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Abstract—Recently, researchers have shown an increase 

interest in Sequences Alignment Problem (SAP), in which the 

properties of new DNA and Protein sequences are detected by 

comparing them with well-known reference sequences defined in 

genetic databanks. Considerable amounts of literature have been 

published on SAP. However, less attention has been paid to the 

revision and classification of current techniques in SAP. Thus, 

the purpose of this paper is to review recent trends in 

implementing local SAP in a parallel architecture. The 

classification is based on Distributed Memory and Shared 

Distributed Memory architectures for different Dynamic 

Programing and Smith-Waterman based algorithms. The 

literature are studying and evaluating in order to highlight their 

strength and weaknesses. 

 

Index Terms—Sequences Alignment, Shared Distributed 

Memory, DNA, Protein and Parallel Computing 

 

I. INTRODUCTION 

HE alignment of DNA and Protein sequences has received 

much attention in recent years due to the vital information 

may infer from new sequences defined and stored previously 

in genetic databanks. Furthermore, deciphering DNA 

sequences help to elucidate genetic information from any 

given biological system, which known as Next Generation 

Sequencing (NGS) [1]. However, traditional sequences 

alignment algorithms are computationally expensive [2], [3] or 

inaccurate in their results [4], [5]. Usually, complex 

algorithms always lead to computational overhead using a 

single processor, which can be minimized by invoking multi-

processor and multi-core platforms [6]. Develop robust 

algorithms to consider these complications in a reasonable 

time with accurate results would be highly concerned for NGS 

researchers. Furthermore, the dramatic increasing of bio-data 

such as DNA, RNA, proteins, and human genome involves 

adopting powerful techniques to analysis new sequences based 

on record sequences in genetic databanks. 

On the other hand, genetics databanks work closely with 

bioinformatics institutions to establish bioinformatics projects, 

such as GenBank [7], [8] and Protein Data Bank in Europe 

(PDBe) [9], [10]. PDBe establishes a website responsible for 

maintaining the single worldwide repository of bio-

macromolecular structure data. It objectives are to handle the 

annotation of bio-data through a website, to be high-quality 

macromolecule resource provider, and to be expertise in 

determination techniques (X-ray, NMR and EM) by working 

with bio-community. Most of Molecular Biology Databases 

(MBD) includes information about DNA, RNA, and Proteins. 

It is also examine protein structures, prediction, and 

interaction. The majority of well-known biological databases 

are depicted in Figure 1. These databases are available online 

and cover various area of molecular biology [11]. The Listing 

of Molecular Biology Databases (LiMB) is database of 

databases aimed to employ a method manipulate molecular 

biology information and related databases by providing a 

platform for designing automatic access to distributed 

biological data sets. 

The significant increase of Petabytes of biological datasets 

makes centralized storage techniques inconvenient [12]. There 

remains a need for distributed storage techniques providing 

high durability and flexibility for storing large datasets       

[13], [14]. 

 P-found, is a project provides tools to support comparison 

and analysis of large distributed simulation datasets [15]. 

 

Fig. 1. Noted Genetic-databases dedicated in DNA and Protein problems 
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The project includes two storages, primary dataset storage 

for protein simulation and data warehousing, which contain 

information about protein properties and their transformations. 

It is aimed to solve the problems of protein simulations by 

presenting data repository including all the simulated datasets 

and results. Unfortunately, network lateness causes delays in 

reading and writing for clients when using distributed storage 

media. This arbitrary failure arises from synchronization in 

client with others and servers.  

An alternative approach is developed by Storage@home 

[16], a distributed storage infrastructure developed to solve the 

problem of backing up and sharing petabytes of DNA and 

Protein findings using a distributed model of volunteer hosts. 

The system includes many functions derived-by policy engine, 

storage clients, the metadata server, the registration server, and 

identity server. However, many problems arise in the project 

ranging from slow upload, often-disconnected hosts. The 

challenging issue is to discover an algorithm considers store 

and retrieve data efficiently. Some distributed storage 

algorithms such as ABD algorithm [17], SBQ-L algorithm 

[18], and ACKM algorithm [19] try to solve the problem of 

synchronization and client’s corruptions. However, these 

algorithms overlook analyzing procedures to store the data and 

concentrate on transferring data between base objects. 

