
International Journal of Computer Science and Telecommunications [Volume 6, Issue 9, September 2015]                                14 

Journal Homepage: www.ijcst.org 

 
 

Seyed Mahdi Jameii
1
, Mostafa Haghi Kashani

2
 and Ramin Karimi

3
 

 

 

 

 

Abstract— Multi-objective optimization problems are 

currently gaining significant attentions from researchers because 

many real-world optimization problems consist of contradictory 

objectives. SPEA (Strength Pareto Evolutionary Algorithm) is 

one of the most successful multi-objective evolutionary 

algorithms for approximating the Pareto-optimal set for multi-

objective optimization problems. In this paper, an improved 

version of SPEA-II, called LASPEA (Learning Automata-based 

Strength Pareto Evolutionary Algorithm) is proposed. The 

proposed algorithm incorporates problem-specific genetic 

operators and learning automata to improve the behavior of the 

optimization algorithm. Simulation results demonstrate the 

efficiency of the LASPEA in terms of convergence and diversity. 

 

Index Terms— Multi-Objective Optimization, Evolutionary 

Algorithm, Learning Automata and Pareto-Front 

 

I. INTRODUCTION 

VER the past decade, many multi-objective evolutionary 

algorithms (MOEAs) have been proposed [1]-[5]. The 

popularity of MOEAs is due to their ability to find 

multiple Pareto-optimal solutions in one single simulation 

run. Since evolutionary algorithms (EA) work with a 

population of solutions, a simple EA can be extended to 

maintain a diverse set of solutions. With an emphasis for 

moving toward the true Pareto-optimal region, an EA can be 

used to find multiple Pareto-optimal solutions in one single 

simulation run. Evolutionary techniques for multi-objective 

optimization are currently gaining significant attentions from 

researchers in various fields due to their effectiveness and 

robustness in searching for a set of global trade-off solutions 

[6]. This growing interest is reflected by the significantly 

increase number of different evolutionary-based approaches 

and variations of existing techniques published in technical 

literatures.  
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Multi-objective optimization is a highly demanding 

research topic because many real-world optimization 

problems consist of contradictory criteria or objectives. 

Considering these competing objectives concurrently, a multi-

objective optimization problem (MOP) can be formulated as 

finding the best possible solutions that satisfy these objectives 

under different tradeoff situations. A family of solutions in the 

feasible solution space forms a Pareto-optimal front, which 

describes the tradeoff among several contradictory objectives 

of an MOP [7]. Generally, there are two goals in finding the 

Pareto-optimal front of a MOP: 1) to converge solutions as 

near as possible to the Pareto-optimal front; and 2) to 

distribute solutions as diverse as possible over the obtained 

non-dominated front. These two goals cause enormous search 

space in MOPs and let deterministic algorithms feel difficult 

to obtain the Pareto-optimal solutions. Therefore, satisfying 

these two goals simultaneously is a principal challenge for 

any algorithm to deal with MOPs [8]. In recent years, several 

evolutionary algorithms have been proposed to solve Multi-

Objective Problems. For example, the strength Pareto 

evolutionary algorithm (SPEA) [5] and the non-dominated 

sorting genetic algorithm (NSGA-II) [9] are two most famous 

algorithms and have been reported to perform well. Several 

extensions of genetic algorithms (GAs) for dealing with 

MOPs are also proposed, such as the Niche Pareto Genetic 

Algorithm (NPGA) [3], the Chaos-Genetic Algorithm (CGA) 

[10], the Real Jumping Gene Genetic Algorithm (RJGGA) 

[11], PAES [12], Vector Evaluated Genetic Algorithm [13], 

and Multi-Objective Genetic Algorithm (MOGA) [14].  

The main goals of each MOEA are convergence to the true 

Pareto optimal set, and maintenance of a uniform distribution 

of the Pareto front. 

In this paper, an improved version of SPEA-II, called 

LASPEA (Learning Automata-based Strength Pareto 

Evolutionary Algorithm) is proposed. The proposed algorithm 

incorporates problem-specific genetic operators and learning 

automata to improve the behavior of the SPEA. Simulation 

results demonstrate the efficiency of the LASPEA in terms 

of convergence and diversity. The rest of the paper is 

organized as follows. In section II and section III, we have 

overviewed on multi-objective optimization and multi-

objective evolutionary algorithm respectively. The proposed 

multi-objective evolutionary algorithm is presented in section 

IV. In section V, the experiments and results are provided. 

Finally, this paper concludes with a summary in section VI. 
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II. MULTI-OBJECTIVE OPTIMIZATION 

Objectives in multi-objective problems often conflict with 

each other, so improving one objective will affect other 

objectives. Thus, there is no best single optimal solution 

regarding all the objective functions. In MOPs, there is a set 

of Pareto-optimal solutions or Pareto-front. MOPs 

formulation is as follow [1]:  

