
International Journal of Computer Science and Telecommunications [Volume 6, Issue 6, June 2015] 1

Journal Homepage: www.ijcst.org *Corresponding Author’s Email: Mjahanshahi@iauctb.ac.ir

Reza Mohamadi Bahram Abadi
1
 and Mohsen Jahanshahi

2,*

1
Dep. of Computer Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2
Dep. of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

1
Mohamadi_re@yahoo.com,

2
Mjahanshahi@iauctb.ac.ir

Abstract— The fast, continuous changes in systems require the

re-configurations be programmed in such a way that the system

can respond to changes efficiently. Self-configuration is the

capability of automatic re-configuration of a system in response

to such changes. In distributed systems, because of the

inconsistent nodes, dynamism of resources and heterogeny of

communicative networks, the changes are dramatic. Therefore,

the system needs to be monitored consistently and/or periodically

to be reconfigured, if required. Upon entry of any user and/or an

applied application considering the status quo, the system needs

to be re-configured. Also in case of system failure, the

configuration has to be done automatically in line with the

predetermined objectives. This paper presents a semi-automatic

method using the hidden Markov model for self-configuration of

the system considering infrastructural resources and requests by

users.

Index Terms— Self-Configuration, Hidden Markov Model and

Distributed System

I. INTRODUCTION

ELF-CONFIGURATION is the capability of
reconfiguration of a system in an automatic dynamic way
in response to the changes made by installing, updating,

synthesizing, analyzing and combining system software’s.
When, a new component is introduced to the system, it has to
integrate itself into the rest of components in a hidden way,
while other components should adapt to the new component as
well [1].

Self-configuration is significantly important to create high
level dynamism in performing a series of applied applications
in a distributed system. Considering the type of distributed
system, there are certain limitations in managing and
allocating resources to demands. Also, the time of running an
application and required resources for its performance vary
drastically and are addressed based on the user’s needs [2].

 In order to manage and respond to new demands in
heterogeneous distributed system, due to the variety and
dynamism of resources in access, inconsistency of nodes,
dynamism of load distribution, heterogeneity of calculator
resources and heterogeneity of communicative infrastructures,
network reconfiguration is highly demanded at the time of

running. With the continuous changes in such networks, an
automatic reconfiguration is critically needed to manage such
changes [3].

The system supporting reconfiguration should monitor the
influencing factors continually, and upon diagnosis of change,
it has to initiate reconfiguration process. In 2007, a basis
called "Adapta" presented self-configuration in response to
environmental changes in a distributed system based on XML.

The basis includes the followings [4]:

 Monitoring service: it picks up some data from
software and hardware resources periodically. E.g.
processors' load, amount of main memory in access,
network bandwidth.

 Local event service: the data resulting from monitoring
is registered locally for software and hardware servers.

 Event processing system: is a distributed system
including the analysis of events consisting of different
event resources and also distributed nodes, which are
influencing in re-configuration.

 Dynamic reconfiguration service: it presents a dynamic
adaptable engine which does the reconfiguration of
programs considering the event processing results in
the processing system in response to the environmental
changes.

When there is a new demand in the distributed system, all
the required resources must be provided and when the running
of a program is over, the resources are released accordingly.
Also, with regard to the dynamism of the resources in access
and the instability of the nodes, it is possible that the resources
in access are on the change anytime. The monitoring service
must be able to react properly periodically or at any moment
against the change of resources and report changes back [5].

Also, if there is a fault in the system for any reason, the
problem has to be solved. First, the system must identify the
problem, and then, it must do reconfiguration considering the
already diagnosed faults [6]. In this method, data is analyzed
using information collected at the time of running and by
resource checker, and by deducing from system knowledge
and the use of Markov process model, the system begins to
reconfigure itself automatically.

S

A Semi-Automatic Method for Self-Configuration in

Distributed Systems Using Hidden Markov Model

ISSN 2047-3338

Reza Mohamadi Bahram Abadi and Mohsen Jahanshahi 2

II. BACKGROUND AND REALATED WORKS

With the particular characteristics of distributed systems,
ongoing changes are critical to achieve pre-determined goals
of the system. Such characteristics may include variety and
dynamism of the resources in access, instability of nodes,
dynamism in load distribution, heterogeneity of calculator
resources, and heterogeneity of communicative infrastructures
(i.e., network technology) [7]. Therefore, self-configuration of
the system is an important challenge in distributed systems in
face of changes and/or threats. Some different architecture has
been used in this regard, which will be discussed later in this
paper.