Despite of all storage problems in genetic databanks, the 

issue that has grown an importance in light of recent years is 

the sequences alignment. It is becoming increasingly difficult 

to ignore the importance of aligning DNA and Protein 

sequences. Sequence alignment problem is the first step in 

detecting homologous sequences, where the evolutionary 

relationship may infer by comparing sequences. The central 

problem in sequence alignment is the comparisons of long 

sequence length, wherein restricted memory is prohibitive and 

impractical. This paper mainly reviews the sequence 

alignment problem and their implementations in parallel 

platform. 

The rest of this paper is organized as follows. Section 2 

explains dynamic and heuristics methods used in sequences 

alignment problems. In section 3, variant algorithms based on 

dynamic programming methods are discussed, while, in 

section 4, SW-based algorithms for implementing local 

sequence alignment are addressed. Section 5 concludes the 

paper with a discussion on the literature contributions. 

II. THE SEQUENCES ALIGNMENT PROBLEM 

In sequence alignment, compared sequences are arranged 

on top of each other in rows wise, while match letters 

appeared in sequential columns. Similarity between two 

sequences can be optimizing by inserting spaces and deleting 

letters at different places. Optimal alignment is achieved via 

sets of operations and steps such as matches, mismatches, 

substitutions or replacements, insertions, and deletions 

(insertions and deletions always abbreviate as indels). These 

operations known as mutation events, which in turn change the 

first sequence into the second [20]. While, the edits distance 

defines the number of mutation events involve to transform 

sequences. Matches coincide with similar letters while 

mismatches or substitutions coincide with different letters. 

Insertion and deletions (also defined as a gap operation) 

denotes by coinciding to presence or absence of match letter in 

another sequence. Typical indels in a sequence implies gaps or 

empty reigns in the other sequence [21].  

In aligning two sequences, some regions show high 

similarity; thus a technique for quantify the best alignment is 

needed. The striking feature is to assign a score for each 

alignment. The alignment with the highest score is then 

recognized as an optimal score. However, optimal alignment 

in similarity detection between sequences is obtained via 

scoring scheme. Scoring scheme includes a substitution matrix 

as well as a gap penalty [22]. Substitution matrix is used to 

calculate matches and mismatches regions, while a gap 

penalty scores insertion and deletion events. The alignment of 

sequences is the sum of individual event scores. In literature, 

different substitution matrix and gap penalty are used in the 

scoring scheme. The notion behind scoring systems is to 

reduce the number of mutations events needed to transform 

one sequence into another. In a biological viewpoint, aligning 

two sequences is the procedures of minimizing the total 

number of evolutionary changes estimated by an alignment. 

While, in a computational viewpoint, it is equivalent to 

maximizing the score of similarity between two sequences. 

Thus, finding an optimal score involves recording the best 

alignment with the maximum score when calculating a 

substitution matrix and a gap penalty in a scoring system.  

A. Dynamic Programming Methods  

In recent years, there has been an increasing amount of 

literature on Dynamic Programming (DP) implementation for 

sequence alignment problems. Needleman and Wunsch [2], is 

the pioneer algorithm in global sequence alignments. It mainly 

used in aligning pairwise of protein sequences; however, it can 

be used to align DNA sequences as well. The algorithm places 

two sequences in the matrix S of two dimension (m×n), where 

m and n represent the number of nucleotides in any two 

sequences. It is designed to compare sequences as a whole, 

while Smith and Waterman [3] (SW) algorithm identifies 

homologies subsequences among sets of long sequences by 

considering optimal local pairwise alignments between two 

sequences. In SW algorithm, sequences are compared using 

two dimensional matrices, where the values filled in the 

matrix using different methods such as wave-front [23]. 

Optimal alignment is obtained by considering scoring scheme 

including matches, mismatches, gaps, and substitution matrix. 

The results are obtained using a trace-back procedure to 

recover the best local alignment. Gotoh [24], improves SW 

algorithm using affine gap weight for large sequences. The 

algorithm is assumed to found the minimum cost of aligning 

two sequences. An alternative approach developed by Nordin, 

et al. [25] in five phases include query initialization, patterns 

generating, pattern’s scanning, ranking, and optimal local 

alignment. The model considers sequences with highest exact 

matching scores are the most similar to the query sequence. 

