of software projects whereas Scrum deals

with management related issues. These contrary practices are

also complementing each other. Joint application of Scrum

and XP can give positive impact on team productivity, product

quality [26].

VI. CONCLUSION

XP and Scrum are renowned agile models that are widely

used for small projects especially. These models used best

practices in agile fashion to accommodate rapid application

development needs. In this study a complete description

explaining their different phases, practices and roles is

provided. A detailed comparison is also conducted to get

deep understanding about these models. This can be very

helpful for developers, researchers and scholars interested in

these agile models. This comparison reveals that these models

have common and contrasting features. Some of contrasting

feature complement each other that encourage researchers to

experiment with combination of XP and Scrum for software

development.

Table I: Comparison of XP and Scrum

Features Extreme Programming Scrum

Development

Approach

Iterative and incremental Iterative and incremental

Project Size Small All

Team Size 2 to 10 Multiple teams of less than 10 members

Team Activities Yes; Planning game, Pair

programming, Collective code

ownership etc.

No

Iteration/Sprint Duration 1 to 3 weeks 4 weeks

Stakeholder’s Involvement Throughout the process Not defined

Communication Style Oral, through standup meetings Oral, through Scrum meeting

Project Management No Yes; Practices for project management are

available

Physical Environment Co-located teams Not defined

Abstraction Mechanism Object oriented Object oriented

 Focus Towards engineering aspects Towards management and productivity

aspects

Response to Change Quick Quick

Requirement Elicitation User stories and on-site customer

practices are used

Not defined

Distinction Among Different

Requirements (Functional,

Non-functional)

Not defined Not defined

Documentation Less Less

Upfront design Document No Not defined

Design Flexibility Start from Simple design that can be

changed using refactoring.

Focus on simple design

Development order defined by Customer Scrum Team

Development Style Adaptive Adaptive

Code Ownership Whole team Not defined

Changes During Iteration Allowed Not allowed

Acceptance Criteria Defined Defined

Feedback Span from minutes to months Span over a month

Testing Unit testing, integration testing,

acceptance testing

Not defined

Structured Review meetings No No

Validation Technique Functional Testing and Acceptance

Testing

Not defined

Quality Assurance Activities Test first approach Not defined

Coding Standards Properly defined Not defined

Software Configuration

Practices

Not defined Not defined

Support for Distributed Projects No Not defined

Process Management No No

International Journal of Computer Science and Telecommunications [Volume 8, Issue 2, March 2017] 7

REFERENCES

[1] L. Williams, “Agile software development methodologies and

practices,” in Advances in Computers, vol. 80, Elsevier Inc.

2010, pp.1-44.

[2] J. Newkirk, “Introduction to agile processes and extreme

programming,” in Proc. 24th Int. conf. Software engineering,

May 2002, pp. 695-696.

[3] E. Mnkandla, and B. Dwolatzky, “A survey of agile

methodologies,” The transactions of the SA institute of

electrical engineers, vol. 3, pp.236-247, Dec. 2004.

[4] E. R. Mahajan and E. P. Kaur, “Extreme Programming: Newly

Acclaimed Agile System Development Process,” International

Journal of Information Technology, vol. 3, no. 2, pp.699-705,

2010.

[5] K. Beck, “Extreme programming explained: embrace change,”

addison-wesley professional, 2000.

[6] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, “Agile

software development methods: Review and analysis,” VTT

publ., pp. 3-107 2002.

[7] T. Saeed, S.S. Muhammad, M.A. Fahiem, S. Ahamd, M.T.

Pervez and A. B. Dogar, “Mapping Formal Methods to

Extreme Programming (XP)–A Futuristic Approach,” Int. J.

Nat. Eng. Sci., vol. 8, no. 3, pp.35-42, 2014.

[8] T. Dudziak, “eXtreme programming an overview,” Methoden

und Werkzeuge der Software produktion WS, 2000/1999, pp.

1-28.

[9] M. C. Paulk, “Extreme programming from a CMM

perspective,” IEEE softw., vol. 18, no. 6, pp.19-26, 2001.

[10] R. Juric, “Extreme programming and its development

practices,” in. Proc. 22nd Int. Conf. Information Technology

Interfaces, IEEE, Jun. 2000, pp. 97-104

[11] O. Kobayashi, M. Kawabata, M. Sakai and E. Parkinson,

“Analysis of the interaction between practices for introducing

XP effectively,” in Proc. 28th Int. conf. Softw. Eng, May

2006, pp. 544-550.

