
International Journal of Computer Science and Telecommunications [Volume 6, Issue 8, August 2015]                                      24 

Journal Homepage: www.ijcst.org 

 
 

Roya Bagheri
1
 and Abolfazel Toroghi Haghighat

2
 

1,2
Department of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran 

1
royabagheri_eng@yahoo.com, 

2
at_haghighat@yahoo.com 

 

 
 

 

 

Abstract— Task clustering is a method that merges multiple 

short tasks into a single job so that the job runtime is enhanced 

and the total system overhead is reduced also is efficient way to 

decrease a communication delay in DAGs by classification 

heavily communicating tasks to the similar labeled clusters and 

then assigning tasks in a cluster to the similar resource. A 

workflow usage is usually containing of various tasks with the 

requirement for different resource types to complement which we 

recall it heterogeneity in workflow. The important idea in this 

research is based upon the idea of defining the set of tasks that 

could run concurrently and distribute them into various sub-

workflows and then assigned each sub-workflow in resource 

cluster instead of dedicating individual tasks. This can decrease 

inter-task communication cost and attain high parallelism the 

received DAG partition into several sub-workflows that is 

discovered by Dynamic Clustering Workflows (DCW) algorithm 

and thus progress workflow execution accomplishment.  

 

Index Terms— Scientific Workflows, Task Clustering, 

Communication Delay and Load Balancing 

 

I. INTRODUCTION 

ANY calculation scientists improve and use large-scale, 

loosely-coupled usages that are often                    

organized as scientific workflows. Although the most of 

the tasks within these usage are often relatively brief running 

(from a little seconds to a little minutes), in congregate they 

represent a significant value of calculation and data [1], [2]. 

When carrying out these usages in a multi-machine, 

distributed environment, such as the Cloud or the Grid, 

important system overheads may exist and may decelerate the 

application execution [3]. To decrease the impact of suchlike 

overheads, task clustering methods [4]–[12] have been 

improved. The clustering is another impressive way to 

decrease a communication delay in DAGs by regimentation 

heavily communicating tasks to the similar labeled clusters.  

Clustering algorithms have two phases: the task grouping 

phase that divides the original task graph into clusters for 

designation instead of designating individual tasks. This can 

decrease inter-task communication cost and thus develop 

workflow execution efficacy and post-clustering phases which 

can regenerate the clusters produced in the prior phase and 

achieve the final task-to-resource map. 

Data dependencies between workflow tasks perform an 

important role when grouping tasks within a level. The 

concept of data dependency is a data transfer between two 

tasks (output data for one and input data for the other). 

Grouping tasks without investigating these dependencies may 

cause to data locality problems, where the output data 

constructed by parent tasks are few distributed. Therefore, the 

times of data transfer and failure probabilities increase. As 

result, we contend that the data dependencies of subsequent 

tasks should be investigated. 

Practically, there are two approaches to develop the efficacy 

of task clustering. The first one is a top-down method [15] that 

demonstrates the clustering problem as a global optimization 

matter and aims to minimize the overall workflow 

performance time. However, the complication of solving such 

an optimization matter does not scale well since solutions are 

based on genetic algorithms. The second approach is a 

bottom-up method [4], [10] that only investigates free tasks to 

be merged and optimizes the grouping results locally.  

The low efficacy of fine-grained tasks is a general matter in 

widely distributed programs where the scheduling overhead 

and alignment times at resources are excellent, such as Cloud 

and Grid systems.  

The rest of the article is structured as follows: Section II 

presents literatures review. Fuzzy logic is explained in Section 

III. The offered routing protocol is given in section IV. The 

simulation outcomes have been demonstrated in Section V. 

The final section consists of conclusions and future works. 

II. REALATED WORKS 

Several researches have addressed the control of task 

granularity of tasks. For example, Muthuvelu et al. [4] 

proposed a grouping algorithm that classifies bag of tasks 

based on runtime, and later based on CPU time, task file size 

and resource constraints [5] .Recently, they planed an online 

scheduling algorithm [6,7] that classifies tasks based on 

resource network utilization, application deadline and user’s 

budget. Ng et al. [8] and Ang et al. [9] displayed bandwidth in 

M 

Dynamic Clustering for Scientific Workflows with Load 

Balancing in Resource 
 

ISSN 2047-3338 



Roya Bagheri and Abolfazel Toroghi Haghighat                                                                25 

the scheduling framework to increase the efficacy of task 

scheduling. Longer tasks are specified to resources with well 

bandwidth. Liu and Liao [10] offered an adaptive fine-grained 

job scheduling algorithm to relegate fine-grained tasks 

according to the bandwidth processing capacity of the current 

available resources. Although these methods significantly 

decrease the impact of scheduling and alignment time 

overhead, they do not investigate data dependencies. Task 

granularity control has also been addressed in theoretical 

workflows. For example, Singh et al. [11] displayed level- and 

label based clustering. In level-based grouping, tasks at the 

same level of the workflow can be grouped together.  

