
International Journal of Computer Science and Telecommunications [Volume 6, Issue 2, February 2015] 1

Journal Homepage: www.ijcst.org

Ha Huy Cuong Nguyen
1
 and Van Son Le

2

1
Department of Information Technology, QuangNam University, Tam Ky City, Viet Nam

2
Department of Information Technology, Da Nang University of Education, Da Nang, Viet Nam

1
nguyenhahuycuong@gmail.com,

2
levansupham2004@yahoo.com

Abstract— In a heterogeneous distributed platforms large

problem is distribute among the processors (such as among the

computers of distributed computing system or among the

computers of parallel computing system etc.) to make it cost

effective and less time consuming instead of a computer system

with single processor. There are more general types of resource

allocation problems than those we consider here. In this paper,

we present an approach for improving detection and avoidance

algorithm, to schedule the policies of resource supply for

resource allocation on heterogeneous. We propose an algorithm

for allocating multiple resources to competing services running

in virtual machines platforms.

Index Terms— Cloud Computing, Resource Allocation,

Heterogeneous Distributed Platforms, Deadlock Detection and

Avoidance Deadlock

I. INTRODUCTION

ECENTLY, there has been a dramatic increase in the

popularity of cloud computing systems that rent

computing resources on-demand, bill on a pay-as-you-go

basis, and multiplex many users on the same physical

infrastructure. These cloud computing environments provide

an illusion of infinite computing resources to cloud users that

they can increase or decrease their resources. In many cases,

the need for these resources only exists in a very short period

of time.

The increasing use of virtual machine technology in data

centers, both leading to and reinforced by recent innovations in

the private sector aimed at providing low-maintenance cloud

computing services, has driven research into developing

algorithms for automatic instance placement and resource

allocation on virtualized platforms[1], [2], including our own

previous work. Most of this research has assumed a platform

consisting of homogeneous nodes connected by a cluster.

However, there is a need for algorithms that are applicable to

heterogeneous platforms.

Heterogeneity happens when collections of homogeneous

resources formerly under different administrative domains are

federated and lead to a set of resources that belong to one of

several classes. This is the case when federating multiple

clusters at one or more geographical locations e.g., grid

computing, sky computing.

In this work we propose virtual machine placement and

resource allocation deadlock detection algorithms that, unlike

previous proposed algorithms, are applicable to virtualized

platforms that comprise heterogeneous physical resources.

More specifically, our contributions are:

We provide an algorithmic approach to detect deadlock and

resource allocation issues in the virtualization platform

heterogeneity. This algorithm is in fact more general, even for

heterogeneous platforms, and only allowed to allocate minimal

resources to meet QoS arbitrary force.

Using this algorithm, we extend previously proposed

algorithms to the heterogeneous case.

We evaluate these algorithms via extensive simulation

experiments, using statistical distributions of application

resource requirements based on a real-world dataset provided

by Google.

Most resource allocation algorithms rely on estimates

regarding the resource needed for virtual machine instances,

and do not refer to the issue of detecting and preventing

deadlocks. We studied the impact of estimation errors and

propose different approaches to mitigate these errors, and

identify a strategy that works well empirically.

II. RELATED WORKS

Resource allocation in cloud computing has attracted the

attention of the research community in the last few years.

Srikantaiah et al. [8] studied the problem of request

scheduling for multi-tiered web applications in virtualized

heterogeneous systems in order to minimize energy

consumption while meeting performance requirements. They

proposed a heuristic for a multidimensional been packing

problem as an algorithm for workload consolidation. Garg et

al. [10] proposed near optimal scheduling policies that

consider a number of energy efficiency factors, which change

across different data centers depending on their location,

architectural design, and management system. Warneke et al.

[11] discussed the challenges and opportunities for efficient

data processing in cloud environment and presented a data

R

Detection and Avoidance Deadlock for Resource

Allocation in Heterogeneous Distributed Platforms

ISSN 2047-3338

mailto:nguyenhahuycuong@gmail.com

Ha Huy Cuong Nguyen and Van Son Le 2

processing framework to exploit the dynamic resource

provisioning offered by IaaS clouds. Wu et al. [12] propose a

resource allocation for SaaS providers who want to minimize

infrastructure cost and SLA violations. Addis et al. [13]

proposed resource allocation policies for the management of

multi-tier virtualized cloud systems with the aim to maximize

the profits associated with multiple – class SLAs. A heuristic

solution based on a local search that also provides availability,

guarantees that running applications have developed.

