
International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 1

Journal Homepage: www.ijcst.org

Manhal Elfadil Eltayeeb Elnour
1
, Muhammad Shafie Abd Latif

2
 and Ismail Fauzi Isnin

3

1,2,3
Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia

1
manhalus@gmail.com,

2
shafie@utm.my,

3
ismailfauzi@utm.my

Abstract—Recently, researchers have shown an increase

interest in Sequences Alignment Problem (SAP), in which the

properties of new DNA and Protein sequences are detected by

comparing them with well-known reference sequences defined in

genetic databanks. Considerable amounts of literature have been

published on SAP. However, less attention has been paid to the

revision and classification of current techniques in SAP. Thus,

the purpose of this paper is to review recent trends in

implementing local SAP in a parallel architecture. The

classification is based on Distributed Memory and Shared

Distributed Memory architectures for different Dynamic

Programing and Smith-Waterman based algorithms. The

literature are studying and evaluating in order to highlight their

strength and weaknesses.

Index Terms—Sequences Alignment, Shared Distributed

Memory, DNA, Protein and Parallel Computing

I. INTRODUCTION

HE alignment of DNA and Protein sequences has received

much attention in recent years due to the vital information

may infer from new sequences defined and stored previously

in genetic databanks. Furthermore, deciphering DNA

sequences help to elucidate genetic information from any

given biological system, which known as Next Generation

Sequencing (NGS) [1]. However, traditional sequences

alignment algorithms are computationally expensive [2], [3] or

inaccurate in their results [4], [5]. Usually, complex

algorithms always lead to computational overhead using a

single processor, which can be minimized by invoking multi-

processor and multi-core platforms [6]. Develop robust

algorithms to consider these complications in a reasonable

time with accurate results would be highly concerned for NGS

researchers. Furthermore, the dramatic increasing of bio-data

such as DNA, RNA, proteins, and human genome involves

adopting powerful techniques to analysis new sequences based

on record sequences in genetic databanks.

On the other hand, genetics databanks work closely with

bioinformatics institutions to establish bioinformatics projects,

such as GenBank [7], [8] and Protein Data Bank in Europe

(PDBe) [9], [10]. PDBe establishes a website responsible for

maintaining the single worldwide repository of bio-

macromolecular structure data. It objectives are to handle the

annotation of bio-data through a website, to be high-quality

macromolecule resource provider, and to be expertise in

determination techniques (X-ray, NMR and EM) by working

with bio-community. Most of Molecular Biology Databases

(MBD) includes information about DNA, RNA, and Proteins.

It is also examine protein structures, prediction, and

interaction. The majority of well-known biological databases

are depicted in Figure 1. These databases are available online

and cover various area of molecular biology [11]. The Listing

of Molecular Biology Databases (LiMB) is database of

databases aimed to employ a method manipulate molecular

biology information and related databases by providing a

platform for designing automatic access to distributed

biological data sets.

The significant increase of Petabytes of biological datasets

makes centralized storage techniques inconvenient [12]. There

remains a need for distributed storage techniques providing

high durability and flexibility for storing large datasets

[13], [14].

 P-found, is a project provides tools to support comparison

and analysis of large distributed simulation datasets [15].

Fig. 1. Noted Genetic-databases dedicated in DNA and Protein problems

T

Distributed Memory and Shared Distributed Memory

Architecture for Implementing Local Sequences

Alignment: A Survey

ISSN 2047-3338

Manhal Elfadil Eltayeeb Elnour et al. 2

The project includes two storages, primary dataset storage

for protein simulation and data warehousing, which contain

information about protein properties and their transformations.

It is aimed to solve the problems of protein simulations by

presenting data repository including all the simulated datasets

and results. Unfortunately, network lateness causes delays in

reading and writing for clients when using distributed storage

media. This arbitrary failure arises from synchronization in

client with others and servers.

An alternative approach is developed by Storage@home

[16], a distributed storage infrastructure developed to solve the

problem of backing up and sharing petabytes of DNA and

Protein findings using a distributed model of volunteer hosts.