Minimize or maximize F(x) = (F1(x), …, Fm(x))      (1) 

where x belongs to the decision space, F consists of m 

objective function. A MOP can has various some constraints 

as follow:  

 
                                    

                             
                                        (2) 

 

In this case, the solutions of the feasible region in the 

search space satisfy all constraints. In a MOP with both 

minimization and maximization objective functions, it is 

better to convert all objectives to minimization or 

maximization forms. In a MOP with m objectives for 

minimization, the definitions of Pareto-Dominance, Pareto-

optimal Set and Pareto-front are as follow [1]:  

 

Pareto-Dominance: decision variables x is said to dominate 

decision variables y (x ‹ y), if and only if:  

 

 
                                                             

                                                     
   (3)     

Pareto-optimal Set: a solution k is said to be Pareto-optimal 

(or non-dominated) if there is no another solutions that 

dominate k. The set of all Pareto-optimal solutions in the 

decision space is called the Pareto-optimal Set (PS).  

Pareto-Front: The image of the PS in the objective space is 

called the Pareto-Front (PF). 

PF= {f(x) | x ϵ PS}                                                   (4) 

III. MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHM (MOEA) 

A typical evolutionary algorithm has the following steps: 

1. Population initialization  

2. Fitness evaluation 

3. Crossover 

4. Mutation 

5. Selection 

In order to perform selection step, objective function which 

sometimes called fitness function are required. Also, a multi-

objective optimization deals with m (m ≥ 2) different 

objective function. Combining these different objective 

functions into a one objective function is an elementary task 

of each multi-objective evolutionary algorithm. This task is 

fulfilled by means of concepts such as Pareto-Dominance and 

Pareto- Front which are described in previous section [6]. 

IV. PROPOSED MULTI-OBJECTIVE EVOLUTIONARY 

ALGORITHM 

In this section, an improved version of SPEA-II [15], called 

LASPEA (Learning Automata-based Strength Pareto 

Evolutionary Algorithm) is proposed. LASPEA is based on 

SPEA-II and learning automata and incorporates problem-

specific genetic operators and learning automata to improve 

the behavior of the SPEA-II. In this algorithm, despite the 

SPEA-II, the rates of crossover and mutation operators (pc and 

pm) don’t have predefined and fixed values and are adapted 

dynamically. These operators can affect the performance of 

the algorithm. The great value for pc helps the algorithm to 

detect the new solutions and improves the convergence. Small 

value for pc causes the search process gets stuck at local 

optima. If pm is too large, the algorithm behaves very 

randomly. So, the balance between pc and pm should be 

maintained. In the proposed algorithm, a learning automaton 

performs this task by adjusting the value of these operators. In 

addition, despite the SPEA-II, the proposed algorithm uses 

Dynamic Crowding Distance (DCD) method to for 

maintaining the diversity of the solutions. The concept of 

DCD was proposed at the first time in [16]. The steps of the 

proposed algorithm are as follow: 

 

Step1: At first, the value of t is initialized by zero and then, 

initial population (Populationt) with size N and external 

archive (           
                ) with size    are created. 

 

Step 2: For each individual i in Populationt and            
                , 

a strength value  S(i) is calculated. The value of S(i) indicates 

the number of solutions which dominated by solution i (the 

concept of dominance was presented in section 3) and 

calculated as bellow: 

 

                                     
                           (5) 

 

In this equation,   means the union of two sets and 

      means the solutions I dominated the solution j.  

Then, according to the value of S(i), the value of P(i) is 

calculated as equation (6): 
 

                                                                                (6) 

 

As can be seen in this equation, the value of P for non-

dominated solutions is equal to zero, because there is no other 

solution like j which dominates them. For better 

understanding this concept, we consider a minimization 

problem with two objectives and show the P value for 

dominated and non-dominated solutions in Fig. 1. 
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Fig. 1: The values of P for solutions in a minimization problem with two 

objectives 

 

Step 3: For each individual i in Populationt and            
                 

the value of Dynamic Crowding Distance DCD(i) is 

calculated according to (7): 

                          DCDi = 
  

            
                                       (7) 

where di is the crowding distance of  individual i and is 

calculated based on Equation (8) and demonstrates the 

closeness of individual i to another other  individuals in the 

population. The great value for this parameter results in better 

distributions of solutions in the population. 

           di= 
 

    
      

      
  

    

                               (8) 

where Nobj is the number of objectives,     
  is the z

th
 

objective of the i + 1
th

 individual and     
  is the z

th
 objective 

of the i-1
th

 individual.  

