
International Journal of Computer Science and Telecommunications [Volume 7, Issue 4, May 2016] 1

Journal Homepage: www.ijcst.org

Yevgeniy Borodavka, Oleksandr Lisovyi and Dmytro Deineka



Abstract — This paper is dedicated to solving a problem of the

realistic 3D-models rendering with a single FPGA chip. The

suggested solution is based on the ray tracing algorithm with pre-

processing of the input data by the BVH-tree and with the

improved method of the background pixels separation. We regard

sphere as the basic 3D-object. Correspondingly, we suggest an

improvement method of computing ray/sphere intersection.

Algorithm is optimized by reducing the amount of arithmetic

operations to the minimum. Therefore, it can be implemented in a

single FPGA chip. Furthermore, we suggest a specific method of

spheres intersection handling. Software implementation of the

suggested algorithm is used for testing and for handling possible

errors.

Index Terms — Ray Tracing, FPGA, BVH-Tree, Background

Pixels, Ray Casting and 3D-Object

I. INTRODUCTION

HE problem of creation of fast and accurate rendering

algorithm is very essential. Nowadays, there are a lot of

different methods that deal with this problem. However, in

most cases, the already suggested methods are intended to

accurate rendering of static scenes. The main algorithm for

rendering of 3D-objects is the ray tracing (Fig. 1).

Fig. 1. A scene that is rendered by the ray tracing algorithm

Yevgeniy Borodavka is with Samsung Research and Development

Institute Ukraine (SRK), Kyiv 01032, Ukraine,

(Email: y.borodavka@samsung.com)

Oleksandr Lisovyi is with Samsung Research and Development Institute

Ukraine (SRK), Kyiv 01032, Ukraine, (Email: o.lisovyi@samsung.com)

Dmytro Deineka is with Samsung Research and Development Institute

Ukraine (SRK), Kyiv 01032, Ukraine, (Email: d.deineka@samsung.com)

The ray tracing algorithm has received a lot of improvements

and adaptations since 1970's. Clear examples are the

following: interactive ray tracing for dynamic scenes [1], the

hardware architecture for ray tracing [2] and SGRT [15].

The common problem of the ray tracing algorithm is a great

number of numerical calculations. The time of scene rendering

linearly depends on objects quantity and picture resolution.

Developers are forced to downgrade picture resolution or to

use less objects in order to reduce calculations.

We do not want to downgrade a picture resolution and we

will try to keep quantity of objects as many as possible.

Therefore, we have decided to create the ray tracing

algorithm which provides a balance between performance and

accuracy. This algorithm must be suitable for implementation

in Field-Programmable Gate Array (FPGA) chip.

II. PREVIOUS WORK

There are several related works which are using hardware

implementation of the ray tracing algorithm. The most known

works are the following: SaarCOR, RPU, SGRT and HART.

SaarCOR [4] includes a transformation unit for ray

transformation. This hardware architecture uses kd-tree

acceleration structure but without dynamic updating.

RPU [7] was designed for real-time ray tracing of dynamic

scenes with programmable material, geometry, and

illumination shaders. RPU uses kd-tree acceleration structure

and is implemented in a single FPGA chip. But architecture of

RPU supports very low image resolution for real-time

processing.

SGRT [15] is mobile ray-tracing hardware architecture for

static scenes. It combines dedicated T&I (Traverse and

Intersect) units and SRPs (Samsung reconfigurable

processors). SGRT provides real-time ray tracing performance

at full HD resolution that can compete with that of existing

desktop GPU ray tracers. BVH-tree acceleration structure is

used.

HART [9] is hybrid architecture for ray tracing. It uses CPU

for BVH-tree building and hardware implementation for ray

tracing. Axis aligned bounding boxes (AABB) are used as

bounding volumes.

All previously mention works are used triangles as

primitives whereas our solution is based on spheres.