However, many stages of the proposed algorithm require a 
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huge amount of spaces to store results in every stage, which is 

a source of wasting time. 

Linear space offers a mean of enhancing or improving the 

space complexity in similarity detections for homologous 

sequences. Hirschberg [26], a pioneered in linear space 

implementation for sequence alignment problems propose an 

exact algorithm calculating global alignment between two 

sequences M and N in quadratic time. The proposed approach 

split sequence M in the middle and generating subsequences 

M1 and M2, then calculates corresponding place for sequence 

N and generating subsequences N1 and N2. In such way, the 

alignment is solved in divide and conquer recursive manner. 

This recursion roughly doubles the execution time when 

compared with the original algorithm. Nevertheless, for long 

biological sequences, which would otherwise generate very 

huge similarity matrices, could be appropriate. 

In the sequence comparisons using DP, substitution matrix 

measures the rate of changing over a period for one residue or 

nucleotide in a sequence. Similarity between sequences 

depends on these rates, where the values of both characters are 

considered in scoring scheme. Two well-known substitution 

matrixes always are used in similarity detections, the Point 

Accepted Mutation (PAM) series and BLOck SUbstitution 

Matrix (BLOSUM) families, see Figure 2. 

Substitution Matrix models 

BLOUSMPAM

70 etc... 62 80 etc...30

 

Fig. 2. Substation matrix models 

 

Point Accepted Mutation (PAM) Series: 

PAM series, is a substitution model for aligning two 

sequences to detect regions of similarity [27]. The core notion 

of the statically series is based on observed percent of 

evolutionary alteration of structurally and chemically similar 

amino acids when mutated in a large number of high-quality 

alignments. The evolutionary alterations occur between any 

two amino acids to a higher extent when they were similar in 

the structure and chemical proprieties, otherwise changes 

between less similar amino acids are assumed to be neglected. 

The percent of the evolutionary alteration of amino acids is 

constituted in building a scoring scheme for aligned amino 

acids. In PAM1, the rates of amino acid substitutions are 

occurred on an average 1% (one sequence mutated). While for 

further expectations rates on an average 2% the residues also 

mutated (PAM2 matrix), following this the matrices is 

calculated up to PAM250. 

BLOck SUbstitution Matrix (BLOSUM) Series: 

BLOSUM series proposed by Henikoff and Henikoff [28] is 

based on observation of distantly related sequences tend to be 

highly preserved regions or blocks intervened by less 

conserved stretches of sequences. In BLOSUM, probability 

values based on chemical proprieties for two residues are used 

in building substitution matrix for sequence alignment [29]. 

These values append to the matrix name such as BLOSUM62, 

which denote that two sequences are compared with less than 

62% similarity. BLOSUM80 obtains the best results when 

aligning closely related sequences than BLOSUM30, which 

suits for aligning highly diverged sequences.  

NW and SW algorithms obtain accurate results, however 

computationally they are very expensive. Next subsection 

discusses heuristic-based methods for sequence alignment 

problems, as it produced faster results than DP algorithms. 

B. Heuristic-Based Methods  

Heuristic-based methods for sequence alignment are based 

on filtering technique to enhance the sequence comparison 

speed. Where any algorithm scans reference sequences to find 

exact matches of subsequences in the query sequence, it casts 

down any irrelevant subsequences from searching for an 

optimal alignment.  

FASTA [4], is searched and matched for approximation of 

k-tuples of length k or subsequences of related sequences, to 

produce an optimal alignment. FASTA is based on the notions 

of related sequences have identical regions. The algorithm 

produces a hash table of all k-tuples, which detects in the 

query sequences. It then defines the location of all the k-tuples 

in the entire reference sequences and inputs them into the 

table. Each k-tuple in the query sequence is founded in the 

hash table and any matched regions of the query sequence 

allow FASTA to mark the matching cells in the matrix. These 

result in a matrix constituted to mark all points of local 

identity of length k.  