The system includes many functions derived-by policy engine,

storage clients, the metadata server, the registration server, and

identity server. However, many problems arise in the project

ranging from slow upload, often-disconnected hosts. The

challenging issue is to discover an algorithm considers store

and retrieve data efficiently. Some distributed storage

algorithms such as ABD algorithm [17], SBQ-L algorithm

[18], and ACKM algorithm [19] try to solve the problem of

synchronization and client’s corruptions. However, these

algorithms overlook analyzing procedures to store the data and

concentrate on transferring data between base objects.

Despite of all storage problems in genetic databanks, the

issue that has grown an importance in light of recent years is

the sequences alignment. It is becoming increasingly difficult

to ignore the importance of aligning DNA and Protein

sequences. Sequence alignment problem is the first step in

detecting homologous sequences, where the evolutionary

relationship may infer by comparing sequences. The central

problem in sequence alignment is the comparisons of long

sequence length, wherein restricted memory is prohibitive and

impractical. This paper mainly reviews the sequence

alignment problem and their implementations in parallel

platform.

The rest of this paper is organized as follows. Section 2

explains dynamic and heuristics methods used in sequences

alignment problems. In section 3, variant algorithms based on

dynamic programming methods are discussed, while, in

section 4, SW-based algorithms for implementing local

sequence alignment are addressed. Section 5 concludes the

paper with a discussion on the literature contributions.

II. THE SEQUENCES ALIGNMENT PROBLEM

In sequence alignment, compared sequences are arranged

on top of each other in rows wise, while match letters

appeared in sequential columns. Similarity between two

sequences can be optimizing by inserting spaces and deleting

letters at different places. Optimal alignment is achieved via

sets of operations and steps such as matches, mismatches,

substitutions or replacements, insertions, and deletions

(insertions and deletions always abbreviate as indels). These

operations known as mutation events, which in turn change the

first sequence into the second [20]. While, the edits distance

defines the number of mutation events involve to transform

sequences. Matches coincide with similar letters while

mismatches or substitutions coincide with different letters.

Insertion and deletions (also defined as a gap operation)

denotes by coinciding to presence or absence of match letter in

another sequence. Typical indels in a sequence implies gaps or

empty reigns in the other sequence [21].

In aligning two sequences, some regions show high

similarity; thus a technique for quantify the best alignment is

needed. The striking feature is to assign a score for each

alignment. The alignment with the highest score is then

recognized as an optimal score. However, optimal alignment

in similarity detection between sequences is obtained via

scoring scheme. Scoring scheme includes a substitution matrix

as well as a gap penalty [22]. Substitution matrix is used to

calculate matches and mismatches regions, while a gap

penalty scores insertion and deletion events. The alignment of

sequences is the sum of individual event scores. In literature,

different substitution matrix and gap penalty are used in the

scoring scheme. The notion behind scoring systems is to

reduce the number of mutations events needed to transform

one sequence into another. In a biological viewpoint, aligning

two sequences is the procedures of minimizing the total

number of evolutionary changes estimated by an alignment.

While, in a computational viewpoint, it is equivalent to

maximizing the score of similarity between two sequences.

Thus, finding an optimal score involves recording the best

alignment with the maximum score when calculating a

substitution matrix and a gap penalty in a scoring system.

A. Dynamic Programming Methods

In recent years, there has been an increasing amount of

literature on Dynamic Programming (DP) implementation for

sequence alignment problems. Needleman and Wunsch [2], is

the pioneer algorithm in global sequence alignments. It mainly

used in aligning pairwise of protein sequences; however, it can

be used to align DNA sequences as well. The algorithm places

two sequences in the matrix S of two dimension (m×n), where

m and n represent the number of nucleotides in any two

sequences. It is designed to compare sequences as a whole,

while Smith and Waterman [3] (SW) algorithm identifies

homologies subsequences among sets of long sequences by

considering optimal local pairwise alignments between two

sequences. In SW algorithm, sequences are compared using

two dimensional matrices, where the values filled in the

matrix using different methods such as wave-front [23].

Optimal alignment is obtained by considering scoring scheme

including matches, mismatches, gaps, and substitution matrix.

The results are obtained using a trace-back procedure to

recover the best local alignment. Gotoh [24], improves SW

algorithm using affine gap weight for large sequences. The

algorithm is assumed to found the minimum cost of aligning

two sequences. An alternative approach developed by Nordin,

et al. [25] in five phases include query initialization, patterns

generating, pattern’s scanning, ranking, and optimal local

alignment. The model considers sequences with highest exact

matching scores are the most similar to the query sequence.