Vari is the variance of di of individuals which are neighbors of 

the i
th

 individual and is calculated based on Equation (9): 

        Vari = 
 

    
       

      
      

     

                 (9) 

The crowding distance of i
th 

 individual in a minimization 

problem with two objectives is shown in Fig. 2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Crowding distance of ith individual in a minimization problem with 

two objectives [9] 

Step 4: For each individual i in Populationt and            
                , 

the value of fitness function is calculated according to (10): 

 

(10           )       
 

      
              

 

Where p(i) and DCD(i) are calculated based on (6) and (7) 

respectively and   is coefficient between 0 and 1 and is 

adjustable based on application requirement. 

For avoiding the equation (10) to be infinite, the "+1" is put 

in this equation. 

 

Step 5: The non-dominated individuals in Populationt and 

           
                 are sorted ascending and then, the first     

member are copied to              
                   (   is the size of external 

archive              
                  ). 

 

Step 6: If the algorithm is repeated for specific times T (t≥T), 

the non-dominated individuals in              
                   are 

considered as Pareto-solutions of  multi-objective 

optimization problems (outputs of the algorithm) and stop. 

Otherwise, after incrementing the t (t=t+1) a new population 

Populationt is created from              
                   using tournament 

selection and crossover and mutation operators and go to Step 

2. The rates of crossover and mutation operator in this step are 

calculated adaptively and dynamically using the learning 

automata as bellow procedure: 

A fixed structure learning automaton is used. This 

automaton has two actions as (11): 

 

Action 1: pc= pc+ α1, pm= pm - α 2 .                                    (11) 

Action 2: pc= pc- α1, pm= pm + α 2 . 

 

The probability of selecting each action and the values for 

pc and pm are initialized as 0.5, o.5, and 0.01 respectively. For 

prevent the exceeding of pc and pm from lower bound and 

upper bound values, the algorithm controls that pm and pc 

belongs to [pmLB, pmUB] and [pcLB, pcUB] respectively.  At the 

end of each generation, learning automaton selects an action 

and based on the selected action, updates the values of pc and 

pm. The algorithm runs with the new values for pc and pm and 

generates reward or penalty feedback for automaton as 

bellow: 

Assume that rankchilds is sum of the ranks of the two 

generated individuals after crossover and rankparents is sum of 

the ranks of the parent individuals before crossover. The 

differentiated rank of crossover (diffcross) is calculated as 

follow: 

                diffcross= rankchilds – rankparents                          (12) 

If we have ncross crossover operations in a generation, the 

average differentiated ranks value of crossover (         
cross) is 

calculated as follow: 

                                                  
cross= 

          

      
                             (13) 

Thus,          
cross shows the overall impacts of crossover within 

current generation. 
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Similarly, the differentiated rank of mutation (diffmut) is 

calculated as follow: 

               diffmut= rmchild- rmparent                                                (14) 

where rmchild is the rank of new individual generated after 

mutation and rmparent is the rank of original individual. If we 

have nmut mutation operations in a generation, the average 

differentiated ranks of mutation (          
mut) is calculated as 

follow: 

                                            
mut= 

      

    
                                 (15) 

If (action 1 is selected by automaton and 

           
cross >           

mut) or (action 2 is selected by automaton and 

          
cross <           

mut), the selected action of automaton will be 

rewarded (positive feedback), otherwise, it will be penalized 

(negative feedback). 

V. SIMULATION RESULTS 

In order to evaluate the performance of the proposed 

algorithm, we consider convergence to the Pareto-optimal 

front and maintaining diversity among the non-dominated 

solutions as metrics, because these metrics are the main goals 

of any optimization algorithm [1].   

The proposed algorithm is compared with some others 

evolutionary algorithms such as NSGA-II [9], NSGA-II a 

[17], SPEA-II [15] on different test functions. All of these 

algorithms are implemented using Matlab software and the 

same population size and initial values are considered for all 

of them. The used test functions are ZDT1   ، ZDT2  ZDT3 و 

which are minimization problems [18]. These test functions 

and their specifications are introduced in Table 1. 

 

 
Table 1: Multi-objective Test Problems [18] 

 

 

 

The parameters of the proposed algorithm and their initial 

values are presented in Table 2: 

 
Table 2: The Simulation Parameters and Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At first, we combine different objective functions into one 

object using weighted sum approach as follow and apply the 

classic genetic algorithm and obtain 50 non-dominated 

solutions as the reference Pareto-front. 

         Minimize F= w1f1+w2f2+w3f3                              (16) 

In the above equation, w1, w2 and w3 are weighting factor 

and their values vary between 0 and 1 in such a way that sum 

of them must be 1. Also, the values objective functions are 

normalized between 0 and 1.  