Abdelsalem et al. [14] created a mathematical model for

power management for a cloud computing environment that

primarily serves clients with interactive applications such as

web services. The mathematical model computes the optimal

number of servers and the frequencies at which they should

run. Yazir et al. [15] introduced a new approach for dynamic

autonomous resource management in computing clouds. Their

approach consists of a distributed architecture of NAs that

perform resource configurations using MCDA with the

PROMETHEE method. Our previous works mainly dealt with

resource allocation, QoS optimization in the cloud computing

environment.

There are more general types of resource allocation

problems than those we consider here. For instance:

1. We consider the possibility that user might be willing to

accept alternative combinations of resources. For example, a

user might request elementary capacity CPU, RAM, HDD

rather than a specific.

2. We consider the possibility that resources might be

shared. In this case, some sharing is typically permitted; for

example, two transactions that need only to read an object can

be allowed concurrent access to the object.

3. We begin by defining our generalized resource allocation

problem, including the deadlock detection problem as an

interesting special case. We then give several typical solutions.

III. SYSTEM MODEL RESOURCE ALLOCATION IN

HETEROGENEOUS DISTRIBUTED PLATFORMS

Resource allocation in cloud computing has attracted the

attention of the research community in the last few years.

Cloud computing presents a different resource allocation

paradigm than either grids or batch schedulers [2]. In

particular, Amazon C2 [10], is equipped to, handle may

smaller computer resource allocations, rather than a few, large

request as is normally the case with grid computing. The

introduction of heterogeneity allows clouds to be competitive

with traditional distributed computing systems, which often

consist of various types of architecture as well.

Like traditional distributed system before we can see a

heterogeneous distributed system consists of a set of

processes that are connected by a communication network.

The communication delay is finite but unpredictable [21],

[22].

A). The Application

A heterogeneous distributed program is composed of a set

of n asynchronous processes p1, p2,…,pn that communicates

by message passing over the communication network. We

assume that each process is running on a different processor.

The processor does not share a common global memory and

communicate solely by passing messages over the

communication network. There is no physical global clock in

the system to which processes have instaneous access. The

communication medium may deliver messages out of order,

messages may be lost garble or duplicated due to timeout and

retransmission, processors may fail and communication links

may go down. The system can be modeled as a directed graph

in which vertices represent the processes and edge represent

unidirectional communication channels.

We use the platform graph, for the grid platform. We model

a collection of heterogeneous resources and the

communication links between them as the nodes and edges of

an undirected graph. See an example in Fig. 1 with 8

processors and 11 communication links. Each node is a

computing resource (a processor, or a cluster, or node).

P8

P1

P3

P2

P5 P4

P6

P7

Fig. 1. An example simple platform

A process can be in two states: running or blocked. In the

running state (also called active state), a process has all the

needed re and is either executing or is ready for execution. In

the blocked state, a process is waiting to acquire some

resource.

B). The Architecture

The target heterogeneous platform is represented by a

directed graph, the platform graph. There are p nodes P1,

P2,…, Pn that represent the processors. In the example of

figure 1 there at eight processors, hence n = 8.

Each edge represents a physical interconnection. Each edge

eij: Pi  Pj is labeled by value ci,j which represents the time to

transfer a message of unit length between Pi and Pj, in either

direction: we assume that the link between Pi and Pj is

bidirectional and symmetric. A variant would be to assume

two unidirectional links, one in each direction, with possibly

different label values. If there is no communication link

between Pi and Pj we let ci,j= + , so that ci,j < +means that

Pi and Pj are neighbors in the communication graph.

C). Wait – For – Graph (WFG)

In distributed systems, the sate of the system can be

modeled by directed graph, called a wait for graph (WFG)

[21] – [25]. In a WFG, nodes are processors and there is a

directed edge from node P1 to mode P2 if P1 is blocked and is

International Journal of Computer Science and Telecommunications [Volume 6, Issue 2, February 2015] 3

waiting for P2 to release some resource. A system is

deadlocked if and only if there exists a directed cycle or knot

in the WFG.

