
International Journal of Computer Science and Telecommunications [Volume 6, Issue 2, February 2015] 10

Journal Homepage: www.ijcst.org

Latika Kharb

Faculty of IT (MCA), Jagan Institute of Management Studies (JIMS), Sector-5, Rohini, Delhi, India

latika.kharb@jimsindia.org

Abstract– Reliability in software is produced by controlling its

quality within budget. Over the time, researchers and

practitioners have expressed their inability to accurately

estimate costs associated with software development and it has

become even more problematic as costs associated with

development continue to increase. As a result, a lot of research

attention is now directed towards gaining a better understanding

of the software development process as well as evaluating

software metrics for cost estimation in the process of software

testing. An effective software testing cost measurement and/or

evaluation technique requires a metrics that could not only

increase the reliability, reusability, correctness and

maintainability but also measures the quality and productivity of

software development process within budget. Keeping this goal

in mind, we’ve provided a set of three useful Cost Estimation

Metrics (CEM) that could be effectively implemented to evaluate

costs of testing the software products, for improvement in overall

software product reliability, and also become one of the metrics

used for the measurement of overall expenses incurred during

the process of software testing and thus make way towards a

reliable and quality oriented software system in recent future.

Index Terms– Cost Estimation Metrics, Quality Improvements,

Quality Software System, Quality within Budget and Quality

Oriented Software System

I. INTRODUCTION

OFTWARE projects are illustrious for going beyond their

deadline, going over budget, or both and the problem lies

in the estimation of the amount of effort required for the

development of a project. In early days of computing,

software costs constituted a small percentage of overall

computer-based system costs but today; software is the most

expensive element of virtually all computer based systems.

Software cost estimation is a tough job, as a number of factors

can affect ultimate cost of software to develop it. For large

and complex systems, a small cost -estimation error can

become tragic for the software developer. As cost estimation

is the approximate judgment of the costs for a project [1] i.e.,

a set of techniques and procedures that is used to derive the

software cost estimate; and the purpose of software cost

estimation is to:

 Define the resources needed to produce, verify, and

validate the software product, and manage these

activities.

 Quantify the uncertainty and risk inherent in this

estimate.

Even today, much of the metrics activity in industrial sector

is based on metrics invented long ago in 70’s. This mismatch

exists between them because of the following reasons [2]:

o Researchers/academicians are mainly concerned with

detailed and code-oriented metrics while the industrial

sectors demand those metrics that could help them in

their software process improvement. This difference

between needs is the main cause behind the mismatch

between usability criteria of various metrics.

o Industrial sectors have to abide by some rules and

regulations/standards of their company while

academicians/researchers are not bound by any such

rigid standards and can select/change metrics when ever

needed according to their needs and requirements.

o Researchers go for relatively small field works with

small data (consisting of small programs) that could get

them quick outputs. But the industry men have to go for

large projects (to develop huge software). In academics,

metrics may or may not be evaluated for correctness,

quality and timeliness in hard values. They have to just

provide data/values in form of theoretical validations.

But the industry men are the one who deal with practical

implementation of data and so they have to check each

and every metric very minutely as even 1% error rate

could be critical if it belongs to real life software

development viz. aeronautical systems.

Software testing is an important technique for validating

and checking the correctness of any kind of software.

However, the production and application of effective and

efficient measurement tests is not only extremely difficult,

expensive and laborious but it’s also a time consuming, and

error prone task. As goal of software testing is to expose

defects in software; as an early detection in the development

cycle could not only save time and resources but along with it,

an empirical evaluation of the metrics suite is also required so

that user satisfaction can be achieved. In the development

phase, when we talk of large-scale software development,

testing accounts for a substantial larger portion of the

development cost. Here, software metrics could help to

S

Proposed C.E.M (Cost Estimation Metrics): Estimation of

Cost of Quality in Software Testing

ISSN 2047-3338

 Latika Kharb 11

estimate the costs associated with the traditional development

process. However, when reliability becomes the prime

concern, then we require more efficient testing efforts for

measurement and it becomes quite costly process to achieve

it. So, keeping in mind above said constraints, the software

testers have to develop an estimate of the total cost of the

software project that includes all the work elements and

procurements of the software development process.