The number of groups or tasks per cluster is defined by the 

user. In the label-based clustering approach, the user labels 

tasks that should be grouped together. Although their work 

investigates data dependencies between the workflow levels, it 

is done handle by the users, which is inclined to errors and it 

is not scalable. Lately, Ferreira da Silva et al. [12], [20] 

propounded task clustering and ungrouping algorithms to 

control workflow task granularity in an online context and 

non-clairvoyant, where none or little characteristics about the 

usage or resources are known in advance. Their research 

significantly decrease scheduling and alignment time 

overheads, but did not investigate data dependencies. 

III. DESIGN AND MODELS 

A. Workflow model 

We model workflows as Directed Acyclic Graphs (DAGs), 

G = (V,E,q, w), in which V = {ti |i =1, 2, . . . , m} be the finite 

set of tasks ti and E be the set of directed arcs of the form   

e(ti, tj), An edge e (ti,tj) represents data or control flow 

dependencies from ti to tj where ti is called a prior of tj , and tj 

is a successor of ti and qi represents the computational cost of 

task ti. The weight w of e (ti,tj) represents the communication 

cost from task ti to tj Grouping tasks without considering these 

dependencies may lead to data locality problems,. An 

unclustered job contains only one task that has one process or 

computation. A clustered job contains multiple tasks to be 

executed in a sequence or in parallel. In our models and 

experiments, tasks within a job are executed in a sequential 

order. 

B. Resources  model 

When a workflow receives, it will break into subgraphs, 

according to knowledge about available resources, by 

executing the Dynamic Clustering Workflow (DCW) 

algorithm and then scheduler will run the local level 

scheduling and map tasks in subgraph to local computational 

node. A computational resource is denoted as Ri where i is the 

resource id. Let Pi is the expected performance of Ri so The 

average performance of all available Computational resources 

P is given by: 

                  (1)                                 
Where m is the number of resource. We assumed that the 

computation power of resource effect on the time required 

completing a task and the time to finish a data transfer is 

commensurate with the communication cost of the link. 

C. DCW: Scheduling Algorithm  

High parallelism means to dispatch more tasks 

simultaneously to different resources. To achieve this, the 

main task graph needs to be partitioned into subgraphs and 

each subgraph has to be assigned to a resource. The main 

parameter must be determined in partitioning of graph, is the 

number of partitions should be made (N). To determine N, 

CTC parameter is used. CTC is the ratio of communication-to-

computation. A high CTC value means a task graph is 

computation intensive. Formally, CTC is defined as: 

                                (2) 

Where is the average processing requirement of all tasks. 

As the CTC increases, high parallelism is preferred because 

more computational power is required. DCW determine the 

number of graph partitions to be created, N, according to 

different workflow patterns and communication costs: 

 

)             (3) 

                                             (4) 

                (5) 

Here β is the accelerating factor and ∆p is the standard 

deviation on the computational power of different resource. It 

is clear that N is always no greater than the number of 

available resource. 

With the number of subgraphs, to be created, DCW is to 

specify how tasks in the main graph should be assigned. To 

achieve high parallelism and avoid inessential external 

communication, the size of a subgraph assigned to a resource 

should be as large as possible under a certain threshold value. 

The weights of edges connecting different subgraphs should 

be as small as possible to minimize communication cost. 

According to purpose, we need to detect the set of tasks that 

could run concurrently and distribute them into different 

subgraphs and then specify the maximum number of nodes 

that could run concurrently when assigned to the same 

resource that call Maximum Concurrent Node (MCN).To get 

MCN, two parameters are defined: For a node ti in a DAG, its 

Earliest Start Time (EST) is defined as follows: 

 

            EST (ti) = max (ET (tj) + e (tj, ti))                        (6)     

                   tj ϵ Pred (ti)                                                              

                           

Where pred (ti) is the set of immediate predecessors of ti 

and Execution Time (ET) of tj is defined as:  



International Journal of Computer Science and Telecommunications [Volume 6, Issue 8, August 2015]                                      26 

ET (tj) =                         (7) 

 

The Earliest Finish Time (EFT) of ti is defined as follows: 

 

EFT (ti) = EST (ti) + ET (ti)                    (8) 

 

Now, we can specify which nodes could run concurrently. 

We call ti and tj parallel peers, if following equation is 

satisfied to one of them: if the  EST( ti )after EST (tj )and 

before the EFT (tj ) or the EFT (ti) after EST (tj )and before the 

EFT (tj ).By checking parallel peers of every node, we can 

find the largest set of concurrent nodes in task graph G, whose 

size is the value of MCN. The size of a partition is also related 

with the computational power of resource clusters. 