On the other hand, BLAST [5] uses words hitting (w) in 

searching for similarity between sequences by heuristically 

optimize a measure of sequence similarity known as the 

Maximal Segment Pair (MSP). The MSP defines identical 

length segments chosen from two sequences, and reported as 

the highest scoring segments in a query sequence. BLAST 

considers query sequence and reference sequences in genetic 

databanks to produce a list of high scoring words of a length 

(w) from the query sequence, and scanned for hits (matches) 

and the place of occurrence.  

An attempt to improve heuristic-based methods is proposed 

by Hudek and Brown [30], FEAST a pairwise local alignment 

program is based on probabilistic and prediction models. In 

the first stage, the program aligns subsequences pair by 

identified a homologous pair position and seeks forward and 

backward to produce an extension pairs. While the second 

stage is based on Hidden Markov Model (HMM) using 

different segments of an aligned sequences with different 

alignment parameter. Finally, an expectation maximization 
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training procedure incorporates extension and alignment 

algorithms.  

Zhang, et al. [31], Li and Homer [32], and [33] in a 

characterized work compare most of DP and HM sequences 

alignment algorithms including NW, SW, FASTA, and 

BLAST. The comparisons are aimed to highlight 

computations and space complexity in term of performance 

parameters for optimal alignment. These parameters include 

speed, running times, and affine gap penalties. As a result, 

there is a tradeoff between speed and sensitivity, BLAST and 

FASTA consider subsequences k-tuples and words to achieve 

higher speeds, while NW and SW produce optimal and 

accurate results, but scarifying with the speed in alignment. 

This paper set out mainly to review the parallel 

implementation of DP methods for local sequences alignment. 

Specifically, the paper discusses Distributed Memory (DM) 

and Shared Distributed Memory (SDM) architectures. In a 

DM system, individual processors associated with separated 

memory and a processor is only allows to access its own 

memory. DM architecture can be classifying 

into multicomputer and Massively Parallel Processor (MPP). 

On the other hand, SDM is a technique allowing users' 

processes to access shared data without using inter-process 

communications, see Figure 3. 

Parallel Architectures

Distributed Memory 

(DM)

Shared Distributed Memory 

(SDM)

Shared Memory 

(SM)

Multicomputer 

(MC)

Massively Parallel Processor 

(MPP)

Beowulf Cluster 

(BC)

Clusters Of Workstations 

(COW)  

Fig. 3. Classification of parallel architecture 

 

III. NON SW-BASED ALGORITHMS FOR SIMILARITY 

DETECTION USING DP METHODS 

A central problem of sequence similarity search focused on 

matched sequences in a two-dimension matrix and considering 

deletions, insertions, and gap penalty. This matrix requires 

complex computations in order to discover a biologically 

relevance between compared sequences. A key technique of 

growing interest to obtain an optimal alignment using DP 

methods is parallel platforms. In DP, the original problem is 

divided into sub-problems. The final optimal alignment is 

obtained by considering optimal result for every sub-problem, 

see Figure 4. The majority of earlier experiments for 

parallelizing sequence alignment are conducted to run jobs in 

a parallel with workload distribution methods. Different 

lengths of sequences are distributed among shared processors. 

After each job finished results, new sequence started reading 

at a different time. In most parallel algorithms global 

communicator is spilled to sub-communicators, each one reads 

in the genetic databases and broadcasts it inside group and 

then concatenate the output files that each process generates 

inside each sub-communicator and writes the result into one 

file [34].  

CPU

CPU

CPU

CPU

CPU

Problem Instructions

 

Fig. 4. DP methods distributed chunks of the problem to multiple processors 

 

  

Several attempts have been made to implement similarity 

detection problems on SDM architectures using multicore 

machines. However, one major drawback of this approach is 

the limitation of memory, which is definitely prohibitive for 

long sequences comparisons. Performing fast computation 

results and minimizing the total execution time alway 

representing major achievements for adopting multicore 

architectures. In multicore architecture, single processor(s) 

with independent Central Processing Units (CPUs) called 

"cores" play an important role in accelerating computing 

performance, especially for scientific computing, where 

complex computations required for solving one problem, it 

significantly reduced the execution time in the comparisons of 

small sequences length. Pipelined techniques offer a mean of 

communication techniques between two or more cores and/or 

processors for decomposing the computation workload in a 

multi-core architecture. While, a block parallel DP algorithm 

increases the amount of workloads for each shared core.  

