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Abstract — This paper is dedicated to solving a problem of the 

realistic 3D-models rendering with a single FPGA chip. The 

suggested solution is based on the ray tracing algorithm with pre-

processing of the input data by the BVH-tree and with the 

improved method of the background pixels separation. We regard 

sphere as the basic 3D-object. Correspondingly, we suggest an 

improvement method of computing ray/sphere intersection. 

Algorithm is optimized by reducing the amount of arithmetic 

operations to the minimum. Therefore, it can be implemented in a 

single FPGA chip. Furthermore, we suggest a specific method of 

spheres intersection handling. Software implementation of the 

suggested algorithm is used for testing and for handling possible 

errors. 

 
Index Terms — Ray Tracing, FPGA, BVH-Tree, Background 

Pixels, Ray Casting and 3D-Object 

 

I. INTRODUCTION 

HE problem of creation of fast and accurate rendering 

algorithm is very essential. Nowadays, there are a lot of 

different methods that deal with this problem. However, in 

most cases, the already suggested methods are intended to 

accurate rendering of static scenes. The main algorithm for 

rendering of 3D-objects is the ray tracing (Fig. 1). 

 

 

Fig. 1.  A scene that is rendered by the ray tracing algorithm 
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The ray tracing algorithm has received a lot of improvements 

and adaptations since 1970's. Clear examples are the 

following: interactive ray tracing for dynamic scenes [1], the 

hardware architecture for ray tracing [2] and SGRT [15]. 

The common problem of the ray tracing algorithm is a great 

number of numerical calculations. The time of scene rendering 

linearly depends on objects quantity and picture resolution. 

Developers are forced to downgrade picture resolution or to 

use less objects in order to reduce calculations. 

We do not want to downgrade a picture resolution and we 

will try to keep quantity of objects as many as possible.  

Therefore, we have decided to create the ray tracing 

algorithm which provides a balance between performance and 

accuracy. This algorithm must be suitable for implementation 

in Field-Programmable Gate Array (FPGA) chip. 

II. PREVIOUS WORK 

There are several related works which are using hardware 

implementation of the ray tracing algorithm. The most known 

works are the following: SaarCOR, RPU, SGRT and HART. 

SaarCOR [4] includes a transformation unit for ray 

transformation. This hardware architecture uses kd-tree 

acceleration structure but without dynamic updating. 

RPU [7] was designed for real-time ray tracing of dynamic 

scenes with programmable material, geometry, and 

illumination shaders. RPU uses kd-tree acceleration structure 

and is implemented in a single FPGA chip. But architecture of 

RPU supports very low image resolution for real-time 

processing. 

SGRT [15] is mobile ray-tracing hardware architecture for 

static scenes. It combines dedicated T&I (Traverse and 

Intersect) units and SRPs (Samsung reconfigurable 

processors). SGRT provides real-time ray tracing performance 

at full HD resolution that can compete with that of existing 

desktop GPU ray tracers. BVH-tree acceleration structure is 

used. 

HART [9] is hybrid architecture for ray tracing. It uses CPU 

for BVH-tree building and hardware implementation for ray 

tracing. Axis aligned bounding boxes (AABB) are used as 

bounding volumes. 

All previously mention works are used triangles as 

primitives whereas our solution is based on spheres. 
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III. THE ALGORITHM INPUT DATA 

Let’s suppose that all objects in the dynamic 3D-scene are 

represented by their bounded spheres. Each sphere has a color 

(Color), a radius (R), a coefficient of reflection (A), a unique 

identifier (ID) and coordinates of a center point (C). The 

screen has HD resolution (1280x720 pixels) and is parallel to 

the xOy plane at some distance (D). The normal unit vector of 

the screen is [0 0 1]. The viewpoint of observer (V) is located 

on Z axis and light position is L (Fig. 2). 

 
Fig. 2.  Illustration to the input data of the algorithm 

 

Our purpose is to generate a realistic image of each object 

of the scene using the ray tracing algorithm. In direct algorithm 

we need to cast rays through each pixel of the screen and 

hence we search for objects that are intersected. We suggest to 

use Bounding-Volume Hierarchies (BVH) tree in order to 

reduce a quantity of objects that need to be checked. Likewise, 

we suggest to separate background pixels in order to reduce a 

quantity of pixels that need to be traced. Finally, we suggest an 

improved method for ray/sphere intersection check and a 

method for handling spheres intersection cases. Let’s take a 

closer look at each of these suggestions in more details. 