[12] K. Beck, and C. Andres “Extreme Programming Explained:

Embrace Change,” Addison-Wesley Professional, 2004.

[13] K. Schwaber and M. Beedle, “Agile software development

with Scrum,” vol. 1, Upper Saddle River: Prentice Hall, 2002.

[14] J. Sutherland, K. Schwaber, and C. J. Sutherl, “The scrum

papers: Nuts, bolts, and origins of an agile process,” 2007.

[15] D. Cohen, M. Lindvall and P. Costa, “An introduction to agile

methods,” in Advances in Computers, vol. 62, 2004, pp.1-66.

[16] K. Schwaber, “Scrum development process. In Business

Object Design and Implementation,” Springer London, 1997,

pp. 117-134.

[17] P. Deemer, G. Benefield, C. Larman and B. Vodde, “A

lightweight guide to the theory and practice of scrum,” Ver, 2,

p.2012.

[18] G. Ahmad, T. R. Soomro and M. N. Brohi, “Agile

Methodologies: Comparative Study and Future Direction,”

Eur. Acad. Res., 2014.

[19] A. Ahmed, S. Ahmad, N. Ehsan, E. Mirza and S. Z. Sarwar,

“Agile software development: Impact on productivity and

quality,” in IEEE Int. Conf. Management of Innovation and

Technology, Jun. 2010, pp. 287-291.

[20] A. I. Khan, R. J. Qurashi and U. A. Khan, “A comprehensive

study of commonly practiced heavy and light weight software

methodologies,” Int. J. Comput. Sci. Issues, vol. 8, no. 4, pp.

441-450, 2011.

[21] P. Abrahamsson, J. Warsta, M.T. Siponen and J. Ronkainen,

“New directions on agile methods: a comparative analysis,” in

Proc. 25th Int. Conf. Softw Eng., May. 2003, pp. 244-254.

[22] A.M.M. Hamed and H. Abushama, “Popular agile approaches

in software development: Review and analysis,” in Int. Conf.

Computing, Electrical and Electronics Engineering, Aug.

2013, pp. 160-166. IEEE.

[23] A. Qumer and B. Henderson-Sellers, “Comparative evaluation

of XP and Scrum using the 4D Analytical Tool (4-DAT),” in

Proc. Eur. Mediterr. Conf. Inf. Syst., 2006, pp. 1-8.

[24] J. M. Fernandes and M. Almeida, “Classification and

comparison of agile methods,” in 7th Int. Conf. Quality of

Information and Communications Technology, Sep. 2010, pp.

391-396, IEEE.

[25] U. S. Shah, “An Excursion to Software Development Life

Cycle Models: An Old to Ever-growing Models,” ACM

SIGSOFT Softw. Eng. Notes, vol. 41, no. 1, pp.1-6, 2016.

[26] K. Mar and K. Schwaber, “Scrum with XP,” 2002, Available:

http://www.informit.com.

[27] L. Lindstrom and R. Jeffries, “Extreme programming and agile

software development methodologies,” Inf. Syst. Manag., vol.

21, no, 3, pp.41-52, 2004.

[28] G. Rasool, S. Aftab, S. Hussain and D. Streitferdt, “eXRUP:

A Hybrid Software Development Model for Small to Medium

Scale Projects,” Journal of Software Engineering and

Applications, vol. 6, no. 9, p.446. 2013.

[29] A. Dalalah, “Extreme Programming: Strengths and

Weaknesses,” Computer Technology and Application, vol. 5,

no. 1, 2014.

[30] M. Huo, J. Verner, L. Zhu and M. A. Babar, “Software quality

and agile methods,” in Proc. 28th Annu. Int. Conf. Computer

Software and Applications Conference, Sep. 2004, pp. 520-

525, IEEE.

[31] J. Cho, “Issues and Challenges of agile software development

with SCRUM,” Issues in Information Systems, vol. 9no. 2,

pp.188-195, 2008.

[32] L. Rising and N. S. Janoff, “The Scrum software development

process for small teams,” IEEE software, vol. 17, no. 4, pp.26-

32, 2000.

[33] K. N. Rao, G.K. Naidu and P. Chakka, “A study of the Agile

software development methods, applicability and implications

in industry,” Int. J. Softw. Eng. its Appl., vol. 5 no. 2, pp.35-

45, 2011.