A parallel approach for detecting homologies DNA 

sequences in multicore architecture is proposed by Sathe and 

Shrimankar [35] to increase data parallelism on sequences 

comparisons using OpenMP API with tiling techniques. The 

tiling technique in the algorithm is to optimize compiler and to 

improve data locality in parallel program in order to maximize 

parallelism and minimize synchronization. The algorithm 

scatters different size of chunks to different cores and obtained 

comparative results.  

A modified version with some changes is EasyPDP [36], a 

runtime system is based on Directed Acyclic Graphs (DAG) 

Data Driven Model for parallelizing DP algorithms on 

multicore and multiprocessor platforms. The DAG Data 

Driven Model consists of three modules: user application 

module, DAG pattern module and DAG runtime system 

module. The system handles fault tolerance, data partitioning, 
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dynamic data task allocation and scheduling, and thread 

creation.  

In contrast to SDM architectures, DM architecture is 

applicable approach to tackle long sequence comparisons. In 

DM, many processors with its own private memory 

incorporated to solve a complex phenomenon. Computational 

tasks distributed among shared processors while data 

exchanges through communication medium. An algorithm 

based on DM approach has a number of attractive features. 

However, communication complexity is a major challenging 

issue. Master-Worker is a widely common technique used in 

DM. In the parallelization of similarity detections algorithms, 

this technique achieves good performance. The notion behind 

this technique is to distributed workload as a chunk size 

between workers according to load balance algorithm [37]. 

The master calculates chunk size and obtains the tasks of the 

workers. MPI message-passing defines the communication 

procedures among different processors. Time delays, which 

occur between processors in the data communication is a 

crucial issue for measuring the efficiency of parallel 

computation [38]. 

IV. SW-BASED ALGORITHMS FOR SIMILARITY DETECTION 

PROBLEM  

Smith–Waterman algorithm (SW) detects similar regions 

between two sequences using DP techniques. The algorithm 

compares two sequences locally on a character-to-character 

level in order to define optimal local alignments and to 

discover subsequence that are potentially similar. On 

sequential machines, SW is an expensive algorithm. However, 

parallel architecture paves the way for a powerful method to 

overcome sequential dilemma. Parallelization of SW 

algorithm is a daunting work, because of the nature of the data 

dependency arising when calculating the similarity matrix for 

the compared sequences. Another complexity of data 

dependency occurs by the designing of the memory, whether it 

is DM or SDM. Furthermore, the architecture of the parallel 

model represents an important issue in designing a parallel 

system able to manage a huge amount of data dependency.  

DM systems consist of multiple-processors machines, 

where each processor has its own memory, see Figure 5. 

Computational jobs operated on local data for each processor 

while remote data required complex communications with 

other processors. An advantage of using DM systems includes 

feasibility of increasing further numbers of processors as well 

as memory in order to increase system throughput and 

efficiency. Furthermore, each processor work with it is own 

data within local memory. However, the major drawback in 

DM system includes adopting efficient load balancing 

algorithm in order to minimize inter-processor 

communications [39].  

Developing parallel algorithms for sequence alignment is 

daunting work requires in-depth knowledge of Bioinformatics 

discipline as well as parallel techniques [31], [40]. Few 

researchers have addressed implementing SW algorithm on a 

DM. Some of these are divide and conquer algorithms [26], 

[39], [41]-[43] and wavefront methods [44], [45]. 

Interconnect

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

...

 

Fig. 5. Main architecture of Distributed Memory (DM) systems 

 

A. Divide and Conquer (DC) 

DC technique provides a parallel paradigm based on 

multiple recursion of the problem into two or more sub-

problems. The solution for the original problem is obtained by 

a combination of sub-problems. DC technique is a changing 

area for a number of years for most of the models, which are 

carried out in similarity detection problems.  

Hirschberg [26], pioneer in linear space alignment with 

quadratic time presents a recursive divide and conquer 

implementations. A modified version of very similar 

algorithm adopted by Myers and Miller [41] with Gotoh [24] 

affine gap penalty. The central notion of both algorithms are to 

find a midpoint for an optimal alignment and recursively 

determine optimal point on both sides of the midpoint. In very 

similar work with some changes Huang, et al. [42] extended 

Myers and Miller [41] algorithm to fit for subsequence 

matching. However, quadratic time still remains complex.  

