
International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 49

Journal Homepage: www.ijcst.org

Sharang Telkikar
1
, Shreyas Talele

1
, Siddharth Vanarse

1
 and Amit Joshi

1

1
Department of Computer and IT Engineering, College of Engineering, Pune-411005

Abstract– Load balancing is a computer networking method

which is used to distribute the load across computer clusters or

multiple computers, central processing units to achieve optimal

resource utilization, maximize throughput, minimize response

time and prevent overload. There are various methods to balance

the load. This paper discusses the design and implementation of a

policy engine to dynamically balance the load over a network,

using live migration feature of KVM. The goal is to provide a

provisioning monitor that can dynamically make decisions about

migration of heavily/lightly loaded virtual machines.

Index Terms– Load Balancing, Virtual Machine, Hypervisor

and QEMU-KVM

I. INTRODUCTION

A. Load Balancing

T is necessary to understand load to understand Load

balancing [1]. Load may be described as number of

processes running in queue, load average, CPU utilization,

memory utilization, and amount of free CPU time etc. or any

combination of the above parameters. Load balancing can be

done among interconnected computers in a network or among

individual processors in a parallel machine. Load balancing is

nothing but the efficient allocation of tasks or jobs to

processors for increasing overall processor utilization and

throughput.

Actually load balancing is done by VM migration or process

migration. But to balance the load it is necessary to measure

the load of individual node in network or in a distributed

environment. For deciding the load on a node, above

mentioned factors in a definition of load are calculated. After

calculating the load of node individually, nodes are marked as

underloaded/free and overloaded/busy node.

Now in order to balance the load, VM is transferred from

heavy node to lightly loaded node. In this way load can be

balanced in a network of work station or in a distributed

environment.

B. QEMU

QEMU is a generic and open source machine emulator and

virtualizer.

When used as a machine emulator, QEMU can run OSes

and programs made for one machine (e.g., an ARM board) on

a different machine (e.g., your own PC). By using dynamic

translation, it achieves very good performance.

When used as a virtualizer, QEMU achieves near native

performances by executing the guest code directly on the host

CPU. QEMU supports virtualization when executing under the

Xen hypervisor or using the KVM kernel module in Linux.

When using KVM, QEMU can virtualize x86, server and

embedded PowerPC, and S390 guests.

II. VIRTUALIZATION

A. Hypervisor

The hypervisor is a program that gives the feature to run

different virtual machines on single computer. Here they share

single hardware host. Each guest system seems to have its own

processor and memory. There are two types of hypervisors:

1) Type 1 also called as native hypervisors run directly on

the host’s hardware with VM resources provided by the

hypervisor. This offers higher level of virtualization

efficiency. Here guest operating system runs on another level

above the hypervisor. This represents the classic

implementation of virtual machine architectures. Usually these

hypervisors come with security and resource management.

Examples of type 1 hypervisor are Microsoft Hyper-V, Citrix

Systems XenServer.

2) Type 2 (or hosted) hypervisors run on operating system

of the host to provide virtualization services such as memory

management, I/O services. These hypervisors are generally

used where less efficiency is tolerable generally on client side.

KVM and VirtualBox are examples of Type 2 hypervisors.

B. Kernel-based Virtual Machine (KVM)

It is a virtualization infrastructure for the Linux kernel.

KVM [8] supports native virtualization on processors with

hardware virtualization extensions. It is full virtualization

solution for Linux hardware having virtualization extension.

We can run different virtual machines using OS images. Here

each VM has private network card, graphics adaptor and disk.

By itself, KVM does not perform any emulation. Instead, a

user space program uses the /dev/kvm interface to set up the

I

Efficient Load Balancing using VM Migration by

QEMU-KVM

ISSN 2047-3338

Sharang Telkikar et al. 50

guest VM’s address space, feeds it simulated I/O and maps its

video display back onto the host’s.

C. VM Migration

Another way to balance load in a distributed system is to

transfer a VM form heavily loaded node to lightly loaded

node. VM migration is simply moving the running VM on a

physical machine (source host) to another physical machine

(target host) without disturbing any active network

connections, while the VM is running on the source host, even

after the VM is moved to the target host. It is considered live,

since the original VM is running, while the migration is in

progress. A guest can be migrated between any hosts.

Naturally, a 64-bit guest can only be migrated to a 64-bit host,

but a 32-bit guest can be migrated to 32 or 64 bit host.

D. Virt-Manager

It is a desktop tool for managing virtual machines. It

provides the ability to control the lifecycle of existing

machines. Virtual Machine Manager allows users to:

1. Create, edit, start and stop VMs

2. See performance and utilization statistics for each VM

3. View and control of each VM’s console

4. Use KVM, Xen or QEMU virtual machines, running

either locally or remotely.

5. View all running VMs and hosts and their live

performance and resource utilization statistics.

E. Network File System (NFS)

It was developed to allow machines to mount a disk

partition on a remote machine as if it were a local disk. It

allows user to access files over a network as if local storage is

accessed. It allows for fast, seamless sharing of files across a

network. When VM is moved from one host to another then

host write to the same image file.

