
International Journal of Computer Science and Telecommunications [Volume 6, Issue 8, August 2015] 8

Journal Homepage: www.ijcst.org

Eldhose Paul
1
 and Ierin Babu

2

1,2
Computer Science and Engineering, ASIET, Kalady, India

Abstract— Spatial queries, such as nearest neighbor retrieval

and range search, include only conditions on geometric

properties. A spatial database handles multidimensional objects

and offers quick access to those objects based on different range

criteria. Many applications demand a novel form of queries to

discover the objects that considering both a spatial predicate,

and a predicate on their related texts on now-a-days. For

example, considering all the hotels, a user would request for the

hotel that is the nearest among those whose menus contain the

specified keywords all at the same time. Here deals with the new

method called Efficient Spatial Index that extends the

conventional inverted index to handle with multidimensional

data, and arises with algorithms that can response nearest

neighbor queries with keywords in real time.

Index Terms— Spatial Inverted List, Spatial Queries, IR2-Tree

and Multidimensional Data

I. INTRODUCTION

NFORMATION retrieval is the activity of discovering

information from a pool of information resources. Searches

can be based on metadata or on full-text indexing. An

information retrieval starts when a user enters a query into the

system. User queries are matched against the database

information. User queries are a broad term that actually denote

to non-spatial queries [1], [2] and spatial query. The former

refer to the names, phone numbers, email addresses of people

whereas the latter refers to spatial elements such as points and

regions. A spatial database handle multidimensional objects

and provides quick access to those objects based on different

selection criteria. IR
2
-tree is used in the existing system for

providing best solution for finding nearest neighbor.

This method has few deficiencies. So here deals with new

method called efficient inverted index to improve the space

and query efficiency. Inspired by this, develop a new access

method called the efficient spatial index that extends the

conventional inverted index to manage with multidimensional

data, and comes with algorithms that can answer nearest

neighbor queries with keywords in real time. The proposed

technique is better than that of IR
2
-tree in query response time

significantly, often by a factor of orders of magnitude.

II. RELATED WORK

A multidimensional or spatial index, in contrast to a B+ tree

[1] , utilizes some kind of spatial relationship to organize data

entries, with each key value seen as a point (or region, for

region data) in a k-dimensional space, where k is the number

of fields in the search key for the index. In a B+ tree index

[1], the two-dimensional space of (age, salary) values is

linearized. In contrast, a spatial index stores data entries based

on their proximity in the underlying two-dimensional space.

A space-filling curve [1] executes a linear ordering on the

domain. The curve used represents the Z-ordering curve for

domains with two-bit representations of attribute values.

Consider the point with X = 01 and Y = 11. The point has Z-

value 0111, obtained by interleaving the bits of the X and Y

values; we take the first X bit (0), then the first Y bit (1), then

the second X bit (1), and finally the second Y bit (1). In

decimal representation, the Z-value 0111 is equal to 7, and the

point X = 01 and Y = 11 has the Z-value 7. Grid files [1], [4]

rely upon a grid directory to identify the data page containing

a desired point. When searching for a point, first find the

corresponding entry in the grid directory. The grid directory

entry identifies the page on which the desired point is stored,

if the point is in the database.

The key idea of the R-Tree [5], [7] is to collect near objects

and denote them with their minimum bounding rectangle in

the next higher level of the tree; the "R" in R-tree stands for

rectangle. Since all objects lie within this bounding rectangle,

a query that does not cross the bounding rectangle also cannot

cross any of the contained objects. At the leaf level, each

rectangle defines a single object; at higher levels the

combination of an increasing number of objects. This can also

be seen as an increasingly coarse approximation of the data

set. An R+ tree [6] is a method for looking up data using a

location, often (x,y) coordinates, and often for locations on

the surface of the earth. An R+ tree is a tree data structure, a

modified form of the R tree, used for indexing spatial

information. R+ trees are a concession between R-trees and

kd-trees: they escape overlapping of internal nodes by

introducing an object into multiple leaves if necessary.

Coverage is the total area to cover all connected rectangles.