Nordin, et al. [46], develop FRA-Search model to improve 

comparisons of large DNA sequence. Two approaches are 

used in the model:  the string-matching algorithm and rough 

set theory. Sequences are partitioned into k parts based on the 

machine identification number in the parallel version of the 

model using master worker process farm. Master processors 

distribute workload to the idle worker and receive the results 

after calculating optimal alignment; this process iterates until 

all compared sequences finish. The model lack of load 

balancing strategy to efficiently improve the movement of the 

partitions. Furthermore, waiting for idle workers influence a 

full utilization of resources. A much more systematic approach 

would identify how workers interact with other in order to 

reduce waiting time for results from every worker. 

In another attempt with the same researcher Nordin and 

Rahman [39] present a parallel technique for comparing DNA 

sequence using SW algorithm. Compared sequences are 

partition into k blocks, which it is replicate to each processor. 

Each worker has its own dataset and memory. While, for the 

programmer decides how the data should be distributed among 

the PCs. The existing techniques for distributing workload 

among processors depend on the user, which is clearly 

unacceptable way to balance between shared workers. 

Furthermore, calculating matrix involves periodical 
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communications between workers and master, thus losing 

valuable data can be occurred.  

Wu, et al. [43], propose pGraph, a parallel algorithm for 

detecting homology’s protein sequences using a hierarchical 

multiple producer-consumer models. The algorithm uses 

Generalized Suffix Tree (GST) data structure for distributing 

tasks dynamically between super-master (the main node) and 

the producers, which include masters and consumers nodes. 

Task is distributed equally among subgroups. The main 

advantage of such model is that it avoids a single point 

breakdown and hides all overheads of data movement. 

However, this approach has limitations such as changing 

subgroup and buffer sizes, which require powerful parallel 

model. The limitation of consumer local memory hinder 

alignment input sequences and the dynamicity of workload 

distribution wasted time in allocating subgroup to perform 

calculations of scoring matrix. 

Montanola, et al. [47], combine distributed and shared 

memory architecture to implement the SW between nodes and 

within cores inside node. Pairs of comparing sequences are 

generated and distribute into three groups according to A-Z 

alphabetical. Each worker manipulates a part of the subset of 

pairs that made from letters combinations. Unfortunately, 

imbalance distribution of workload maximizes the 

communications and the computation cost of the worker tasks. 

Furthermore, due to the limited letters used in residues (twenty 

letters) and nucleotide (four letters) it is clear that the parts are 

not equal in their length.  

B. Wave-front Method 

Wave-front is a technique adopted by Wozniak [23], it 

mainly breaking the computation problems into fragments 

where it distributed through shared processors. Optimal 

granularity for any problem increase machine efficiency and 

performance such as computational speed, and inter-process 

communication latency [48]. However, a serious weakness in 

wave-front method is that it required flood of communications 

in orders to solve any problems. This limitation for long 

sequences length is a bottleneck.   

Few researchers use wave-front method to tackle the 

problem of filling matrix in sequences alignment. Z-align 

algorithm proposed by Batista, et al. [44] is to align biological 

sequences locally into four stages using a parallel platform. In 

order to run the comparisons in limited memory space, the 

matrix is divided vertically into sub-matrices, each processor 

calculating  
 

 
    , where m and n are sequences lengths and 

p is the number of processors. Each sub-matrix is divided 

horizontally and vertically into blocks of two rows. Wave-

front method requires each processor to send the calculated 

cell to the next processor. Communication complexity 

between processors specifically for a long sequence makes 

this solution impractical.  