T

The Hardware Adapted Ray Tracing Algorithm

ISSN 2047-3338

Yevgeniy Borodavka et al. 2

III. THE ALGORITHM INPUT DATA

Let’s suppose that all objects in the dynamic 3D-scene are

represented by their bounded spheres. Each sphere has a color

(Color), a radius (R), a coefficient of reflection (A), a unique

identifier (ID) and coordinates of a center point (C). The

screen has HD resolution (1280x720 pixels) and is parallel to

the xOy plane at some distance (D). The normal unit vector of

the screen is [0 0 1]. The viewpoint of observer (V) is located

on Z axis and light position is L (Fig. 2).

Fig. 2. Illustration to the input data of the algorithm

Our purpose is to generate a realistic image of each object

of the scene using the ray tracing algorithm. In direct algorithm

we need to cast rays through each pixel of the screen and

hence we search for objects that are intersected. We suggest to

use Bounding-Volume Hierarchies (BVH) tree in order to

reduce a quantity of objects that need to be checked. Likewise,

we suggest to separate background pixels in order to reduce a

quantity of pixels that need to be traced. Finally, we suggest an

improved method for ray/sphere intersection check and a

method for handling spheres intersection cases. Let’s take a

closer look at each of these suggestions in more details.

IV. BVH-TREE

We have chosen the BVH-tree as acceleration data structure

because it is simple to create and to use. Firstly, we need to

sort all out sphere in correct direction. Secondly, we need to

arrange spheres by 4 and create high levels of the tree.

A. Sphere Sorting

The viewpoint is placed at Z axis in positive direction. All

objects are placed behind xOy plane in negative direction of Z

axis. Thereby, we need to sort spheres from near to far in

relation to observer. We use only z-coordinate of the spheres

center for sorting, i.e. the radius is not taken into

consideration. It implies that the front side of some sphere with

a larger radius may be the nearest to screen even if its center

point has a bigger distance than another sphere with smaller

radius (Fig. 3).

This kind of spheres' sorting helps us to create BVH-tree

rapidly and optimally.

Fig. 3. Example of spheres sorting

B. Tree Construction

When all spheres are arranged, we can start to construct the

BVH-tree. Every node in the tree is the sphere. Every level of

the tree has no more than 4 children and every leaf node is

placed at the lowest level. This structure gives us acceleration

to locate object sphere with several comparisons because at

every tree level we select only one node. The algorithm of the

tree creation is described below.

The strategy of the tree creation is a merge of the spheres by

4 in the order of approach to the screen. During the merging

process we also compute a spatial box (PNear(XN, YN, ZN),

PFar(XF, YF, ZF)) that includes all 4 spheres. Also, we compute

the maximum spatial box that includes all spheres (PMin(XMin,

YMin, ZMin), PMax(XMax, YMax, ZMax)). After the input spheres

are merged, the next level of spheres is created. The merging

process is repeated to each sphere at the current level.

The center point (C) and the radius (R) of a new sphere is

computed by the following equations:

;
2

;
2

;
2

FN
C

FN
C

FN
C

ZZ
Z

YY
Y

XX
X










     222

CNCNCN ZZYYXXR 

If radius (R) of the new sphere is greater than the radius that

was computed for maximal spatial box, then new sphere has

replaced by the sphere that was constructed on the maximal

spatial box. We have implemented this rule to reduce

incremental increasing of the new spheres radius.

For N spheres the BVH-tree has a maximum depth of

[(log2N)/2] + 1. At each level the nodes are placed from left to

right in order of increasing distance from the screen (Fig. 4).

Fig. 4. BVH-tree example

International Journal of Computer Science and Telecommunications [Volume 7, Issue 4, May 2016] 3

The traversing of the tree with ray is very simple. We move

from the root to leaves and from left to right at each level. If

ray intersects the node’s sphere, then we move one level down.

When ray intersection with leaf sphere is detected, the

traversal stops. In best case, we will revise not more than

[(log2N)/2] + 4 spheres, in the worst case it will be

4*[(log2N)/2] + 1 spheres.