To be adaptive to the dynamic and heterogeneous nature of 

the computational resource on the one hand and on the other, 

Having Load balancing on resources, DCW introduces two 

parameters to describe the related properties of a resource, 

namely the resource Rank (Ri) and Parallel Threshold (Ti).  

Thus, 

                     (9) 

Where di is the standard deviation of the performance 

fluctuation of Pi in various time slots, and ni is The number of 

refers to the source per unit of time and Wi is weight of 

resource i, that is calculated based on various parameters such 

as failure rate or computation power, etc. a larger di means the 

performance of pi is more unstable and a larger ni means High 

resource load. Then the initial threshold value Ti′ of i is 

defined as: 

                 (10)         

The above equation, the parallel computation power of each 

cluster is also taken into account. Then the parallel threshold 

value Ti of each subgraph to be created is given by: 

                           (11) 

The pseudo-code for the DCW is given in Algorithm1. 

DCW is described as follows. When a scheduler receives a 

job, it first traverses the job’s DAG G to compute its CTC, the 

number of partitions to create N, and the level of each task 

node. Then, the scheduler selects N resources whose ranks are 

the highest (N out of m), according to its knowledge. A graph 

partition iteration checks every remaining nodes in G to 

determine whether the node can be put into a subgraph G'. 

 

 

 

 

 

Algorithm1 DCW 

 

Input: A task DAG G (V, E) and available resources. 

Output: A subgraph of G and assigned to resource. 

1. Compute CTC, N and EFT and EST of each node in G, and 

resource ranks R and threshold values T;  

2. Mark all nodes unassigned; 

3. Select the resource with the highest threshold value Ti; 

4. Find the largest edge e (a, b) in which a, b have not been 

checked; 

5. IF Br (G' + a) ≤ Ti and Br (G' + b) ≤ Ti { 

6. Add a and b to G' and mark a and b as checked; 

7.} 

8. G = G - G'; 

9. Put (G', Ri) in the output set. 

 

 

VI. DISCUSSION 

In this section, we will present our simulation of the 

Dynamic Clustering Workflow algorithm. 

A.  Simulation model 

   We evaluate the performance of DCW using different task 

graph. In terms of input task graphs, We used random graph 

generation with the ability of generating a variety of task 

graphs according to different configuration parameters, such 

as average number of task nodes of each graph, average 

outgoing and incoming degrees for each node in a graph, and 

computational and communication cost for each type of task 

nodes and edges. Each graph has a single entry and a single 

exit node. We used the random graph generator discussed in 

[13]. This random graph generator requires following input 

parameters: 

 V: The number of task in the DAG. 

 Out degree: The ratio of maximum out edges of a node 

to total nodes of the DAG. 

  Communication to Computation Ratio (CCR). It is the 

ratio of the average communication cost to the 

average computation cost. 

 Β: The computational heterogeneity factor of 

resources.  

 α: The depth parameter of the DAG. This parameter 

indicates the depth of a DAG by using the uniform 

distribution with the mean value equal to   . 

The values for the input parameters are shown in Table 1. 

The following metrics are used to evaluate the performance of 

the proposed algorithm: 



Roya Bagheri and Abolfazel Toroghi Haghighat                                                                27 

 

The simulated computing platform is composed of 20 single 

homogeneous core virtual machines (worker nodes), which is 

the quota per user of some typical distributed environments.  

B. Simulation results 

     To evaluate the performance of the proposed algorithm 

we compared it with the Selective Reclustering (SR), Dynamic 

Reclustering (DR), Vertical Reclustering (VR) [14], and 

Horizontal Distance Balancing (HDB) [15] methods. The 

performance metric used in the simulation is the average 

makespan. To test our proposed algorithm, the following 

parameters are considered in the experiment: (1) The average 

number of task nodes in a graph v  (2) The ratio of the average 

degree of a task node to the total number of tasks in a graph 

(Edge density in a graph)  (3) CCR. Fig. 1 presents the 

average makespan of our approach over the others approach 

with respect to different number of task.  

 

 

Fig. 1. Avg Makespane with different number of task 

 

 

Fig. 2 presents the average makespan of our approach over 

the others approach with respect to different degree. 

Fig. 3 presents the average makespan of our approach over 

the others approach with respect to different CCR. 

Experiment 1: Fig. 1 shows the performance of the 

Horizontal Clustering (HC), Selective Reclustering (SR), 

Dynamic Reclustering (DR), and Vertical Reclustering (VR) 

and propose algorithm (DCW). DCW and VR significantly 

improve the makespan when compared in a large scale. 

 

Fig. 2. Avg Makespane with different degree 

 

 

Fig. 3. Avg Makespane with different CCR 

 

Experiment 2: Fig. 2 and Fig. 3 show the performance of 

the task clustering methods, according to the ratio of 

maximum out edges of a node to total nodes of the DAG.  