SWAMP+ [45] extends an approach for implementing SW 

in parallel platforms using Associative Computing model 

(ASC). ASC consists of an array of cells and a single 

instruction stream; the cells compose of a Processing Elements 

(PEs) each with a local memory and connecting via network 

links. PEs listens to the instruction stream, which broadcast 

data and instructions, see Figure 6. In associative models, 

(m+1) PEs are used to calculate the scoring matrix using 

wave-front approach, each PE calculates one row in SW. The 

major drawbacks of this approach are the limitations of PEs 

and wave-front vector due to the memory constraints in each 

PE as well as the data dependencies in vector, which limit the 

sequences length and make long sequences comparisons 

unreasonable.  
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Fig. 6. Associative computing models (ASC) 

 
 

For evaluating DM and SDM Sánchez Castaño, et al. [49] 

and Sánchez, et al. [50] analyses the performance of the 

Ssearch, a parallel  application implements the SW algorithm 

on shared and DM architecture machines. Two different 

synchronization strategies for the distribution of workload on 

multicore architectures are analyzed. The study suggested the 

efficient use of coarse and fine grain parallelism accelerates 

the sequence comparisons. However, the limitation of memory 

could be prohibitive. An observation in the study concludes 

the possibility to minimize the impact of memory latency by 

adopting double buffering techniques with large data blocks. 

Furthermore, a strategy based on preventing a worker to wait 

for the response of the previous signal can minimize 

synchronization overhead and maximize the performance of 

the application.  

V. DISCUSSION AND CONCLUSION 

Most studies in the sequence alignment focus only on 

comparing DNA sequences [39], [44], [46], [51]-[56] more 

than RNA [1] or proteins sequences [43], [47], [57]-[59]. In 

reality, sequences comparison is a problem for long sequences 

length, while, in small sequences sizes, SW performs good 

results. Nowadays, DNA length reaches 130,000,000,000 

(130GBP) in largest vertebrate genome known while 

the largest known protein is 27,000 residues [10], [60].  

However, the existing studies fail to compare more than 3 

MBP [44], there is still a need for an algorithm capable of 

comparing longest length of DNA sequences. 

DM and SDM are prominent platforms tackle long 

sequence comparison problems. A variety of algorithms are 

used to implement sequence alignment problems in DM and 
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SDM [39], [46], [47]. Each has its advantages and drawbacks. 

Applicable parallel platform for DM and SDM is 

multiprocessors architecture, where each processor has it is 

own memory. However, one of the major drawbacks of 

multiprocessor platforms is communication complexity in 

shared processor. Hence, it could conceivably be hypothesized 

that the existing load balancing algorithm to distribute tasks 

across multiple processors could significantly reduce this 

complexity.    

One of the most current discussions in parallel computing is 

the task distribution between shared processors. Difficulties 

are arising, however, when an attempt made to distribute tasks 

as well the system performance would increase significantly. 

To date various methods have been developed and introduced 

in workload and tasks distribution in sequences alignment 

problems. In most recent studies, workload distribution for 

parallelization of the similarity matrix in sequence alignment 

problems has been implemented in four different ways: 

substring of character [44], [47], [53], [55], [59], rows and 

column [44], [51], [54], [56], partitioning into segments [39], 

[46], [52], [58], and stages of distribution [1], [43], [57]. In 

substring of three or four characters, algorithms tend to 

distribute the workload between shared processors into groups 

of characters or substrings. Since sizes of these groups are too 

small compared to sequence length, thus a fine-grain 

parallelism is applied. Traditionally, fine-grain is very 

complex in communications; these can be time-consuming and 

technically difficult to perform. Rows and column method 

distribute workload as a matrix of rows and columns to every 

shared processor. Unfortunately, these methods do not always 

guarantee passing dependent cells for other processors. 

Furthermore, there are no clear techniques adopting for 

controlling shared variables in memory. Partitioning into 

segment’s methods, always distribute workload dynamically 

into k parts with different sizes based on machine 

identification number, programmer setting, and the number of 

register elements in the SIMD. However, dynamicity is always 

a source of waiting time, which is for long sequences are 

unreasonable and impractical. Finally, stages of distribution 

method assign workload in every stage according to periodic 

processing progress notifications or in super-master and 

producer model. Synchronization cost in these methods is 

always higher than others, this may cause delays in results as 

well as communication complexity for such methods.  

All the above reviews in this paper suffer from the fact that 

they are ignoring or overlooking the load balancing 

techniques, CPU complications in waiting-queue, space 

complexity, and data-flow technique between processor with 

synchronization and communication complexity. There is 

remains a need for an efficient method to harness the huge 

power obtainable by parallel platforms. 
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