IV. BVH-TREE 

We have chosen the BVH-tree as acceleration data structure 

because it is simple to create and to use. Firstly, we need to 

sort all out sphere in correct direction. Secondly, we need to 

arrange spheres by 4 and create high levels of the tree. 

A. Sphere Sorting 

The viewpoint is placed at Z axis in positive direction. All 

objects are placed behind xOy plane in negative direction of Z 

axis. Thereby, we need to sort spheres from near to far in 

relation to observer. We use only z-coordinate of the spheres 

center for sorting, i.e. the radius is not taken into 

consideration. It implies that the front side of some sphere with 

a larger radius may be the nearest to screen even if its center 

point has a bigger distance than another sphere with smaller 

radius (Fig. 3). 

This kind of spheres' sorting helps us to create BVH-tree 

rapidly and optimally. 

 

 

 
 

Fig. 3.  Example of spheres sorting 

 

B. Tree Construction 

When all spheres are arranged, we can start to construct the 

BVH-tree. Every node in the tree is the sphere. Every level of 

the tree has no more than 4 children and every leaf node is 

placed at the lowest level. This structure gives us acceleration 

to locate object sphere with several comparisons because at 

every tree level we select only one node. The algorithm of the 

tree creation is described below. 

The strategy of the tree creation is a merge of the spheres by 

4 in the order of approach to the screen. During the merging 

process we also compute a spatial box (PNear(XN, YN, ZN), 

PFar(XF, YF, ZF)) that includes all 4 spheres. Also, we compute 

the maximum spatial box that includes all spheres (PMin(XMin, 

YMin, ZMin), PMax(XMax, YMax, ZMax)). After the input spheres 

are merged, the next level of spheres is created. The merging 

process is repeated to each sphere at the current level. 

The center point (C) and the radius (R) of a new sphere is 

computed by the following equations: 
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If radius (R) of the new sphere is greater than the radius that 

was computed for maximal spatial box, then new sphere has 

replaced by the sphere that was constructed on the maximal 

spatial box. We have implemented this rule to reduce 

incremental increasing of the new spheres radius. 

For N spheres the BVH-tree has a maximum depth of 

[(log2N)/2] + 1. At each level the nodes are placed from left to 

right in order of increasing distance from the screen (Fig. 4). 

 

 
 

Fig. 4.  BVH-tree example 
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The traversing of the tree with ray is very simple. We move 

from the root to leaves and from left to right at each level. If 

ray intersects the node’s sphere, then we move one level down. 

When ray intersection with leaf sphere is detected, the 

traversal stops. In best case, we will revise not more than 

[(log2N)/2] + 4 spheres, in the worst case it will be 

4*[(log2N)/2] + 1 spheres. 

V. BACKGROUND PIXELS SEPARATION 

When the BVH-tree construction is complete, then the stage 

of background pixels separation starts. The 3D-objects do not 

usually fill the whole scene. Thereby we do not have to trace 

pixels from the background. We suggest detecting background 

pixels with the following two methods. The difference between 

these two methods is the strategy of the basic points' 

determination. 

A. Projection Matrix 

Both suggested methods are used the projection matrix to 

create projection of the root sphere basic points on the screen: 
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This projection matrix depends of the viewpoint (V) 

position and the distance from the screen to xOy plane (D). 

Any spatial point P(X, Y, Z) will be projected to the screen 

point p(x, y, z) with the following coordinates: 
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B. First Accurate Method 

First method is very accurate but it needs many 

computations. The strategy of the basic points' determination is 

the computation of at least 64 points on the sphere and 

projecting the points on the screen. That means that we need to 

use 16 meridians and 16 parallels to determine the basic 

points. More meridians and parallels can be used for more 

accurate projection. The basic point P(X, Y, Z) can be 

computed by the following equations: 

 

    cossin  RXX C  

    sinsin  RYY C  

 cos RZZ C  

    2;0,;0   

This method is useful when the viewpoint can be shifted in 

any directions from its origin. In this case we have a 

perspective deformation of the scene’s objects. Big amount of 

the basic points helps us to make more accurate rendering of 

the objects. 

We have several points of the sphere on the screen when 

projection is complete (Fig. 5). 