III. IMPLEMENTATION

A. Load Estimation and Information Exchange Policy

Traditionally, the load of a node at given time was described

simply by CPU queue length. CPU queue length refers to the

number of processes which are either executing or waiting to

be executed. The processes which are waiting for other system

resources are not included. So the CPU queue length does not

reflect directly memory utilization. In the proposed algorithm,

CPU utilization and memory utilization are used. The system

statistics such as CPU utilization and memory utilization of a

node changes during the life of processes. For example, the

CPU utilization may be high in one second but low in the next

second. Therefore it is reasonable to average these statistics

over several seconds. In the proposed algorithm, CPU

utilization (cpu u) and memory utilization (mem u) are

considered as load information parameters to measure load of

a node. The following equation is used to calculate each

parameter

t
avgl

pt)+....+p2+(p1
)(, where

1. l(avg) is the average load metric of the cpu utilization over

the previous t seconds for a particular node.

2. p is the information parameter of load. (cpu utilization).

3. p1,…,pt is the value cpu utilization in a previous one

second interval.

 4. t is the number of time intervals.

B. Load classification

The first step in the process transfer determination is to

classify the load at each of the nodes [5]. The CPU utilization

is divided into three bands: Lightly loaded, moderately loaded

and heavily loaded based on the threshold value.

The calculation of the threshold for these parameters is done

as follow:

The first step in the process transfer determination is to

classify the load at each of the nodes. The CPU utilization is

divided into three bands: Lightly loaded, moderately loaded

and heavily loaded based on the threshold value.

The calculation of the threshold for these parameters is done

as follows:

Calculate load average of each parameter (cpu u) over all

nodes. The equation is:

n
avgl

pn)+....+p2+(p1
)(, where

1. l(avg) is the average load of a given parameter over all

nodes.

2. p is the parameter of load cpu utilization

3. l1, …, ln are the current load of cpu utilization of each

node derived by load estimation policy

4. n is the number of nodes.

And calculation of moderate band:

The threshold is the average of CPU usage of all hosts. The

moderately loaded band is created by adding and subtracting a

value, which is the difference between the average and the

mean of the maximum and minimum of the CPU usage of the

hosts or of 20 percent width, across the threshold, whichever

is maximum.

After the calculation of three bands classification is done as

diagram (Fig. 1):

Fig. 1. Each node is assigned one of three regions. Darker region indicates

more load on node

International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 51

C. Migration Vector Calculation

Now for the nodes that are not in moderate region, load

balancing is to be applied .This is achieved by migrating

process or VM from heavily loaded node to lightly loaded

node so that all the nodes lie in the moderate region. Both the

systems try to achieve a moderately loaded band. The value is

calculated by taking the difference between the threshold and

the current CPU utilization of the lightly loaded node.

D. Migration Policy

After calculating migration vector we need to take into

consideration cpu utilization of all the vm’s that are running

on heavy node and the cpu utilization of those processes that

are invoked by DMTCP. Now the process or VM whose cpu

utilization is closer to the migration vector calculated in above

phase should be migrated.

If the choice is VM then QEMU-KVM’s live migration

feature is used. The libvirt api virsh command is used for this

live migration. And if choice is process then that process is

checkpointed and that process is migrated on light node using

checkpoint restart feature of DMTCP.

Following flowchart (Fig. 2) shows the description of policy

of program execution.

In this architecture, one central host is shown which has both

facilities of VM migration using QEMU-KVM. Thus it is

connected to all the other nodes in given cluster.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS

For the assessment of performance of proposed algorithm,

Virtual platform: KVM and storage system: NFS was used.

QEMU-KVM and Virtual Machine Manger were installed to

manage and migrate VM. DMTCP tool is used to checkpoint

the process and migrate it to another node. Three client

machines of configuration: Intel Core i5-2400 3.10 GHz * 4

and Memory: 3 GB were used on which libvert, dmtcp, nfs

server,qemu-kvm packages were installed.

By applying proposed algorithm we got following results

(CPU Utilization in percentage). Table 1 to Table 4 shows the

nodes and their corresponding CPU utilization after the three

iterations of the algorithm. Followed by Fig. 4 which shows

the variation in CPU utilization of nodes and at the end all lie

in moderate region.

By using the formulae given in load estimation, load

classification, calculation of moderate band, lower and upper

limit of moderate band is calculated. Node 1 is in moderate

band, Node 2 is in light band and Node 3 is in heavy band.

Hence VM N3V3 (according to migration vector calculation)

is migrated from Node 3 to node 2 as shown in Table 2.

This process is repeated until all the nodes fall in moderate

band. In Table 2, Node 1 is in moderate band, Node 2 is in

heavy band and Node 3 is in light band. Hence VM N2V2

(according to migration vector calculation) is migrated from

Node 2 to Node 3 as shown in Table 3.