Let us first of all describe the deadlock condition problem

more precisely.

A set S = {s1, s2,…sk}   of k > 1 entities is deadlocked

when the following two conditions simultaneously hold:

Each entity si S is waiting for an event permission that

must be generated from another entity in the set;

No entity si S can generate a permission while it is

waiting.

If these two conditions hold, the entities in the set will be

waiting forever, regardless of the nature of the permission and

of why they are waiting for the “permission”; for example, it

could be because si needs a resource held by sj in order to

complete its computation.

A useful way to understand the situations in which

deadlock may occur is to describe the status of the entities

during a computation, with respect to their waiting for some

events, by means of a directed graph W , called wait-for

graph.
Deadlock detection can be represented by a Resource

Allocation Graph (RAG), commonly used in operating
systems and distributed systems. A RAG is defined as a graph
(V,E) where V is a set of nodes and E is a set of ordered pairs
or edges (vi,vj) such that vi,vj  V. V is further divided into

two disjoint subsets: 0 1 2{ , , ,..., }mP p p p p where P is a

set of processor nodes shown as circles in Figure 1; and

0 1 2{ , , ,..., }nQ q q q q where Q is a set of resource nodes

shown as boxes in Figure 1. A RAG is a graph bipartite in the
P and Q sets. An edge eij=(pi,qj) is a request edge if and only if
pi  P, qj  Q. The maximum number of edges in a RAG is
m  n. A node is a sink when a resource (processor) has only
incoming edge(s) from processor(s) (resource(s)). A node is
source when a resource (processor) has only outgoing edge(s)
to processor(s) (resource(s)). A path is a sequence of edges

1 1 1 2 1 1{(,),(,),..., (,), (,)i j j i ik jk js isp q q p p q q p  

where E  . If a path starts from and ends at the same node,

then it is a cycle. A cycle does not contain any sink or source

nodes.

The focus of this paper is deadlock detection. For our virtual

machine resource allocation on heterogeneous distributed

platforms deadlock detection implementation, we make three

assumptions. First, each resource type has one unit. Thus, a

cycle is a sufficient condition for deadlock [3]. Second,

satisfies request will be granted immediately, making the

overall system expedient [3]. Thus, a processor is blocked only

if it cannot obtain the requests at the same time.

All proposed algorithms, including those based on a RAG,

have O(mn) in the worst case.. In this paper, we propose

deadlock detection algorithm with O(min(m,n)) based on a

new matrix representation. The proposed virtual machine

resource allocation on heterogeneous distributed platforms

deadlock detection algorithm makes use of ism and can handle

multiple requests/grants, making the proposed algorithm faster

than the O(mn) algorithm [16], [17].

IV. DEADLOCK DETECTION FOR RESOURCE ALLOCATION IN

HETEROGENEOUS DISTRIBUTED PLATFORMS

In this section, we will first introduce the matrix

representation of a deadlock detection problem. The algorithm

is based on this matrix representation. Next, we present some

essential features of the proposed algorithm. This algorithm is

, and thus can be mapped into a cloud architecture which can

handle multiple requests/grants simultaneously and can detect

multiple deadlocks in linear time, hence, significantly

improving performance.

A). Matrix Representation of a Deadlock Detection Problem

In graph theory, any directed graph can be represented with

an adjacency matrix [3]. Thus, we can represent a RAG with

an adjacency matrix. However, there are two kinds of edges in

a RAG: grant edges, which point from resources to processors,

and request edges, which point from processors to resources.

To distinguish different edges, we designate elements in the

adjacency matrix with three different values as shown in

Figure 2. This Figure shows the matrix representation of a

given system with processors p1, p2,…,pi,...,pm and resources

q1, q2,…,qj,…,qn. The leftmost column is the processors label

column. The top row is the resources label row. If there is a

request edge (pi,qj) in the RAG, corresponding element in the

matrix is r. If there is a grant edge (qi,pj) in the RAG. The

corresponding element in the matrix is g. Otherwise, the value

of the element is 0.