Overlap is the total area which is contained in two or more

nodes. R* trees [7] is another modified form of R-trees used

for indexing spatial information. R*-trees have a little higher

I

Fast Nearest Neighbor Search Using Efficient

Spatial Index

ISSN 2047-3338

Eldhose Paul and Ierin Babu 9

implementation cost than standard R-trees, as the data may

need to be reinserted; but the resulting tree will usually have

an improved query performance. IR
2
-Tree [10] is combination

of two concepts: R-tree, a standard spatial index [8], and

signature file [9], a better method for keyword-based

document retrieval. By doing so they develop a structure

called the IR
2
-tree [10], which has the powers of both R-trees

and signature files. Like R-trees, the IR
2
- tree preserves

objects spatial proximity, which is the key to solving spatial

queries efficiently. As with many new solutions, the IR
2
-tree

also has a few disadvantages that affect its efficiency. The

most important one of all is that the number of false hits can

be really large when the object of the final result is far away

from the query point, or the result is simply empty.

III. METHODOLOGY

A) Efficient Spatial Index

The essential compressed version of I-index with embedded

coordinates is, Efficient Spatial Index. Using, Efficient Spatial

Index we can do query processing by two ways, either by

merging or by together with R* tress in a distance browsing

method. The defect of conventional I-index is eliminated by

merging because, Efficient Spatial Index use small amount of

space.

Fig. 1: Efficient Spatial Index Architecture

ESI Algorithm

Algorithm: ESI (q, BO, Kw)

finallist←NULL

L ← BO.result ();

for i = 1 to L.length()

p=L[i];

BCP ← compute BC(p);

if (q not belongs to BCP) then

return false; {the first NN fails}

else

if (Kw belongs to p) then

finallist.add (p);

else

return false;

end if

end if

end for

for i = 1 to finallist.length()

 for j = 1 to finallist.length()

if(i not equal to j)

if(distance(finallist[i],q)=distance(finallist[j] ,q))

row[i].append(finallist[j]);

end if

end if

end for

end for

return true

Example: Consider the query top-2 hotels from point

containing the keywords {“c”, “d”} on the data. The trace of

ESI algorithm is the following on the basis Table 1 .Steps are

explained below:

TABLE 1. INVERTED INDEX

Word Inverted list

a P1,P4

b P1,P2,P7

c P2,P3,P5,P6,P8

d P2,P3,P6,P7,P8

e P4,P5,P6,P7

1 P2, P3, P5, P6, P8 are returned by the inverted index

for keyword “c”.

2 P2, P3, P6, P8, P7 are returned by the inverted index

for keyword “d”.

3 P2, P3, P6, P8 are the result after the intersection.

1. Objects P6, P2, P3, P8 are accessed to get their

coordinates.

2. Add P6 to list L= {(P6, 12)}

3. Add P2, P3, P8 to list L= {(P8, 18), (P2, 15), (P3,

52), (P6, 12)}.

Query User Interface

Web Map Service

Index Construction

By using

inverted index

for text

indexing

By using R*

tree for

spatial

indexing

Query Evaluation Service

Index Structure

HotelID,Longitude

,Latitude,Items to

be served

International Journal of Computer Science and Telecommunications [Volume 6, Issue 8, August 2015] 10

4. Apply compression scheme that is convert

{(P2,15,1) , (P3,52,1) , (P6,12,0), (P2,18,2)} into

{(P6,12,0) , (P2,15,1) , (P8,18,2), (P3,52,6)}.And

apply gap keeping and sorted with help of pseudo-id

{(P6,12,0),(P2,15,1),(P8,18,2),(P3,52,6)} into

{(P6,12,0),(P2,3,1),(P8,3,1),(P3,34,4) }.

5. Then the four point becomes

{(0,12),(1,3),(1,3),(4,29)} then form R-tree.

6. The top-2 result is{P6,(P2,P8)} .

IV. EXPERIMENTAL RESULTS

R* Tree after compression scheme, it is finished explaining

how to build the leaf nodes of an R*tree on an inverted list.

As each leaf is a block, all the leaves can be stored in a

blocked Efficient Spatial Index. Building the non-leaf levels

is trivial, because they are invisible to the merging-based

query algorithms, and hence, do not need to preserve any

common ordering. It is noteworthy that the non-leaf levels

add only a small amount to the overall space overhead

because, in an R* tree, the number of non-leaf nodes is by far

lower than that of leaf nodes.

Theoretical analysis: Theoretical analysis of various spatial

indices, its advantages and disadvantages. Next from a

theoretical viewpoint that the compression scheme has a low

space complexity as shown below. As the handling of each

inverted list is the same, it suffices to focus on only one of

them, denoted as L. Let us assume that the entire data set has

p>=1 points and l of them appear in L. To make analysis

general, take the dimensionality d into account. Also, recall

that each coordinate ranges from 0 to m, where m is a large

integer. Naively, each pseudo-id can be represented with log p

bits, and each coordinate with log m bits.