Now in Table 3, Node 1 is in moderate band, Node 2 is in

heavy band and Node 3 is in light band. Hence VM N2V3 is

migrated from Node 2 to Node 3 as shown in Table 4.

Fig. 2. Flowchart of different phases of algorithm

Fig. 3. Architecture containing cluster nodes and central host [4]

Table 1. State of VMs and Processes on Nodes

Nodes
VM/Process

Name

CPU

Utilization on

respective
Node

CPU

Utilization of

Node

Node 1

N1V1

N1V2

N1V3

51.50

11.02

3.00

46.40

Node 2

N2V1

N2V2

N2V3

47.52

7.23

20.06

21.09

Node 3

N3V1

N3V2

N3V3

96.67

5.16

25.62

63.42

Sharang Telkikar et al. 52

Table 2. State of VMs and Processes on Nodes

Nodes
VM/Process

Name

CPU

Utilization on

respective
Node

CPU

Utilization of
Node

Node 1

N1V1

N1V2

N1V3

50.28

12.32

2.47

45.20

Node 2

N2V1

N2V2

N2V3

N3V3

49.60

6.59

22.25

23.46

55.27

Node 3

N3V1

N3V2

96.03

4.24

28.69

Table 3. State of VMs and Processes on Nodes

Nodes
VM/Process

Name

CPU Utilization

on respective
Node

CPU

Utilizatio

n of

Node

Node 1

N1V1

N1V2

N1V3

50.28

12.32

2.47

45.20

Node 2

N2V1

N2V2

N2V3

N3V3

49.60

6.59

22.25

23.46

55.27

Node 3

N3V1

N3V2

96.03

4.24

28.69

Now in Table 4, all the nodes lie in moderate band and

hence load balancing is achieved.

Figure 4 shows that after applying algorithm, dynamic load

balancing is achieved as all nodes lie in moderate region.

Now the above depicted algorithm can be applied again

after waiting for some fixed time margin.

Table 4. State of VMs and Processes on Nodes

Nodes
VM/Process

Name

CPU

Utilization on

respective
Node

CPU

Utilization
of Node

Node 1

N1V1

N1V2

N1V3

51.63

10.62

3.23

44.17

Node 2
N2V1

N3V3

46.21

31.43

39.73

Node 3

N3V1

N3V2

N2V2

N2V3

95.60

2.57

2.31

24.70

42.39

Fig. 3. Variation in CPU utilization of nodes

V. CONCLUSION AND FUTURE WORK

This proposed algorithm gives an intelligent decision to

migrate VM and dynamically balances the load. Initially all

the nodes in the network were imbalanced. After applying the

algorithm, all nodes fall in moderate band. Thus load

balancing is achieved.

 In this algorithm, we migrate VM that is running on node

itself. Further load balancing can be improved by introducing

process migration between different virtual machines running

on different nodes. This will improve performance of dynamic

load balancing.

 Here we mainly focused on CPU utilization parameter, but

we can also consider other parameters such as CPU queue

length, size of process, dependency on host and time required

for migration.

REFERENCES

[1]. Vatsal Shah, Asst. Prof. Kanu Patel, “Load Balancing

Algorithm by Process Migration in Distributed Operating

System,” IRACST- International Journal of Computer Science

and Information Technology & Security ISSN: 2249-9555 Vol.
2, No.6, December 2012.

[2]. Rohan Garg and Komal Sodha and Gene Cooperman,” A

Generic Checkpoint-Restart Mechanism for Virtual Machines”
http://arxiv.org/abs/1212.1787v1.

[3]. Vatsal Shah, Viral kapadia, “Load Balancing Algorithm by

Process Migration in Distributed Operating System,”

International Journal of Soft Computing and Engineering
(IJSCE), ISSN: 2231-2307, Volume-2, Issue-1, March 2012.

[4]. Tal Maoz, Amnon Barak, Lior Amar K. Elissa, “Combining

Virtual Machine Migration with Process Migration for HPC on

Multi-Clusture Grids,” 2008 IEEE International Conference on
Cluster Computing 978-1-4244-2640-9/08

[5]. Ke Yang, Jianhua Gu,Tianhai Zhao,Guofei Sun, “An

Optimized Control Strategy for Load Balancing based on Live

Migration of Virtual Machine,” 2011 Sixth Annual ChinaGrid

Conference, 978-0-7695-4472-4/11, DOI
10.1109/ChinaGrid.2011.28.

[6]. Anja Strunk,“Cost of Virtual Machine Live Migration : A

Survey,” 2012 IEEE Eighth World Congress on Services, 978-
0-7695-4756-5/12, DOI 10.1109/SERVICES.2012.23.

http://arxiv.org/abs/1212.1787v1

International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 53

[7]. Amit Joshi,Akshay Chandak,Krishnakant Jaju, “Dynamic Load

Balancing of Virtual Machines using QEMU-KVM”

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012.

[8]. KVM Kernel Based Virtual Machine Red Hat, Inc. 2009