This variant of the adjacency matrix of a RAG (V,E) can

be defined formally as follows:

[]m n

ijM m  , (1 im, 1 j n), where m is the

number of processors and n is the number of resources.

mij {r,g,0}

mij = r , if f (,)i jp q E 

mij = g , if f (,)i jp q E 

mij = 0 , if otherwise

This matrix provides a template able to represent request
and grant combinations. Note that each resource has at most
one grant, that is, there is at most one g in a column at any
time. However, there is no constraint on the number of
requests from each processor.

If there are deadlocks in a system, there must be at least one
cycle in its RAG, that is, there must be a sequence of edges,

1 1 1 2 1 1
{(,),(,),..., (,),(,),..., (,),(,)}

k k k k s s si j j i i j j i i j j ip q q p p q q p p q q p




,where E  . In the matrix representation, this cycle is

mapped into a sequence of matrix elements

1 1 2 1 1 1
{ , ,..., , , , }

k k k k s s si j i j i j i j i j i jm m m m m m


 where are

requests(r’s) and 2 1 3 2 1 1
, ,..., ,...

k k si j i j i j i jm m m m
 are grants

(g’s). By this fact, we can detect deadlocks in a system with its
adjacency matrix. Next, we will present the new detection
algorithm.

Ha Huy Cuong Nguyen and Van Son Le 4

B). Deadlock Detection Algorithm

On this basis of the matrix representation, we propose a
deadlock detection algorithm. The basic idea in this algorithm
is iteratively reducing the matrix by removing those columns
or rows corresponding to any of the following cases:

a row or column of all 0’s;

a source (a row with one or more r’s but no g’s, or a
column with one g and no r’s);

a sink (a row with one or more g’s but no r’s, or a column
with one r’s but no g’s);

This continues until the matrix cannot be reduced any
more. At this time, if the matrix still contains row(s) or
column(s) in which there are non-zero elements, then there is
at least one deadlock. Otherwise, there is no deadlock. The
description of this method is shown in algorithm.

Algorithm: Deadlock Detection Algorithm

 Input:

*j(CPU)

iP ;

*j(RAM)

iP from IaaS provider i;

 Step 1: calculate optimal resource allocation to

provide VM.
* *(CPU) (RAM)

, { };
j j

x x Max Ui i IaaS


 Step 2: Computes new resource

 If
(CPU) ()

,
i

j j RAMCPU RAM
C x C xj i j ii

   then

(1) () ()
max{ , ()};

(1) () (RAM)
max{ , ()};

n n j CPUCPU CPU CPU
r r n x Cj j i ji

n n jRAM RAM RAM
r r n x Cj j i ji






  


  

Return new resource
(1)nCPU

rj


;

(1)nRAM
rj



Else

Step 3: Initialization

 [] ,
m n

M mij




Where mij {r,g,0}, (i =1, …,m and j =1,…,n)

 mij = r if  (pi,qj)  E.

 mij = g if  (pi,qj)  E.

 mij = 0, otherwise.

 { | , 0};m m M mij ij ij   

Step 4: Remove all sink and sources

 DO {

 Reducible = 0;

 For each column:

(, , { , 0}){

{ | 1, 2, 3, ..., },

1;

} {}

if m k k i m mij ijkj

m j mijcolumn

reducible

else

   

    



 For each row:

(, , { , 0}){

{ | 1, 2, 3, ..., },

1;

} {}

;

} (0);

if m k k i m mij ijkj

m j mrow ij

reducible

else

rowcolumn

UNTIL reducible

   

    



   



 Step 5: Detect Deadlock

 If (0 ), then return deadlock exits.

 If (0 ), then return no deadlock exits.

 Output: new resource
(n 1)CPU

r
j


;

(n 1)RAM
r
j



The following example illustrates how the algorithm works,
in each iteration of this algorithm; at least one reduction can be
performed if the matrix is reducible. Hence, it takes at most
min(m,n) iterations to complete the deadlock

C). Our Algorithm to Avoidance Deadlock

In heterogeneous distributed platforms if there are n
processes for each processor and m resources the algorithm
will be as follow:

Step 1: In any of the processes of a processor using one of
the resources in a specific time period (i.e., the period-1) then
no other requirements for the resources will be allocated for
the specified time period.

Step 2: The resource occupied can be used by other
processes within a specific time period (i.e., the period-2) only
after the release by the process of step 1 by approximately
time-1. During the period-2 has no other process will be able
to use that resource.