 Therefore, without any compression, inverted index

can represent the whole L in O (l (log p + d log m))

bits.

 The compression scheme stores L with

 O (l (log (p/l) +log (m
d
/l))) bits.

Proof: Our compression scheme essentially applies gap

keeping to two sets of integers. The first set includes all the

pseudo-ids of the points in L, and the second includes their Z-

values. Every pseudo-id ranges from 0 to p- 1, while each Z-

value from 0 to m
d
-1. Hence, from 1, the space needed to

store all r pseudo-ids is l (log (p/l)), and the space needed to

store r Z-values is l (log (m
d
/l)).

Experimental Evaluation based on space complexity:

Efficient Spatial Index (ESI) conserve the spatial area of data

points, and comes with an R* tree build on every inverted list

at small space overhead. It contains the set of points and the

points are related to the set of keywords and the keywords are

related to derive the set of documents. Here check for the

hotels that contains items {sandwich, burger, pizza} and

evaluate in two methods: Inverted Index, Efficient Spatial

Index Fig. 2.

Fig. 2: Evaluation based on Space complexity

From the evaluation two, Efficient Spatial Index conserves

the spatial area of data points, and small space overhead. It

contains the set of points and the points are related to the set

of keywords and the keywords are related to derive the set of

documents.

Experimental Evaluation based on execution time: Another

evaluation based on item count and time taken to execute. The

time taken by SI Index [11], Efficient Spatial Index is 0.006,

0.087 sec for one item. The time taken by SI Index, Efficient

Spatial Index is 0.112, 0.197 sec respectively for two items.

The time taken by SI Index, Efficient Spatial Index is 0.345,

0.683sec for three items. Efficient Spatial Index use more

time to execute can see from the Fig. 3, because it uses the

compression scheme.

Fig. 3: Evaluation based on Execution time

From the evaluation two, the drawback is when keyword

size has only a single word; the performance based on time is

slight difference with compare to keyword size with two

words. But keyword size increasing the more time it

consumes.

V. CONCLUSION

 The Efficient Spatial Index is using both capacity of the

R* Tree and the processing of signature files. Related with the

earlier work the existing systems are not efficient to provide

the real time answers. In Efficient Spatial Index, the proposed

Eldhose Paul and Ierin Babu 11

concept of the list merging and distance alignment are used to

help for searching, and the compression scheme is used to

provide the effectiveness of the quick search and make the

final list with low space complexity.

REFERENCES

[1] Raghu Ramakrishnan, Johannes Gehrke, “Database

Management Systems”, Chapter 26 ,pp. 777-795, McGraw

Hill, Third Edition, 2004.

[2] X. Cao, L. Chen, G. Cong, C.S. Jensen, Q. Qu, A. Skovsgaard,

D.Wu, and M.L. Yiu, “Spatial Keyword Querying,” Proc. 31st

Int’l Conf. Conceptual Modeling (ER), pp. 16-29, 2012.

[3] M Ester, HP Kriegel, J Sander “Spatial Data Mining,” A

Database Approach, Springer 1997.

[4] J. Nievergelt, H. Hinterberger, K. C. Sevcik: “The grid file: An

adaptable, symmetric multikey file structure,” ACM Trans. on

Database Sys. 9, 1, 38-71 (1984).

[5] A Guttman “R-trees a dynamic mdex structure for spatial

searching,” Proc ACM SIGMOD Int Conf on Management of

Data, 47-57, 1984

[6] Timos K. Sellis, Christos Faloutsos “ The R+-Tree- A

Dynamic Index for Multi-Dimensional Objects ,” In ACM

Trans,1987

[7] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The

R*-tree: An Efficient and Robust Access Method for Points

and Rectangles,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 322-331, 1990.

[8] C. Faloutsos and S. Christodoulakis, “Signature Files: An

Access Method for Documents and Its Analytical Performance

Evaluation,” ACM Trans. Information Systems, vol. 2, no. 4,

pp. 267-288, 1984.

[9] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search on

Spatial Databases,” Proc. Int’l Conf. Data Eng. (ICDE), pp.

656-665, 2008.

[10] J. Zobel, A. Moffat, K. Ramamohanarao “Inverted Files

Versus Signature Files for Text Indexing,” In ACM Trans.

Database Syst. 23(4): 453-490 (1998)

[11] Yufei Tao and Cheng Sheng ,” Fast Nearest Neighbor Search

with Keywords”, IEEE, April 2014.