Software cost estimation is the process of predicting the

amount of effort required to build a software system [3].

Estimation of total cost could be done through determination

of cost of acquisition that includes cost of training inclusive of

travel and trips for customer reviews, salary of work force,

and inconsistencies in the estimates. In software cost

estimation process, the software requirements form the

primary basis for the cost estimation. During this process, cost

expenditures could be divided into three kinds of output [4]:

i. Effort: Amount of effort required to complete the

project

ii. Project duration: Time needed to complete the project

iii. Manpower loading: Number of personnel allocated to

the project as a function of time

Cost estimates will be adjusted according to available

budget to arrive at final estimate.

II. COST OF SOFTWARE QUALITY

Cost of software quality includes all costs incurred in

pursuit of quality or in performing quality-related activities.

Cost of Quality (CoQ) includes all costs incurred in pursuit of

quality or in performing quality related activities. Despite the

range of definitions, the goals underlying the pursuit of

quality are the same: achieving conformity, reducing

variation, eliminating waste and rework, eliminating non-

value-adding activity, preventing human error, increasing

efficiency and effectiveness, improving productivity, and

preventing defects [5].

Fig. 1: Cost of Software Quality

Cost of Quality (CoQ) is useful to understand different

types of costs incurred in Quality product development.

CoQ=Cost of Conformance + Cost of Non Conformance

Table 1: Cost of Quality (CoQ)

S.NO
TYPE OF COST OF

QUALITY
DESCRIPTION

1 Cost of Conformance Derived from the amount developer spends on the attempts to
improve quality.

 Conformance costs include:

 costs associated with prevention

 costs associated with appraisal

2 Cost of Non-
Conformance

 Includes costs associated with failure i.e., it includes all

expenses that a developer incurs when the system does not

operates as specified.
 Non Conformance costs includes costs associated with failure

i.e.,

 Internal Failure Costs

 External Failure Costs

So, Total Cost of Quality (TCoQ) could be calculated as:

TCoQ = Prevention Cost + Appraisal Cost + Internal failure Cost + External Failure Cost

Some examples for different types of Cost of Quality (CoQ) are stated in Table 2.

International Journal of Computer Science and Telecommunications [Volume 6, Issue 2, February 2015] 12

Table 2: Summary of Software Cost of Quality (CoQ)

S.NO TYPE OF COST EXAMPLES

1 External Failure Cost processing customer complaints, customer returns, warranty claims,

product recalls,

2 Internal Failure Cost scrap, rework, re-inspection, re-testing, material review, material

downgrades.

3 Appraisal Cost inspection, testing, process or service audits, calibration of

measuring and test equipment.

4 Prevention Cost New Product Review, Quality Panning, Supplier Surveys, Process

Reviews, Quality Improvement Teams, Education and Training.

Consider the following time sheet to understand how CoQ is computed in SDLC:

Table 3: Example of Cost of Quality (CoQ) Measurement

ACTIVITY

NUMBER

ACTIVITY NAME

TIME SPENT

(hrs)

TYPE OF COQ

A1 Training 10-hours Prevention Cost

A2 Requirements Review 5-hours Appraisal Cost

A3 Requirements Rework 6-hours Failure Cost

A4 Code Review 6-hours Appraisal Cost

A5 Code Rework 2-hours Failure Cost

A6 Testing 10-hours Appraisal Cost

A7 Test Rework 5-hours Failure Cost

From the analysis of this time-sheet data, we can easily

compute the Cost of Quality as follows:

1. Prevention Cost = Cost of Activity at Activity No. (A1)

= 10 hours

2. Appraisal Cost = Cost of Activities at Activity No.

{(A2)+(A4)+(A6)} = 21 hour

3. Failure Cost = Cost of Activities at Activity No.

{(A3)+(A5)+(A7)} = 13 hours

Therefore, Cost of Quality (CoQ) = Cost of

(Prevention+Appraisal+Failure) = 44 hours

Applying the concepts of CoQ measurement, analysis and

corrections consistently to the SDLC projects can help reduce

the cost of quality. But, it is not the measurement, but the

analysis and comparison for monitoring, control and strategic

decisions that we can use the measured CoQ. To overcome

the constraints, we have proposed the C.E.M: Cost Estimation

Metrics in the next section.