A. Review of FOSSII Architecture

Fig. 1 shows the infrastructure of FOSSII architecture [8].
The figure presents two main components in managing
demands in line with the available resources in infrastructure.
As the first step, decision is made on controlling resources and
applied programs. Then, in the second step, deducing from the
knowledge of the first phase, how demands are responded to
and how the resources are allocated will be decided.

The infrastructural resource sensors measure them
continually while the sensor of applied programs picks up data
as to how such programs run in the system. Then, after data
from the sensor controllers are analyzed, it analyzes the
system as well and responds to the new demands.

B. Review of LoM2HiS

The LoM2HiS" Basis has two controlling components
called “controller of local infrastructures” and “time
controller” used for applied programs [9]. The first controller
is used for controlling low-level resources while the second is
used to check data at the time of running in order to prevent
the breach of Agreement on Service Level.

The way is to keep details of all agreements in a table to
render services within an acceptable limit. In case of any
contradiction between the adaptability of the data at the time
of running and those in the table, the system is informed [9].
The basis does not present a mechanism for automatic
reconfiguration of the system and only suffices to the breach
details of the agreement.

C. The diagnosis of threats and ways to face them in

calculator systems

Hackers consider different strategies to attack the systems at
various levels. An attack plan comes in 3 parts:

 Identification: this includes obtaining data from a
machine such as guessing the password.

 Penetrating the system.

 Attack: using a dangerous way to attack others.
All threats influencing the system are kept in an event

registered file. To identify the threats, the existing data is first
checked in an event registered file. However, for any of the
observed threats there are some different reasons, which are
not observable by the controller. In this way, while the
observed cases in events registered file are used, there is a
Markov process model, which is used for identifying the
threats in the system [10]. This paper considers the idea for
predicting the breach of agreements in the system.

Fig. 1. FFOSSII Architecture for managing the demands

D. DeSVI architecture: automatic diagnosis of breach at the

service level in Cloud Computing

Cloud Computing provides suitable grounds to do the
comprehensive and measurable calculations in the network.
Here, the users expect to receive their services in an
acceptable quality and they are willing to pay the costs in line
with the service level coming from the service providers [11].
Also, in case of low quality at the service level compared to
that of what was already agreed upon, the service provider
company must pay the customer for the damages. Therefore,
the automatic diagnosis of the agreement breach and
identification of the reasons thereof for removing the breaches
without user’s interference is one of the most important
challenges in the area of networks of these kinds.

The architecture DeSVI in Fig. 2 discusses a way to specify
the breach of agreement and the way it is managed in the area
[11]. At the highest level of this architecture, it is the user (or
customer) who uses the services in need through a software
link to the service provider in the area. Hence, the service
provider does the service request based on talk and service
level agreement.

In the second layer, the module application Deployer is next
to module Run-Time Monitor. In this layer, the virtual
machines and the required resources provide the service and
their lodgment in the area. The activity of this module is based
on the data obtained from the lower layer. There are some
other resources but the virtual machines. However, the
architecture DeSVI only stresses the management of the
virtual machine.

In the third layer, the module VM Deployer and
Configurator for the virtual machines have been planned. The
activity of this module is based on data which is received from
module Host Monitor in the fourth layer. The host control
module measures the existing resources in the physical area of
the host and sends the monitored data to the applicant
modules.

E. Management and the gradual removal of the error in the

services provided in Cloud area

In service-based systems, there are a series of services
which are in interaction for reaching a particular purpose. The
design and the development of these kinds of systems become
possible using service-oriented architecture [12].

International Journal of Computer Science and Telecommunications [Volume 6, Issue 6, June 2015] 3

Fig. 2. Architecture DeSVI and components

The applicant of using the service may consider some
quality aspects of the service. Therefore, a criterion for
evaluation has to be put to attention based on the service, so
that if the quality level of the services is lower than expected,
the system can be recovered and reconfigured. In 2012,
Vincet and his associates presented a new architecture to
manage the breach of the agreements consisting of the
following components [12]:

 Violation Handling Manager: it is used for collecting the
quality data of the service, identifying and also
determining the breach of quality. The control is done in
two steps in this component. The first step includes
receiving a series of events and identifying their link
with the terms of the agreement breach. The second step
deals with any kind of deviation at the service level.