As said before, we consider convergence and diversity as 

metric for evaluating the proposed algorithm. These metrics 

are defined as follow [1]: 

Convergence means the average distance between the 

obtained non-dominated solutions and the reference Pareto-

front and is calculated as bellow: 

                 
    

 
    

 
                                  (17) 

In this equation, N is the number of non-dominated 

solutions obtained from the proposed algorithm and di is the 

minimum Euclidean distance of obtained non-dominated 

solutions i from the reference Pareto-front and is calculated as 

follow:                                                                                                                             

                   
         

     
    

    
 
  

   
                  

 In the above equation, M is the number of objectives,   
  is 

the value of objective m for the i
th

 member in the set of 

obtained non-dominated solutions and   
    

is the value of 

objective m for the k
th

 solution in the reference Pareto-front. 

Diversity is useful for evaluating diversity among the 

obtained non-dominated solutions, if an algorithm finds a 

Problems N Bounds Objective Functions 

ZDT1 30 [0,1] 

f1=x1; f2=g(x)[1- 
  

     ]; 

 

g(x)=1+  
    

 
    

       

ZDT2 30 [0,1] 

f1=x1; f2=g(x)[1-(
  

     )2]; 

 

g(x)=1+  
    

 
    

       

ZDT3 30 [0,1] 

f1=x1;  

f2=g(x)[1- 
  

      –(
  

     )  

sin(10ᴨx1)]; 
 

g(x)=1+  
    

 
    

       

Parameters Values 

T (Maximum number of generations ) 300 

Population size 100 

Archive size 30 

Initial pm value 0.01 

pmLB (lower bound of mutation rate) 0.001 

pmUB (upper bound of mutation rate) 0.5 

Initial pc value 0.5 

pcLB (lower bound of crossover rate) 0.1 

pcUB (upper bound for crossover rate) 0.9 

α1 (changing step of crossover rate) 0.05 

α 2 (changing step of mutation rate) 0.001 

a, b (reward and penalty parameter) 0.1 

 α (Coefficient in fitness function) 0.5 
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smaller Δ value, it is able to find a better diverse set of  

non-dominated solutions. This metric is defined as follow: 

                          
         

  
   

 
                              (19) 

 

In this equation, N is the number of non-dominated 

solutions obtained from the proposed algorithm and di is the 

minimum Euclidean distance of solution i from other 

solutions in the set of obtained non-dominated solutions and 

is calculated as follow: 

                      

                        
    

 
  

                                  

where   
  and   

 
 are the values of objective m for the i

th
 and 

j
th

 solutions.    is the average of di and M is the number of 

objective.                                                                                                       

Table 3 and Fig. 3 depict the mean and variance of the 

convergence metric Υ for the NSGA-II, NSGA-II a, SPEA-II, 

and LASPEA after 10 independent experiments on ZDT1, 

ZDT2, and ZDT3 test problems. As can be seen in this table, 

the proposed algorithm has lower values for convergence 

metric which indicate better performance compared to the 

other algorithms. This is because the proposed algorithm 

incorporates problem-specific knowledge and also tunes the 

rate of crossover operator adaptively using learning automata 

which improves the convergence metric of the Pareto-

solutions. 

 
 

Table 3: The mean values of the convergence metric   

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig.  3: The mean values of the convergence metric   

Table 4 and Fig. 4 depict the mean and variance of the 

diversity metric Δ for the NSGA-II, NSGA-II a, SPEA-II, and 

LASPEA after 10 independent experiments on ZDT 1, ZDT2, 

and ZDT 3 test problems. As can be seen in this table, the 

proposed algorithm has lower values for diversity metric 

which indicate better performance compared to the other 

algorithms. This is because the proposed algorithm 

incorporates DCD method and also tunes the rate of mutation 

operator adaptively using learning automata which improves 

the diversity metrics of the Pareto-solutions. 

 
 

Table 4: The mean values of the diversity metric Δ 

 

 

 

 
Fig. 4:  The mean values of the diversity metric Δ 

 

VI. CONCLUSION 

In this paper, by incorporating the learning automata and 

problem-specific genetic operators, an improved version of 

SPEA-II, called LASPEA, is proposed. The performance of 

the proposed algorithm is experimented on some benchmark 

multi-objective problems called ZDT1, ZDT2, and ZDT3. The 

experiment results show that the LASPEA not only can 

converge the non-dominated solutions to the Pareto-optimal 

front but also can enhance the solution diversity to spread the 

achieved extent for all multi-objective test problems.  

 ZDT1 ZDT2 ZDT3 

LASPEA 0.0011 0.0009 0.0038 

SPEA-II 0.0015 0.0113 0.0284 

NSGA-II 0.0048 0.0317 0.0079 

NSGA-IIa 0.0040 0.0103 0.0051 

 ZDT1 ZDT2 ZDT3 

LASPEA 0.1122 0.1219 0.4820 

SPEA-II 0.7816 0.7154 0.6218 

NSGA-II 0.3903 0.4308 0.7385 

NSGA-IIa 0.2814 0.4001 0.6217 
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