III. PROPOSED C.E.M (COST ESTIMATION METRICS)

Software project managers are responsible for controlling

project budgets; so they must be able to make estimates of

how much software development is going to cost [6].

Practitioners have expressed concern over their inability to

accurately estimate costs associated with software

development. This concern has become even more pressing as

costs associated with development continue to increase. As a

result, need for a considerable research attention is in demand

that is directed at gaining a better understanding of the

software-development process as well as constructing and

evaluating software cost estimating tools and techniques.

In real life, schedule estimation is one of the most difficult

parts of the software estimation process. Three software

metrics have been proposed namely; Total Test Cost Metric

(TTCM), Test and Development Cost % age Metric (TDC%M)

and Total Software Product Cost for Testing Metric

(TSPCTM). The purpose behind proposing this metrics suite is

to describe a recommended measurement and evaluation

process for the development of software cost estimates by

software managers.

A) Total Test Cost Metric (TTCM)

The following metric is used to measure the total cost of

testing of software product and is measured by taking the

average of the (CBR + CAR) i.e., sum of the total cost of

testing product before and after release with LOCDP, which is

the total lines of code of the developed product. It is given by

the equation:

Total Test Cost metric (TTCM) = CBR + CAR

 LOCDP

Where,

CBR = Total cost of testing product before release

CAR = Total cost of testing of product after release

LOCDP = Total lines of code of developed product

 Latika Kharb 13

B) Test and Development Cost % age Metric (TDC%M)

The following metric is used to measure the total test and

development cost % age of software product and is measured

by taking the ratio of the average of the (CBR + CAR) i.e., the

sum of the total cost of testing product before and after release

with (CRC + CTTM), which implies total cost of testing

product from requirement to testing phases and from testing

to maintenance phases respectively. It is given by the

equation:

Test and Development Cost % age Metric (TDC%M) =

 CBR + CAR * 100 %

 CRC + CTTM

Where,

CRC= Total cost of testing product from requirement to

testing

CTIM =Total cost of testing product from testing to

maintenance.

C) Total Software Product Cost for Testing Metric (TSPCTM)

The following metric is used to measure the total software

product cost for testing and is measured by taking the average

of the (CBR + CAR) i.e., sum of the total cost of testing

product before and after release with (WWBT+ WBBT + WGBT),

which is the number of weighted defects found in a product

under test through white-box, black-box and grey-box testing

respectively. It is given by the equation:

Total Software Product Cost for Testing Metric (TSPCTM) =

 CBR + CAR

 WWBT + WBBT + WGBT

Where,

WWBT = No. of Weighted defects found in a product under test

through white-box testing

WBBT = No. of Weighted defects found in a product under test

through black-box testing

WGBT= No. of Weighted defects found in a product under test

through grey-box testing

As cost estimation is an important tool that can affect the

planning and budgeting of a project, this projected metrics

suite could help in the determination of the features that could

be included within the resource constraints of the project (e.g.,

time). Moreover, risk of a project is reduced when the most

important features are included at the beginning because the

complexity of a project increases with its size, which means

there is more opportunity for mistakes as development

progresses. Thus, cost estimation can place a big impact not

only on the life cycle and schedule for a project but also on its

testing performance. It is prudent for a company to allocate

better resources, such as more experienced personnel, to

costly projects testing so that effective monitoring and control

of the software costs is required for the verification (testing)

and improvement in the accuracy of the measured estimates.

So, the success of a cost estimation metrics for testing is not

necessarily based on the accuracy of the initial estimates, but

rather it depends on the rate at which the estimates converge

to the actual cost.

IV. UNDERSTANDING THE EFFECTIVENESS AND

EFFICIENCY OF C.E.M

Educating project managers, test managers, and

development managers as to what we are measuring, as well

as what those numbers mean is very important. This should be

done for two reasons. The first is to ensure that managers

support and understand the value of the metrics. It is vital that

they are interested in these metrics as much as we are in

providing them. The second reason is to educate them on what

they can do to affect each metric positively. This last reason is

the most important, yet is also the most difficult to explain.