Step 3: In the same way, a process of the processor is
determined in step 2 can use an O resources in a specific time
period (i.e., the period-3) in the absence the other will be able
to use that resource.

Step 4: The resources that were occupied in step 3 can be
used by other processes defined in step 1 in a specific time
period (i.e., the period-4) only after released by the process of
step 3 by approximately-3. During the period-4 has no other
process will be able to use that resource.

D). Proof of the Correctness of DDA

Example 2 State matrix representation

The system in state shown in Fig. 2 (a) can be representation
in the matrix form show in (b). For the sake of better
understanding, we will describe it in the matrix representation,
shown in Fig. 3 (c) from now on.

International Journal of Computer Science and Telecommunications [Volume 6, Issue 2, February 2015] 5

p2

p1

p3

p5

p6
p4

q5

q4

q6

q3

q2

q1

=> Mij =

0 00

00 00

0000 0

000

0000

00000

rg r

rg

g

rgr

rg

r

 
 
 
 
 
 
 
 
 

=>

Fig. 2. Matrix representation example

Step 1 (a)

Step 2 (b)

 Step 3 (c)

Fig. 3. A sample sequence of reduction steps and deadlock detection

V. SIMULATION RESULTS AND ANALYSIS

In this paper, resource allocation method based on

improved DDA has been validated on CloudSim, the platform

is an open source platform, we used Java language to program

algorithm implementation class. Experiments give n tasks, by

CloudSim’s own optimization method and improved

algorithm.

The first case generated the request using a normal

distribution of arrival time. This determines the performance

of the algorithms to handle the arrival of tasks in an

exponentially increasing number of request. There were up

100 request generated and also these requests were assigned

in randomly.

Fig. 4. Message overheads by network latencies using the generated requests

based on arrival time in normal distribution

The comparative analysis of experimental result can be seen

in many times, after task execution, although there were

individual time improved DDA algorithm response time was

not significantly less than optimal time algorithm, in most

cases, improved algorithm is better than the optimal time

algorithm, thus validated the correctness and effectiveness.

VI. CONCLUSION

Deadlock is a highly unfavorable situation that can occur in

any multiprocessor system. The occurrence of a deadlock can

cripple parts of a multiprocessor system. It is necessary to

develop control policies that avoid deadlocks by restricting the

freedom in resource allocation. In this paper we have presented

a fast deadlock detection and deadlock avoidance methodology

that is easily applicable to heterogeneous distributed platforms.

Once a deadlock is detected, it must be somehow resolved. In

a heterogeneous distributed platforms large problem is

distribute among the processors (such as among the computers

of distributed computing system or among the computers of

parallel computing system etc.) to make it cost effective and

less time consuming instead of a computer system with single

processor. But since the large program is divided into smaller

programs chances of occurring deadlock becomes high. So, it

is very necessary to apply deadlock avoidance method in

multiprocessor system. In this paper we have also provided the

algorithm which simple and easy to understand. We can also

implement this method everywhere in our computational life

as needed.

REFERENCES

[1]. Ha Huy Cuong Nguyen, Van Son Le, Thanh Thuy

Nguyen, “Algorithmic approach to deadlock detection for

resource allocation in heterogeneous platforms”, Proceedings

of 2014 International Conference on Smart Computing 3 -5

November, Hong Kong, China, pp. 97–103.

Ha Huy Cuong Nguyen and Van Son Le 6

[2]. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R.,

Konwinski, A., Lee, G., Patterson, D.,Rabkin, A., Stoica, I.,

Zaharia, M.: A view of cloud computing. Commun.

ACM53(4), 50–58 (2010)

[3]. M. Andreolini, S. Casolari, M. Colajanni, and M. Messori,

“Dynamic load management of virtual machines in cloud

architectures,” in CLOUDCOMP, 2009.

[4]. P. Shiu , Y. Tan and V. Mooney "A novel deadlock detection

algorithm and architecture", Proc. CODES 01, pp.73 -78,

(2001).