 

                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                

 

Fig. 5.  Sample of a sphere projection on the screen 

 

Firstly, we need to compute a minimal bounding box 

(MBB) that includes all pixels of the projection. Then we need 

to restore a shape of the sphere at the screen projection. We 

scan every line in MBB to detect first and last pixel of the 

projection. All pixels between first and last one in each row we 

need to mark as the projected pixels (Fig. 6). 

 

                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                

 

Fig. 6.  Pixels of the projection after horizontal scan 

 

The next step is vertical scan for filling the omitted pixels. 

Last step is marking border's pixels as projected to prevent 

possible errors (Fig. 7). 

 

                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                
                                

 

Fig. 7.  Final projection of the root sphere on the screen 
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Each pixel of the screen that is not marked is the 

background pixel. We can use for these pixels the background 

color of the scene. Thus, these pixels need not to be traced by 

the rays. 

C. Second Fast Method 

Coordinates of points at sphere computation is a very 

disadvantageous process with many arithmetical operations. 

We suggest to use only 4 basis points for projection to reduce 

computations. These points we compute by the following 

equations: 

;11 ;4.1 CPCP YYXX   

;22 ;4.1 CPCP YYXX   

;33 ;4.1 CPCP XXYY   

;44 ;4.1 CPCP XXYY   

 

We use coefficient 1.4 to prevent errors in object’s 

projections when direction of view is less than 90⁰ to the 

screen (Fig. 8). 

As we follow this method we have square screen projection 

with edge 2.8R. In this case we have 2.5 times more 

background pixels marked as projected pixels than in the first 

method: 
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Fig. 8.  Illustration of using the coefficient 

 

However, we still separate most of the background pixels 

and reduce a number of pixels for tracing. Hence, we use only 

2 additions and 2 subtractions for all 4 points as compared to 3 

additions, 5 multiply and 4 trigonometrically functions for 

each point in the first method. 

After comparison of two methods we have made a 

conclusion that the second method is less disadvantageous and 

we use it in our hardware implementation. 

VI. RAY CASTING 

Now, we have the tree and the rectangular area of pixels that 

have to be traced. For each pixel (P) we need to create a ray 

(VP) with origin at the viewpoint (V). We traverse the tree 

with this ray from the root to the leaves and from left to right 

at each level until the ray/sphere intersection is found. The 

main problem in this case is the computation of the point of 

ray/sphere intersection. However, we need to compute the 

intersection point only if it is a leaf sphere. The only thing we 

need to know for node spheres is whether there is intersection 

or not. 

When intersected sphere is found and we have computed the 

intersection point, we make a reflected ray and combine 

current object color with a color of the reflected object. After 

that we also cast a ray into a light direction to compute the 

final color of an object. 

A. Ray/Sphere Intersection Point 

The geometrical method presented in [3] is used to find 

intersection point. This method is illustrated at Fig. 9. 

The distance between the sphere center and the ray computed 

by Pythagorean equation is: 

 
222 TLD  . 

 

The squared distance between the viewpoint and the sphere 

center (L) can be found by the following equation: 

 

     2222

CVCVCV ZZYYXXL  . 

 

 
Fig. 9.  Ray/sphere intersection illustration 

 

A ray intersects a sphere if the following inequality holds: 

022 DR . 

 

The distance from the viewpoint to the point on the ray that 

is the closest to the sphere center (T): 
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After substitution we get the formula: 
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Note that, if (VC*VP<0) and (R
2
<|VC|

2
) then there is no 

intersection at all. 

After multiplying each member by |VP|
2
 we have: 
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This formula requires minimum number of operations (11 

multiplications and 11 additions). This fact is very important 

for hardware implementation. 

In order to compute the intersection point coordinates, 

parameter T1 must be calculated first: 
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Now parameter t can be computed with the following 

formula: 

 

.1TTt   

 

Hence the intersection point is: 

 

     VPnormVPnormVPnormVVV ZYXtZYXZYX 

 

B. Reflected Ray Computing 

For more accurate and realistic scene rendering we must use 

at least one reflection for each object. We assume, that surface 

of the spheres is absolutely smooth. Hence, we use the 

following equation for computing the reflected ray: 

 

  ,2 CMVPCMVPMN   

 

CM stands for the normal vector of the sphere at the 

intersection point. 

Now, we can find intersection of spheres and the reflected 

ray with a help of algorithm that is described in paragraph 5.A. 