Test metrics are an important indicator of the effectiveness of

a software testing process. In current years, there have been

many discussions about the role of software metrics in

helping software organizations to improve productivity and

software quality [5]. Researchers have put much effort into

learning how to use metrics for Software Process

Improvement (SPI) [7] and there have been many discussions

in current years about the role of software metrics in helping

software organizations to improve productivity and software

quality.

In this section, we’ll discuss the usability of associated

metrics, in order to facilitate the development of future studies

as well as for measurement refinement [8]. This paper

considers three significant software metrics for evaluation of

cost of testing that could actually generate useful information.

Software metrics are used for cost evaluation while testing,

help in comprehensive evaluation, being cheaper, faster and

more reliable it’s easier to be used for increased efficiency,

effectiveness and adoption. Proposed set of metrics can be

used to predict the cost to develop & test and therefore,

developers could combine the cost evaluation metric for

testing to determine whether the budget allows purchasing

additional computer resources that will enhance the product’s

quality.

The goal of the testing activity is to find as many errors as

possible before the user of the software finds them. We can

use testing to determine whether a program component meets

its requirements. To accomplish its primary goal (finding

errors) or any of its secondary purposes (meeting

requirements), software testing must be applied in a

systematic fashion. Testing involves operation of a system or

application under controlled conditions and evaluating the

results. By using our software testing metrics in a consistent

manner, software developers will see improvement in the

software and on the use of the metrics. However, no single

metric works during all of the development phases; therefore,

using several metrics for one system helps to have a handy

solution that can be used during different aspects of the

process of software development. Three metrics covered in

this paper when used properly, i.e., when a company uses the

best software testing metric during each development phase,

the quality of the software will dramatically increase.

Therefore, we highly recommend using software-testing

metrics for the software quality assessment.

International Journal of Computer Science and Telecommunications [Volume 6, Issue 2, February 2015] 14

V. CONCLUSION

There are no turnkey solutions when it comes to

implementing a system that will account for all of the Costs of

Quality. An effective measurement activity should be able to

evaluate the current process and provide suggestion to the

manager for future improvement. The CEM metrics we used

in our research paper could be able to provide information

that is helpful for justifying the current test process. The

proposed metric results clearly show the improvement that the

test teams had made in the test process in terms of quality.

Developing a strategy for measuring what quality costs your

organization is the only way to reduce that cost, while

maintaining the quality of product and retaining customers.

Those companies who do it well and have the gained the

competitive advantage over those that have not. Our future

work includes using real industry level data to evaluate these

new metrics we recommended to measure performance of

individual test phases, giving suggestions to test teams and

support teams for necessary changes in the test process, and

implementing the whole set of metrics in a production test

environment.

REFERENCES

[1]. John K. Hollmann, “Total Cost Management Framework: An

Integrated Approach to Portfolio Program, and Project

Management”, 1st Edition, AACE® International, USA.

[2]. Latika Kharb et al., “Complexity Metrics for Component-

Oriented Software Systems”, ACM SIGSOFT Software

Engineering Notes, Vol. 33, Issue 2 (March 2008), Article No.

4, pp. 34.

[3]. Kim Johnson, “Software Cost Estimation: Metrics and

Models”, 2000.

[4]. Fenton, N.E. and Pfleeger, S.L. (1997), “Software Metrics: A

Rigorous and Practical Approach”, International Thomson

Computer Press, 1997.

[5]. Latika Kharb et al., “Reliable Software Development with

Proposed Quality Oriented Software Testing Metrics”,

International Journal of Computer Technology and

Applications, July-August 2011, Vol. 2 Issue 4.

[6]. Shaw, M. (1995), “Cost and Effort Estimation”, CPSC451

Lecture Notes. The University of Calgary.

[7]. Yanping Chen, Robert L. Probert, Kyle Robeson, “Effective

Test Metrics for Test Strategy Evolution”, Copyright 2004,

IBM Canada Ltd.

[8]. Latika Kharb et al., “AMD: Aspect-Method Dependencies

Metric for Coupling”, Proceedings of National Conference on

Information Technology: Present Practices and Challenges,

Asia Pacific Institute of IT & Management, New Delhi,

August 31- September 1, 2007.