V. BACKGROUND PIXELS SEPARATION

When the BVH-tree construction is complete, then the stage

of background pixels separation starts. The 3D-objects do not

usually fill the whole scene. Thereby we do not have to trace

pixels from the background. We suggest detecting background

pixels with the following two methods. The difference between

these two methods is the strategy of the basic points'

determination.

A. Projection Matrix

Both suggested methods are used the projection matrix to

create projection of the root sphere basic points on the screen:



























VVVV

VV

V

V

ZDZDYDX

DYX

DZ

DZ

1

000

000

This projection matrix depends of the viewpoint (V)

position and the distance from the screen to xOy plane (D).

Any spatial point P(X, Y, Z) will be projected to the screen

point p(x, y, z) with the following coordinates:

   
ZZ

DZXDZX
x

V

VV






   
ZZ

DZYDZY
y

V

VV






Dz 

B. First Accurate Method

First method is very accurate but it needs many

computations. The strategy of the basic points' determination is

the computation of at least 64 points on the sphere and

projecting the points on the screen. That means that we need to

use 16 meridians and 16 parallels to determine the basic

points. More meridians and parallels can be used for more

accurate projection. The basic point P(X, Y, Z) can be

computed by the following equations:

    cossin  RXX C

    sinsin  RYY C

 cos RZZ C

    2;0,;0 

This method is useful when the viewpoint can be shifted in

any directions from its origin. In this case we have a

perspective deformation of the scene’s objects. Big amount of

the basic points helps us to make more accurate rendering of

the objects.

We have several points of the sphere on the screen when

projection is complete (Fig. 5).

Fig. 5. Sample of a sphere projection on the screen

Firstly, we need to compute a minimal bounding box

(MBB) that includes all pixels of the projection. Then we need

to restore a shape of the sphere at the screen projection. We

scan every line in MBB to detect first and last pixel of the

projection. All pixels between first and last one in each row we

need to mark as the projected pixels (Fig. 6).

Fig. 6. Pixels of the projection after horizontal scan

The next step is vertical scan for filling the omitted pixels.

Last step is marking border's pixels as projected to prevent

possible errors (Fig. 7).

Fig. 7. Final projection of the root sphere on the screen

Yevgeniy Borodavka et al. 4

Each pixel of the screen that is not marked is the

background pixel. We can use for these pixels the background

color of the scene. Thus, these pixels need not to be traced by

the rays.

C. Second Fast Method

Coordinates of points at sphere computation is a very

disadvantageous process with many arithmetical operations.

We suggest to use only 4 basis points for projection to reduce

computations. These points we compute by the following

equations:

;11 ;4.1 CPCP YYXX 

;22 ;4.1 CPCP YYXX 

;33 ;4.1 CPCP XXYY 

;44 ;4.1 CPCP XXYY 

We use coefficient 1.4 to prevent errors in object’s

projections when direction of view is less than 90⁰ to the

screen (Fig. 8).

As we follow this method we have square screen projection

with edge 2.8R. In this case we have 2.5 times more

background pixels marked as projected pixels than in the first

method:

 
5.2

8.2
2

22






R

R



Fig. 8. Illustration of using the coefficient

However, we still separate most of the background pixels

and reduce a number of pixels for tracing. Hence, we use only

2 additions and 2 subtractions for all 4 points as compared to 3

additions, 5 multiply and 4 trigonometrically functions for

each point in the first method.

After comparison of two methods we have made a

conclusion that the second method is less disadvantageous and

we use it in our hardware implementation.

VI. RAY CASTING

Now, we have the tree and the rectangular area of pixels that

have to be traced. For each pixel (P) we need to create a ray

(VP) with origin at the viewpoint (V). We traverse the tree

with this ray from the root to the leaves and from left to right

at each level until the ray/sphere intersection is found. The

main problem in this case is the computation of the point of

ray/sphere intersection. However, we need to compute the

intersection point only if it is a leaf sphere. The only thing we

need to know for node spheres is whether there is intersection

or not.