 Impact analysis: it is used for determining the
influencing areas on the service and its needs, the result
of which is influential in the system recovery process.

 Recovery analysis component: it is used for planning a
recovery mechanism of the service in the effective area

Violation handling database: Four kinds of data are saved
in this base as follows: 1) the diagram of the process and the
required time to do it. 2) The service and series of time
limitation 3) the data relating to the breach of commitments 4)
the data relating to the effective areas.

III. A NOVEL ARCHITECTURE FOR SELF-CONFIGURATION IN

DISTRIBUTED SYSTEMS

In a distributed system, the resources and required services
by the user are allocated in line with the type of request. Every
user expects to receive the required services in good quality.
In case of unacceptability of the service level for the
applicants, the existing resources in the network must be
reconfigured in a way that the goals of the system are met. To
this end, the existing resources in the network must be
controlled and judged continually so that in case of any
deviation in rendering the service, acts can be taken to remove
it [13].

In this section, the infrastructure of the suggested system for
self-configuration in distributed system is discussed. The way
to meet the needs of the users is managed in the network
considering the existing resources. Upon the entry of any new
request and/or the finish of every request in the network, the
list of available resources is updated. Also the efficiency of
important parameters in the system and the running systems
are put to control. Considering the best situation and the limit,
which has already been determined, if any threat is felt, the
system is reconfigured automatically deducing the existing
knowledge in the system (Fig. 3).

In the suggested architecture, the steps to perform the action
are as follows:

Step 1: The existing resources in infrastructure of
distributed system are put to control by means of sensors for
this end. The obtained data from the resources in access and
also allocated resources are saved in a base.

Step 2: The requests of the users and/or applied programs
stay in the line of the applicants, and in line with the
considered priority, one of them is sent to the analysis section
for the possibility of execution.

Step 3: The administrative task of any request and or
applied program is classified. Then, we specify the resources
and the required services of each task. Considering the
existing data in the base, if it is possible to meet the request, it
will be sent to the distributed system to run. For taking this
step, we acquire the idea from the architecture DeSVi, which
is about the development of applied programs in Cloud
calculations. This step is shown in Fig. 4.

Step 4: The given services and also important system
parameters are monitored by means of sensors, which have
been used for this purpose (For example, the amount of use
from the processor load, the amount of main memory in
access, bandwidth of the network and delay in
communications).

Step 5: data of the services and the figures of the ex-
parameters are compared deducing the existing knowledge in
the service base and the parameters containing data at the
proper level. In case of unsuitability, warning message
appears. The warning is checked to seek the cause in the next
phase. The message is also saved in a log file (Fig. 5).

Step 6: Using the data obtained from the event registered
file relating to the warnings produced as a result of N number
of observations from the ex-system and also knowing about
the warnings base and their creating factors, a hidden Markov
model will be presented the use of which is the most likeliest
situation for creating the warning.

As it is possible to have a number of factors for every
critical situation in the system, it is very important to seek to
an influencing factor for the reconfiguration of the system for
the removal of the critical situation. However; the system
controller only observes the critical situation the causing
factor of which is hidden from the observer. This situation can
well be explained and removed by using the hidden Markov
model. For example if the amount of the main memory
becomes less than that of accepted, some factors such as the
damage of nodes for rendering the service (X1), the use of
this space by some applicants (X2) and the inefficiency of the
executive program (X3) may be influencing (Fig. 6).

Reza Mohamadi Bahram Abadi and Mohsen Jahanshahi 4

Fig. 3. Architecture of self-configuration system

Fig. 4. Mapping of the new users' request to the distributed system

resources

Fig. 5. Finding a critical case for the system

Fig. 6. Warnings observation and factors relating to Markov model

Considering the fact that the data relating to the ex-

warnings are saved in an event registered file and also factors
to cause each of the warnings saved in a base therefore, using
a hidden Markov model and Baum-Welch and Viterbi
algorithm helps us get an idea of last observances and we can
find a hidden Markov model for the likeliest cause of a
warning message. Each time with a new warning from the
system, one can possibly explain the cause of the warning
with the help of the presented model (Fig. 7).