However, many stages of the proposed algorithm require a

International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 3

huge amount of spaces to store results in every stage, which is

a source of wasting time.

Linear space offers a mean of enhancing or improving the

space complexity in similarity detections for homologous

sequences. Hirschberg [26], a pioneered in linear space

implementation for sequence alignment problems propose an

exact algorithm calculating global alignment between two

sequences M and N in quadratic time. The proposed approach

split sequence M in the middle and generating subsequences

M1 and M2, then calculates corresponding place for sequence

N and generating subsequences N1 and N2. In such way, the

alignment is solved in divide and conquer recursive manner.

This recursion roughly doubles the execution time when

compared with the original algorithm. Nevertheless, for long

biological sequences, which would otherwise generate very

huge similarity matrices, could be appropriate.

In the sequence comparisons using DP, substitution matrix

measures the rate of changing over a period for one residue or

nucleotide in a sequence. Similarity between sequences

depends on these rates, where the values of both characters are

considered in scoring scheme. Two well-known substitution

matrixes always are used in similarity detections, the Point

Accepted Mutation (PAM) series and BLOck SUbstitution

Matrix (BLOSUM) families, see Figure 2.

Substitution Matrix models

BLOUSMPAM

70 etc... 62 80 etc...30

Fig. 2. Substation matrix models

Point Accepted Mutation (PAM) Series:

PAM series, is a substitution model for aligning two

sequences to detect regions of similarity [27]. The core notion

of the statically series is based on observed percent of

evolutionary alteration of structurally and chemically similar

amino acids when mutated in a large number of high-quality

alignments. The evolutionary alterations occur between any

two amino acids to a higher extent when they were similar in

the structure and chemical proprieties, otherwise changes

between less similar amino acids are assumed to be neglected.

The percent of the evolutionary alteration of amino acids is

constituted in building a scoring scheme for aligned amino

acids. In PAM1, the rates of amino acid substitutions are

occurred on an average 1% (one sequence mutated). While for

further expectations rates on an average 2% the residues also

mutated (PAM2 matrix), following this the matrices is

calculated up to PAM250.

BLOck SUbstitution Matrix (BLOSUM) Series:

BLOSUM series proposed by Henikoff and Henikoff [28] is

based on observation of distantly related sequences tend to be

highly preserved regions or blocks intervened by less

conserved stretches of sequences. In BLOSUM, probability

values based on chemical proprieties for two residues are used

in building substitution matrix for sequence alignment [29].

These values append to the matrix name such as BLOSUM62,

which denote that two sequences are compared with less than

62% similarity. BLOSUM80 obtains the best results when

aligning closely related sequences than BLOSUM30, which

suits for aligning highly diverged sequences.

NW and SW algorithms obtain accurate results, however

computationally they are very expensive. Next subsection

discusses heuristic-based methods for sequence alignment

problems, as it produced faster results than DP algorithms.

B. Heuristic-Based Methods

Heuristic-based methods for sequence alignment are based

on filtering technique to enhance the sequence comparison

speed. Where any algorithm scans reference sequences to find

exact matches of subsequences in the query sequence, it casts

down any irrelevant subsequences from searching for an

optimal alignment.

FASTA [4], is searched and matched for approximation of

k-tuples of length k or subsequences of related sequences, to

produce an optimal alignment. FASTA is based on the notions

of related sequences have identical regions. The algorithm

produces a hash table of all k-tuples, which detects in the

query sequences. It then defines the location of all the k-tuples

in the entire reference sequences and inputs them into the

table. Each k-tuple in the query sequence is founded in the

hash table and any matched regions of the query sequence

allow FASTA to mark the matching cells in the matrix. These

result in a matrix constituted to mark all points of local

identity of length k.

On the other hand, BLAST [5] uses words hitting (w) in

searching for similarity between sequences by heuristically

optimize a measure of sequence similarity known as the

Maximal Segment Pair (MSP). The MSP defines identical

length segments chosen from two sequences, and reported as

the highest scoring segments in a query sequence. BLAST

considers query sequence and reference sequences in genetic

databanks to produce a list of high scoring words of a length

(w) from the query sequence, and scanned for hits (matches)

and the place of occurrence.