When intersected sphere is found and we have computed the

intersection point, we make a reflected ray and combine

current object color with a color of the reflected object. After

that we also cast a ray into a light direction to compute the

final color of an object.

A. Ray/Sphere Intersection Point

The geometrical method presented in [3] is used to find

intersection point. This method is illustrated at Fig. 9.

The distance between the sphere center and the ray computed

by Pythagorean equation is:

222 TLD  .

The squared distance between the viewpoint and the sphere

center (L) can be found by the following equation:

     2222

CVCVCV ZZYYXXL  .

Fig. 9. Ray/sphere intersection illustration

A ray intersects a sphere if the following inequality holds:

022 DR .

The distance from the viewpoint to the point on the ray that

is the closest to the sphere center (T):

.
VP

VP
VCT 

After substitution we get the formula:

International Journal of Computer Science and Telecommunications [Volume 7, Issue 4, May 2016] 5

.0

2

22 















VP

VP
VCLR

Note that, if (VC*VP<0) and (R
2
<|VC|

2
) then there is no

intersection at all.

After multiplying each member by |VP|
2
 we have:

    .0
22

22  VPVCVPLR

This formula requires minimum number of operations (11

multiplications and 11 additions). This fact is very important

for hardware implementation.

In order to compute the intersection point coordinates,

parameter T1 must be calculated first:

   
.

2

2

22

1

VP

VPVC
LRT




Now parameter t can be computed with the following

formula:

.1TTt 

Hence the intersection point is:

     VPnormVPnormVPnormVVV ZYXtZYXZYX 

B. Reflected Ray Computing

For more accurate and realistic scene rendering we must use

at least one reflection for each object. We assume, that surface

of the spheres is absolutely smooth. Hence, we use the

following equation for computing the reflected ray:

  ,2 CMVPCMVPMN 

CM stands for the normal vector of the sphere at the

intersection point.

Now, we can find intersection of spheres and the reflected

ray with a help of algorithm that is described in paragraph 5.A.

The only difference in tree traverse is that we need to check all

nodes at every level for intersection. At the end of the tree

traverse we will be able to have several spheres that are

intersected by the ray. Between these spheres we select the

nearest one. The color of reflected sphere is used for blending

with a color of the found sphere by following equation:

  RF CACACol  1

CF stands for the color of the found sphere, CR stands for the

color of the reflected sphere.

C. Light Source Check

Light source makes a great contribution to object color

formation. If light source is occluded by some object, then we

will have shadow effect. Otherwise, we need to compute a

coefficient of light source contribution to the object’s color.

We use the same algorithm that is described above in order

to find out whether we have some sphere at light source

direction. If there is no sphere at light source direction, then

we compute coefficient of the light contribution as triple dot

product between normal unit vector of the sphere and unit

vector direction to the light position. An example of rendered

scene with one light source and two-time reflection is

presented at Fig. 10.

Fig. 10. Example of rendered scene with light and reflection

D. Spheres Intersections Handling

We have a little bug in case of spheres intersections due to

simple method of BVH-tree construction (Fig. 11).

As we can see at Fig. 11, the small sphere is found first due

to tree construction algorithm, because it is closer to the screen

than the bigger one. However, this case is totally incorrect. We

suggest simple solution to solve this problem. We make the

reflected ray as mentioned in paragraph 5.B and when we find

an intersected sphere then we test it. The additional test is very

simple and it is as follows: if the origin of the reflected ray is

located inside the sphere, then we will find that it is the case of

spheres intersection. We use the following formula to check

situation when the origin of the ray within the sphere:

,0
22  MCR

MC stands for the vector from the intersection point (at the

small sphere at Fig. 11) to the center point of the reflected

sphere (the big one at Fig. 11).

The result of the suggested method of handling intersection

cases is presented at Fig. 12. There we have 100 spheres, one

light source and two-times reflections.

Yevgeniy Borodavka et al. 6

Fig. 11. Case of the spheres intersection

Fig. 12. The result of the suggested method

As you can see at Fig. 12, all cases of the spheres

intersections are handled correctly.