Step 7: in the base of warnings, a strategy has been
presented for the causes of warnings and the system acts for
the automatic reconfiguration of the system using these
information (Fig. 8).

X1 X
2

 X
3

Observations States

Hidden States

…. ….

Warning:

Low Efficiency

of CPU

Warning:

 Low

Bandwidth

Warning:

 Low

 Memory

User

Created of Set Task

from Request User

The analysis of request

performance in the network

Resources

Base

Request/Reply

Task Mapping to the

Network Resources

 Distributed System

Services run-time

Monitoring

Analysis of Services

and Parameter

Parameters

/Services

History of

Warning

Step 6

Instance Data

Threshold Desirable threshold Parameters/Services

4201 < 0212< Available Memory

12 Mbit/s < 15 Mbit/s< Bandwidth

75% < 25% < CPU

Resources

Monitoring

Resources

Base

Requests Queue

Request Analysis

Mapping of the user’s

request to the network

resources

Parameters

/Services

History of

Warning

Warning factors and

Strategies

User n User 1 …..

Request/Reply

Services run-time

monitoring

Analysis of

Services and

Parameter

Modeling of the

Warning with

Hidden Markov

The likeliest factor for

Warning

Reaction to the

warning with

Deduction Strategy

Step1

Warning

Step2

Step3

Step6

Step4

Step5

Step7

Distributed System

International Journal of Computer Science and Telecommunications [Volume 6, Issue 6, June 2015] 5

Fig. 7. Modeling the observed warnings in hidden Markov model

Fig. 8. Strategy extraction for reaction against system warning message

TABLE I.
EVALUATION PARAMETERS OF SERVICE QUALITY IN A

DISTRIBUTED STORAGE SYSTEM

Performance Parameters

Description Unit SLA Parameter name

Current load of the SN for read transfers.

SNs with lower values are preferred.
MB/s

SNCurrentReadTransferR

ate

Maximal SN throughput. SNs with

higher values are preferred.
MB/s SNMaxReadTransferRate

Read transfer rate for tape drive. SNs

with higher values are preferred.
MB/s SNTapeReadRate

The average latency of tape drives. The
latency includes the time necessary to

load a tape and

s SNTapeLatency

This parameter tells if the given file

resides in cache. 0 means that the file is

in cache or that

n/a SNisFileCached

SN load. Shows how much of the
potential storage bandwidth is currently

% SNLoad

used. SNs with lower

Number of I/O operations per second.

SNs with lower values are preferred.
IO/s SNIOps

IV. PERFORMANCE EVALUTION

To review the efficiency of the suggested architecture, we
evaluate its performance on a distributed storage system. With
regard to the agreement of the service level that is made
between the service givers and users some parameters are set
for the evaluation of SLA. The purpose of the suggested
architecture is to observe the agreed threshold for the SLA
parameters in the system.

In a traditional storage system, the way to access the users
is made with the best effort. This ordinary approach in applied
programs, which must be guaranteed in the quality of the
service, (QoS) has limitations. In line with the services given
and the expectations of the service receivers from the way
they are presented, we can define some different indexes for
evaluating QoS of the services rendered [14]. In Table I, there
is a series of parameters defined as a sample for the evaluation
of efficiency in a distributed storage system.

In each parameter, those indexes are influencing the degree
of which can be calculated. Also, the degree of some
parameters can be calculated using the existing parameters in
Table I. For example, for calculating load, Readpreference
and WritePreference of a storage node, the following
formulae are used.

(1)

SNCurrentReadTransferRate SNCurrentWriteTransferRate
+

SNMaxReadTransferRate SNMaxWriteTransferRate

SNLoad =

(2)

filesize
k + k SNTapeLatency

3 4SNTapeReadRate

k SNisFileCached- k SNLoad - k SNIOps -
5 76

k SNMaxReadTransferRate filesize -
1

k filesize SNCurrentReadTransferRate
2

SNReadPreference =

(3)

k SNMaxWriteTransferRate filesize -k SNLoad -
1 6

k SNCurrentWriteTransferRate filesize - k SNIOps
2 6

SNWritePreference =

To check the suggested architectural performance, we

consider the parameters of Load ReadPreference and
WritePreference as the evaluation parameters of QoS in a
distributed storage system. With regard to what is expected
from the service providers for each of the parameters, we
define a threshold. These agreed figures are considered as one
SLA for each parameter.