The only difference in tree traverse is that we need to check all 

nodes at every level for intersection. At the end of the tree 

traverse we will be able to have several spheres that are 

intersected by the ray. Between these spheres we select the 

nearest one. The color of reflected sphere is used for blending 

with a color of the found sphere by following equation: 

 

  RF CACACol  1  

 

CF stands for the color of the found sphere, CR stands for the 

color of the reflected sphere. 

C. Light Source Check 

Light source makes a great contribution to object color 

formation. If light source is occluded by some object, then we 

will have shadow effect. Otherwise, we need to compute a 

coefficient of light source contribution to the object’s color. 

We use the same algorithm that is described above in order 

to find out whether we have some sphere at light source 

direction. If there is no sphere at light source direction, then 

we compute coefficient of the light contribution as triple dot 

product between normal unit vector of the sphere and unit 

vector direction to the light position. An example of rendered 

scene with one light source and two-time reflection is 

presented at Fig. 10. 

 

 
 

Fig. 10.  Example of rendered scene with light and reflection 

 

D. Spheres Intersections Handling 

We have a little bug in case of spheres intersections due to 

simple method of BVH-tree construction (Fig. 11). 

As we can see at Fig. 11, the small sphere is found first due 

to tree construction algorithm, because it is closer to the screen 

than the bigger one. However, this case is totally incorrect. We 

suggest simple solution to solve this problem. We make the 

reflected ray as mentioned in paragraph 5.B and when we find 

an intersected sphere then we test it. The additional test is very 

simple and it is as follows: if the origin of the reflected ray is 

located inside the sphere, then we will find that it is the case of 

spheres intersection. We use the following formula to check 

situation when the origin of the ray within the sphere: 

 

,0
22  MCR  

 

MC stands for the vector from the intersection point (at the 

small sphere at Fig. 11) to the center point of the reflected 

sphere (the big one at Fig. 11). 

The result of the suggested method of handling intersection 

cases is presented at Fig. 12. There we have 100 spheres, one 

light source and two-times reflections. 
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Fig. 11.  Case of the spheres intersection 

 

 

 
 

Fig. 12.  The result of the suggested method 

 

 

As you can see at Fig. 12, all cases of the spheres 

intersections are handled correctly. 

VII. HARDWARE ARCHITECTURE CONCEPT 

Likewise HART [9], our hardware architecture is used 

external memory and CPU for preprocessing and storing data 

(Fig. 13). 

 

 
 

Fig. 13.  The top level architecture 

 

 

The BVH-tree, scene parameters and primitive’s parameters 

are stored in the External Memory. 

CPU is used for the following: preparing and saving scene 

parameters to the External Memory; preparing and saving 

BVH-tree and primitives parameters to the External Memory; 

making the background pixels separation; TOP_IP control; 

Video Generator initialization. 

Video Subsystem is used for storing frames in buffer and to 

prepare video for transmission through HDMI port. Frames 

buffer is an internal FIFO memory for storing the last 3 

frames. It is used for synchronization between the TOP_IP and 

the Video Subsystem and makes possible output of streaming 

video. Video Generator generates video signals according to 

the HDMI protocol. CPU initializes Video Generator with HD 

video format parameters. 

TOP_IP contains Ray Tracing component and Cache. Cache 

is used to hold the most recently accessed primitives’ 

parameters. Ray Tracing IP generates frames in HD 

(1280×720 pixel) format. Each pixel is coded by the 24-bit 

true color format. 

Ray Tracing IP architecture is divided into three parts: 

Rendering, L1 Reflection, and L2 Reflection. In addition, there 

is a MUX frames component which is used for selection of 

frames with needed depth of 3D effect. All parts work 

simultaneously and have access to the External Memory. Each 

part generates frames with defined depth of 3D effect. 

VIII. CONCLUSIONS 

This work provides the rendering method that was used in 

patent application [16]. The suggested ray tracing algorithm is 

designed for hardware implementation and has 3 

improvements compared with other algorithms. They are: pre-

processing input data with sphere BVH-tree, background pixel 

separation and very simple formula for ray/sphere intersection 

detection. 

The suggested method can be used in interactive systems 

with 3D graphic (video games for computers and mobile 

devices, electronic mapping, Computer Aided Design 

application etc.). 

Today we have software implementation of suggested 

algorithm and draft hardware implementation with only 5 

spheres. Thus, we could not compare our current results with 

existing state-of-the-art solution, because no one has used 

sphere as a primitive. 

Our future work is to create new hardware architecture on 

single FPGA chip and to implement there our algorithm. 
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