VII. HARDWARE ARCHITECTURE CONCEPT

Likewise HART [9], our hardware architecture is used

external memory and CPU for preprocessing and storing data

(Fig. 13).

Fig. 13. The top level architecture

The BVH-tree, scene parameters and primitive’s parameters

are stored in the External Memory.

CPU is used for the following: preparing and saving scene

parameters to the External Memory; preparing and saving

BVH-tree and primitives parameters to the External Memory;

making the background pixels separation; TOP_IP control;

Video Generator initialization.

Video Subsystem is used for storing frames in buffer and to

prepare video for transmission through HDMI port. Frames

buffer is an internal FIFO memory for storing the last 3

frames. It is used for synchronization between the TOP_IP and

the Video Subsystem and makes possible output of streaming

video. Video Generator generates video signals according to

the HDMI protocol. CPU initializes Video Generator with HD

video format parameters.

TOP_IP contains Ray Tracing component and Cache. Cache

is used to hold the most recently accessed primitives’

parameters. Ray Tracing IP generates frames in HD

(1280×720 pixel) format. Each pixel is coded by the 24-bit

true color format.

Ray Tracing IP architecture is divided into three parts:

Rendering, L1 Reflection, and L2 Reflection. In addition, there

is a MUX frames component which is used for selection of

frames with needed depth of 3D effect. All parts work

simultaneously and have access to the External Memory. Each

part generates frames with defined depth of 3D effect.

VIII. CONCLUSIONS

This work provides the rendering method that was used in

patent application [16]. The suggested ray tracing algorithm is

designed for hardware implementation and has 3

improvements compared with other algorithms. They are: pre-

processing input data with sphere BVH-tree, background pixel

separation and very simple formula for ray/sphere intersection

detection.

The suggested method can be used in interactive systems

with 3D graphic (video games for computers and mobile

devices, electronic mapping, Computer Aided Design

application etc.).

Today we have software implementation of suggested

algorithm and draft hardware implementation with only 5

spheres. Thus, we could not compare our current results with

existing state-of-the-art solution, because no one has used

sphere as a primitive.

Our future work is to create new hardware architecture on

single FPGA chip and to implement there our algorithm.

REFERENCES

[1] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha, “RT-

DEFORM: Interactive ray tracing of dynamic scenes using

BVHs,” in Proceedings of the 2006 IEEE Symposium on

Interactive Ray Tracing, pp. 39-45, 2007.

[2] J. Schmittler, S. Woop, D. Wagner, W.J. Paul, and P.

Slusallek, “Real-time ray tracing of dynamic scenes on an

FPGA chip,” in Proceedings of the ACM

External Memory CPU

TOP_IP

Cache

Ray Tracing IP

Video Subsystem

Frames Buffer

Video Generator

International Journal of Computer Science and Telecommunications [Volume 7, Issue 4, May 2016] 7

SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, pp. 95-106, 2004.

[3] A.S. Glassner, An Introduction to Ray Tracing. Academic

Press Limited, 1989.

[4] J. Schmittler, I. Wald, and P. Slusallek, “SaarCOR – A

Hardware Architecture for Ray Tracing,” in Proceedings of

the Graphics Hardware, pp. 1-11, 2002.

[5] C. Wachter, and A. Keller, “Instant Ray Tracing: The

Bounding Interval Hierarchy,” in Proceedings of the 17th

Eurographics Symposium on Rendering, pp. 139-149, 2006.

[6] E. Reinhard, B. Smits, and C. Hansen, “Dynamic Acceleration

Structures for Interactive Ray Tracing,” in Proceedings of the

Eurographics Workshop on Rendering Technics, pp. 299-306,

2000.

[7] S. Woop, J. Schmittler, and P. Slusallek, “RPU: A

Programmable Ray Tracing Unit for Realtime Ray Tracing,”

ACM Transaction on Graphics vol. 24, pp. 434-444, 2005.