Using the influencing indexes, each parameter is calculated.
If the calculated figure for one parameter is less than
threshold, there is a breach in SLA. The reason of it should be
searched for among the influencing parameters.

The hidden Markov model has been used in suggested
architecture for the prediction of the most efficient index in
the breach of SLA, To clarify the point, we can deduce the

Likeliest Factor

for Warning

Reaction to the

Warning with

Deduction Strategy

Extraction Solution

Instance Data in the repository of warning factors and strategies

Code Causes of the Warning Solution

1 Damage of Server8 ...

1 Number of Request for Memory ...

1 Inefficiency of the Application ...

Code Warning

1 Low memory

2 Low Bandwidth

3 Low Efficiency of CPU

Distributed System

History of

Warning

Warning Factors

and Strategies

Modeling of the

Warning with

Hidden Markov

Likeliest Factor

for Warning

Warning Message

History Observations

Instance Data

Code Causes of the Warning Solution

1 Damage of Server ...

1 Number of Request for Memory ...

1 Inefficiency of the Application ...

Code Warning

1 Low memory

2 Low Bandwidth

3 Low Efficiency of CPU

Reza Mohamadi Bahram Abadi and Mohsen Jahanshahi 6

fact that the calculated figures for the parameters as “observed
states” and "indexes as the “hidden states’ are considered.
From the beginning of the system working, the time output
relating to the breach of SLA and the influencing index in the
breach of SLA for parameters are saved in a log file. With the
analysis of the recent observations in log file, the likelihood
of influencing the indexes in the breach of parameters' SLA is
specified over the time. Once the parameters and indexes
were observed in a hidden Markov model, with occurrence of
the SLA breach for one parameter, the most likelihood index
for the breach of SLA is identified and introduced. Then, we
amend the index for securing the parameter SLA.

TABLE II.
THRESHOLD FOR THE SAMPLE PARAMETERS IN DISTRIBUTED

STORAGE SYSTEM

Threshold SLA Parameter ID

≥12 Mbit/s SN Load 1

≥15 Mbit/s SNReadPreference 2

≥10 Mbit/s SN WritePreference 3

TABLE III.
INFLUENCING LIKELIHOOD ANY OF THE INDEXES IN SLA BREACH

Occurrence Probability SLA Parameter ID Code

40% SN Current Read Transfer Rate 1

20% SN Max Read Transfer Rate 1

30% SN Current Write Transfer Rate 1

10% SN Max Write Transfer Rate 1

18% SNMaxReadTransferRate 2

15% SNCurrentReadTransferRate 2

9% SNTapeReadRate 2

23% SNTapeLatency 2

16% SNisFileCashed 2

10% SNLoad 2

4% SNIOps 2

5% FileSize 2

20% SNMaxWriteTransferRate 3

23% SNCurrentWriteTransferRate 3

43% SNLoad 3

17% SNIOps 3

12% Filesize 3

TABLE IV.
RESULT OF ARCHITECTURAL TESTS FOR PARAMETER SNALOAD

FP FN TP ID Code

3 2 11 SN Load

21 6 64 SNReadPreference

16 4 43 SN WritePreference

40 12 118 SUM

A. Review of Test Result

To check the results of the tests, we use the suggested
architecture on the university database including information
about finance, administration, research and training. The data
is saved on a distributed storage system by means of applied
software and is recovered in case of need. Degree of system
QoS is evaluated based on the calculation results of three
parameters of Load, Readpreference and WritePreference and
its comparison with corresponding thresholds. The degree of
threshold for each parameter is shown in Table II.

The existing data of university in Log File was considered
over the past three years and for the indexes of which one
parameter is created, the likelihood of influencing each index
for the breach of parameter SLA in intervals has been
calculated. The results have been shown in Table III.

Then, the system was put to monitoring for six months, and
the figures SNLoad, ReadPreference and WritePreference
were calculated periodically. In each calculation , if the
calculated parameter is not within the limits of the threshold,
it will be a breach of SLA and based on the suggested
architecture, with the use of the hidden Markov model, the
most likelihood of the effective index was predicted the
results of which are shown in Table III.

 TP: number of cases that the influencing index on the
breach of SLA has distinguished correctly.

 FN: number of cases no index of which is influencing
on the breach except for the influencing cases.