[5]. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.:

A break in the clouds: towards a cloud definition. SIGCOMM

Comput. Commun. Rev. 39(1), 50–55 (2009)

[6]. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,

Konwinski, A., Lee, G., Patterson, D.,Rabkin, A., Stoica, I.,

Zaharia, M.: Above the Clouds: A Berkeley View of Cloud

Computing.Technical Report No. UCB EECS-2009-28,

University of California at Berkley, USA, Feb 10, 2009

[7]. Kaur P.D., Chana I.: Enhancing Grid Resource Scheduling

Algorithms for Cloud Environments. HPAGC 2011, pp. 140–

144, (2011)

[8]. Vouk, M.A.: Cloud computing: Issues, research and

implementations. In: Information Technology Interfaces. ITI

2008. 30th International Conference on, 2008, pp. 31–40,

(2008)

[9]. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware

consolidation for cloud computing. Cluster Comput. 12, 1–15

(2009)

[10]. Berl, A., Gelenbe, E., di Girolamo, M., Giuliani, G., de Meer,

H., Pentikousis, K., Dang, M.Q.:Energy-efficient cloud

computing. Comput. J. 53(7), 1045–1051 (2010)

[11]. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.:

Environment-conscious scheduling of HPC applications on

distributed cloud-oriented data centers. J Distrib Comput.

Elsevier Press,Amsterdam, (2011)

[12]. Warneke, D., Kao, O.: Exploiting dynamic resource allocation

for efficient data processing in the cloud. IEEE Trans.

Distrib. Syst. 22(6), 985–997 (2011).

[13]. Wu, L., Garg, S.K., Buyya, R.: SLA-based Resource

Allocation for a Software as a Service Provider in Cloud

Computing Environments. In: Proceedings of the 11th

IEEE/ACM International Symposium on Cluster Computing

and the Grid (CCGrid 2011), Los Angeles, USA, May 23–26,

(2011).

[14]. Addis, B., Ardagna, D., Panicucci, B.: Autonomic

Management of Cloud Service Centers with Availability

Guarantees. 2010 IEEE 3rd International Conference on Cloud

Computing, pp 220–207, (2010).

[15]. Abdelsalam, H.S., Maly, K., Kaminsky, D.: Analysis of

Energy Efficiency in Clouds. 2009 Com-putation World:

Future Computing, Service Computation, Cognitive, Adaptive,

Content, Patterns, pp. 416–422, (2009).

[16]. Yazir, Y.O., Matthews, C., Farahbod, R.: Dynamic Resource

Allocation in Computing Clouds using Distributed Multiple

Criteria Decision Analysis. IEEE 3rd International Conference

on Cloud Computing, pp. 91–98, (2010).

[17]. M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova,

“Resource allocation algorithms for virtualized service

hosting platforms,” JPDC, vol. 70, no. 9, pp. 962–974, (2010).

[18]. S. Banen, A. I. Bucur, and D. H. Epema, “A measurement-

based simulation study of processor co-allocation in multi-

cluster systems,” in JSSPP, pp. 184–204, (2003).

[19]. A. Buttari, J. Kurzak, and J. Dongarra, “Limitations of the

PlayStation 3 for high performance cluster computing,” U

Tenn., Knoxville ICL, Tech. Rep. UT-CS-07-597, (2007).

[20]. D. P. Mitchell and M. J. Merritt, “A distributed algorithm for

deadlock detection and resolution,” in Proc.ACM Symposium

on Principles of Distributed Computing, pp. 282–284,1984.

[21]. A.D.Kshemkalyani, and M.Singhal. (1999), A One-Phase

Algorithm to Detect Distributed Deadlocks in Replicated

Databases, IEEE Trans. Knowledge and Data Eng., vol. 11,

No. 6, pp. 880-895.

[22]. RajkumarBuyya, Chee Shin Yeo, and Srikumar Venugopal,

Market-Oriented Cloud Computing: Vision, Hype, and Reality

for Delivering IT Services as Computing Utilities,

International Conference on High Performance Computing,

2008.

[23]. Bondy JA, Murty USR (2008) Graph theory. Springer

graduate texts in mathematics. Springer, Berlin. ISBN 978-1-

84628-970-5.

[24]. Fournier JC (2009) Graph theory and applications. Wiley,

New York. ISBN 978-1-848321-070-7.

[25]. Greg N. Frederickson, Fast algorithms for shortest paths in

planar graphs, with applications, SIAM Journal on Computing,

v.16 n.6, p.1004-1022.