[8] T.J. Purcell, I. Buck, W. R. Mark, and P. Hanraham, “Ray

Tracing on Programmable Graphics Hardware,” in

Proceedings of the 29th Annual Conference on Computer

Graphics and Interactive Techniques, pp. 703-712, 2002.

[9] J.H. Nah, J. W. Kim, J. Park, W. J. Lee, J. S. Park, S. Y. Jung,

W. C. Park, D. Manocha, and T. D. Han, “HART: A Hybrid

Architecture for ray Tracing Animated Scenes,” IEEE

Transaction on Visualization and Computer Graphics,

Volume 21, Issue 3, pp. 389-401, 2015.

[10] S.-E. Yoon, S. Curtis, and D. Manocha, “Ray tracing dynamic

scenes using selective restructuring,” in Proceedings of

Eurographics symposium on rendering 2007, pp. 73-84, 2007.

[11] J. Bigler, A. Stephens, and S. G. Parker, “Design for parallel

interactive ray tracing systems,” in Proceedings of IEEE

Symposium on Interactive Ray Tracing 2006, pp. 187-196,

2006.

[12] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, “Efficient BVH

construction via approximate agglomerative clustering,” in

Proceedings of the 5th High-Performance Graphics

Conference, pp. 81-88, 2013.

[13] T. Karras and T. Aila, “Fast parallel construction of high-

quality bounding volume hierarchies,” in Proceedings of the

5th High-Performance Graphics Conference, pp. 89-99, 2013.

[14] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,

D. Luebke, D. McAllister, M. McGuire, K. Morley, A.

Robison, and M. Stich, “OptiX: a general purpose ray tracing

engine,” ACM Transactions on Graphics (SIGGRAPH 2010),

vol. 29, no. 4, pp. 66:1–66:13, 2010.

[15] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S.-Y. Jung,

S.-H. Lee, H.-S. Park, and T.-D. Han, “SGRT: A mobile GPU

architecture for real-time ray tracing,” in Proceedings of the

5th High-Performance Graphics Conference, pp. 109–119,

2013.

[16] I. Borodavka, O. Lisovyi, and D. Deineka, “Rendering System

and Rendering method thereof,” US Patent Application

20160005210 July 2014 [Online]. Available:

http://www.google.com/ patents/US20160005210

Mr. Yevgeniy Borodavka

Received B.Sc. and M.Sc. degrees in computer

science and Ph.D. degree in computer aided

design from Kyiv National University of

Construction and Architecture, Ukraine, in

2002, 2003 and 2009, respectively. Since

2005 assistant professor and since 2009

associate professor of the Information

Technologies of Design and Applied

Mathematics department in Kyiv National University of Construction

and Architecture, Ukraine. From 2004 to 2009 – lead engineer and

from 2009 to 2012 – senior scientific staff in State Enterprise “State

Research and Development Institute of Computer Aided Design in

Construction”. Since April 2013 is lead engineer in Samsung

Research and Development Institute Ukraine (SRK).

Mr. Oleksandr Lisovyi

Received B.Sc. and M.Sc. degrees in computer

engineering and Ph.D. degree in computer

systems and components from V.M. Glushkov

Institute of cybernetics of National Academy of

Sciences, Ukraine, in 2005, 2006 and 2010,

respectively. From 2005 to 2006 – engineer,

from 2006 to 2010 – junior research assistant,

since 2010 is research assistant in V.M.

Glushkov Institute of cybernetics of NAS of Ukraine. From 2011 to

2012 – engineer, from 2012 to 2015 – lead engineer, since 2015 is

senior engineer in Samsung Research and Development Institute

Ukraine (SRK).

Mr. Dmytro Deineka

Received B.Sc. and M.Sc degrees in electronic

engineering from National Technical

University of Ukraine "Kyiv Polytechnic

Institute" in 2009 and 2011, respectively. From

2010 to 2012 RTL engineer in Design bureau.

From 2012 to March 2015 is engineer and

since March 2015 is lead engineer in Samsung

Research and Development Institute Ukraine

(SRK).