 FP: number of cases the influencing index of which on
the breach SLA has been identified by mistake.

To evaluate Recall and Precision of the results of the
suggested architecture, we use the data in Table IV (FP, FN,
and TP) in the following formulae:

TP 118
recall = = 0.91

TP + FN 118+12

TP 118
recall = = 0.75

TP + FP 118+ 40

As the results of the suggested algorithm are evaluated
based on Log File, the more time duration of Log File, the
more extensive base of knowledge, and following that, results
of evaluation become more exact.

After the most likelihood of index was identified by the
suggested architecture in the breach of SLA, the best would
be made to recover the index in line of SLA considering the
already existing strategies in the system for this challenge.

As the suggested architecture has been checked in the
system randomly, the results of the evaluation will be
different by a change in the situation, storage system and
applied program based on which they are saved and
recovered. Also, one cannot judge the performance of the
suggested architecture in decisive terms. In fact, we can see
the suggested architecture as a decision support system that
helps the administrator in making decisions against the breach
of SLA.

REFERENCES

[1] Mishra, Arun, and A. K. Misra. "Component assessment and
proactive model for support of dynamic integration in self
adaptive system." ACM SIGSOFT Software Engineering Notes
34, no. 4 (2009): 1-9.

[2] Brejová, Brona, Daniel G. Brown, and Tomaˇs Vinaˇr.
"ADVANCES IN HIDDEN MARKOV MODELS FOR
SEQUENCE." Bioinformatics Algorithms: Techniques and
Applications 3 (2008): 55.

[3] Lember, Jüri, and Alexey Koloydenko. "The adjusted Viterbi
training for hidden Markov models." Bernoulli 14, no. 1
(2008): 180-206.

[4] Sallem, Marcio Augusto Sekeff, and F. J. da Silva e Silva.
"The Adapta Framework for Building Self-Adaptive
Distributed Applications." In Autonomic and Autonomous
Systems, 2007. ICAS07. Third International Conference on,
pp. 46-46. IEEE, 2007.

[5] Koloydenko, Alexey, and Jüri Lember. "Infinite Viterbi
alignments in the two state hidden Markov models." Acta
Comment. Univ. Tartu. Math 12 (2008): 109-124.

International Journal of Computer Science and Telecommunications [Volume 6, Issue 6, June 2015] 7

[6] Lee, Geunho, Yosuke Hanada, and Nak Young Chong.
"Decentralized Self-configuration of a Swarm of Robots." In
Proc. of 7th SICE System Integration Division Annual
Conference. 2006.

[7] Lember, Jüri, and Alexey Alexandrovich Koloydenko. "A
constructive proof of the existence of Viterbi processes."
Information Theory, IEEE Transactions on 56, no. 4 (2010):
2017-2033.

[8] Emeakaroha, Vincent C., Marco AS Netto, Rodrigo N.
Calheiros, Ivona Brandic, Rajkumar Buyya, and César AF De
Rose. "Towards autonomic detection of SLA violations in
Cloud infrastructures." Future Generation Computer Systems
28, no. 7 (2012): 1017-1029.

[9] Gandhi, Anshul, Yuan Chen, Daniel Gmach, Martin Arlitt, and
Manish Marwah. "Hybrid resource provisioning for
minimizing data center SLA violations and power
consumption." Sustainable Computing: Informatics and
Systems 2, no. 2 (2012): 91-104.

[10] Lember, Jüri. "On approximation of smoothing probabilities
for hidden markov model" statistics & probability letters 81,
no. 2 (2011): 310-316

[11] Lember, Jüri, and Alexey Koloydenko. "The adjusted Viterbi
training for hidden Markov models." Bernoulli 14, no. 1
(2008): 180-206.

[12] Kuljus, Kristi, and Jüri Lember. "Asymptotic risks of Viterbi
segmentation." Stochastic processes and their applications
122, no. 9 (2012): 3312-3341.

[13] Ismail, Azlan, Jun Yan, and Jun Shen. "Incremental service
level agreements violation handling with time impact
analysis." Journal of Systems and Software 86, no. 6 (2013):
1530-1544.

[14] Nikolowa D, Słotaa R, Polaka S. “Model of QoS Management
in a Distributed Data Sharing an Archiving System”.
International Conference on Computational Science 18, 2013:
100-109.