DCW and HDB improve the makespan because they merge 

tasks based on data dependencies. 

V. CONCLUSION 

We proposed task clustering methods that try to balance the 

workload across clusters and improve the makespan. In 

addition, we compared our method with four algorithms. 

Experimental results showed that the proposed method 

significantly improve the workflow’s makespan when 

compared to an existing task clustering method used in 

workflow management systems. 

REFERENCES 

[1]. R. Ferreira da Silva, G. Juve, E. Deelman, T. Glatard, F. 

Desprez, D.      Thain, B Tovar, M. Livny, “Toward fine-

grained online task characteristics estimation in scientific 

workflows”, in: Proceedings of the 8th Workshop on 



International Journal of Computer Science and Telecommunications [Volume 6, Issue 8, August 2015]                                      28 

Workflows in Support of Large-Scale Science, WORKS’13, 

ACM, 2013, pp. 58–67. 

[2]. G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, K. 

Vahi, “Characterizing and profiling scientific workflows”, 29 

(2013) 682–692. Special Section: Recent Developments in 

High Performance Computing and Security. 

[3]. W. Chen, E. Deelman, “ Workflow overhead analysis and 

optimizations”, in:Proceedings of the 6th Workshop on 

Workflows in Support of Large-scale Science, WORKS’11, 

2011, pp. 11–20. 

[4]. N. Muthuvelu, J. Liu, N.L. Soe, S. Venugopal, A. Sulistio, R. 

Buyya, “A dynamic job grouping-based scheduling for 

deploying applications with fine-grained tasks on global 

grids”, in: Proceedings of the 2005 Australasian Workshop on 

Grid Computing and e-Research, vol. 44, 2005, pp. 41–48. 

[5]. N. Muthuvelu, I. Chai, C. Eswaran, “An adaptive and 

parameterized job grouping algorithm for scheduling grid 

jobs”, in: Advanced Communication Technology,2008. 

ICACT 2008. 10th International Conference on, vol. 2, 2008, 

pp. 975–980. 

[6]. N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, “On-line 

task granularity adaptation for dynamic grid applications”, in: 

Algorithms and Architectures for Parallel Processing, in: 

Lecture Notes in Computer Science, Vol. 6081, 2010, pp. 

266–277. 

[7]. N. Muthuvelu, C. Vecchiolab, I. Chai, E. Chikkannana, R. 

Buyya, “Task granularity policies for deploying bag-of-task 

applications on global grids”, Future Gener. Comput. Syst. 29 

(1) (2012), pp. 170–181. 

[8]. W.K. Ng, T. Ang, T. Ling, C. Liew, “Scheduling framework 

for bandwidth-aware job grouping-based scheduling in grid 

computing”, Malays. J. Comput. Sci. 19 (2) (2006),               

pp. 117–126. 

[9]. T. Ang, W. Ng, T. Ling, L. Por, C. Lieu, “A bandwidth-aware 

job grouping-based scheduling on grid environment”, Inf. 

Technol. J. 8 (2009), pp. 372–377. 

[10]. Q. Liu, Y. Liao, “Grouping-based fine-grained job scheduling 

in grid computing”, in: First International Workshop on 

Education Technology and Computer Science, vol. 1, 2009, 

pp. 556–559. 

[11]. G. Singh, M.-H. Su, K. Vahi, E. Deelman, B. Berriman, J. 

Good, D.S. Katz, G. Mehta, “Workflow task clustering for best 

effort systems with pegasus”, in: 15th ACM Mardi Gras 

Conference, 2008, pp. 9:1–9:8. 

[12]. R. Ferreira da Silva, T. Glatard, F. Desprez, “On-line, non-

clairvoyant optimization of workflow activity granularity on 

grids”, in: F. Wolf, B. Mohr, D. Mey (Eds.), Euro-Par 2013 

Parallel Processing, in: Lecture Notes in Computer Science, 

vol. 8097, Springer, Berlin, Heidelberg, 2013, pp. 255–266. 

[13]. Topcuoglu H, Hariri S, Wu M-y, “Performance-effective and 

low-complexity task scheduling for heterogeneous 

computing”, Parallel and Distributed Systems, IEEE 

Transactions on. 2002; 13(3): 260-74. 

[14]. Weiwei Chena, Rafael Ferreira da Silva a, Ewa Deelmana, 

Rizos Sakellariou, “Using imbalance metrics to optimize task 

clustering in scientific workflow executions”, 2015, Future 

Generation Computer Systems. 

[15]. Weiwei Chen, Rafael Ferreira da Silva, Ewa Deelman, Rizos 

Sakellariou, “Balanced Task Clustering in Scientific 

Workflows”, 2013 IEEE 9th International Conference on         

e-Science. 