An attempt to improve heuristic-based methods is proposed

by Hudek and Brown [30], FEAST a pairwise local alignment

program is based on probabilistic and prediction models. In

the first stage, the program aligns subsequences pair by

identified a homologous pair position and seeks forward and

backward to produce an extension pairs. While the second

stage is based on Hidden Markov Model (HMM) using

different segments of an aligned sequences with different

alignment parameter. Finally, an expectation maximization

Manhal Elfadil Eltayeeb Elnour et al. 4

training procedure incorporates extension and alignment

algorithms.

Zhang, et al. [31], Li and Homer [32], and [33] in a

characterized work compare most of DP and HM sequences

alignment algorithms including NW, SW, FASTA, and

BLAST. The comparisons are aimed to highlight

computations and space complexity in term of performance

parameters for optimal alignment. These parameters include

speed, running times, and affine gap penalties. As a result,

there is a tradeoff between speed and sensitivity, BLAST and

FASTA consider subsequences k-tuples and words to achieve

higher speeds, while NW and SW produce optimal and

accurate results, but scarifying with the speed in alignment.

This paper set out mainly to review the parallel

implementation of DP methods for local sequences alignment.

Specifically, the paper discusses Distributed Memory (DM)

and Shared Distributed Memory (SDM) architectures. In a

DM system, individual processors associated with separated

memory and a processor is only allows to access its own

memory. DM architecture can be classifying

into multicomputer and Massively Parallel Processor (MPP).

On the other hand, SDM is a technique allowing users'

processes to access shared data without using inter-process

communications, see Figure 3.

Parallel Architectures

Distributed Memory

(DM)

Shared Distributed Memory

(SDM)

Shared Memory

(SM)

Multicomputer

(MC)

Massively Parallel Processor

(MPP)

Beowulf Cluster

(BC)

Clusters Of Workstations

(COW)

Fig. 3. Classification of parallel architecture

III. NON SW-BASED ALGORITHMS FOR SIMILARITY

DETECTION USING DP METHODS

A central problem of sequence similarity search focused on

matched sequences in a two-dimension matrix and considering

deletions, insertions, and gap penalty. This matrix requires

complex computations in order to discover a biologically

relevance between compared sequences. A key technique of

growing interest to obtain an optimal alignment using DP

methods is parallel platforms. In DP, the original problem is

divided into sub-problems. The final optimal alignment is

obtained by considering optimal result for every sub-problem,

see Figure 4. The majority of earlier experiments for

parallelizing sequence alignment are conducted to run jobs in

a parallel with workload distribution methods. Different

lengths of sequences are distributed among shared processors.

After each job finished results, new sequence started reading

at a different time. In most parallel algorithms global

communicator is spilled to sub-communicators, each one reads

in the genetic databases and broadcasts it inside group and

then concatenate the output files that each process generates

inside each sub-communicator and writes the result into one

file [34].

CPU

CPU

CPU

CPU

CPU

Problem Instructions

Fig. 4. DP methods distributed chunks of the problem to multiple processors

Several attempts have been made to implement similarity

detection problems on SDM architectures using multicore

machines. However, one major drawback of this approach is

the limitation of memory, which is definitely prohibitive for

long sequences comparisons. Performing fast computation

results and minimizing the total execution time alway

representing major achievements for adopting multicore

architectures. In multicore architecture, single processor(s)

with independent Central Processing Units (CPUs) called

"cores" play an important role in accelerating computing

performance, especially for scientific computing, where

complex computations required for solving one problem, it

significantly reduced the execution time in the comparisons of

small sequences length. Pipelined techniques offer a mean of

communication techniques between two or more cores and/or

processors for decomposing the computation workload in a

multi-core architecture. While, a block parallel DP algorithm

increases the amount of workloads for each shared core.

A parallel approach for detecting homologies DNA

sequences in multicore architecture is proposed by Sathe and

Shrimankar [35] to increase data parallelism on sequences

comparisons using OpenMP API with tiling techniques. The

tiling technique in the algorithm is to optimize compiler and to

improve data locality in parallel program in order to maximize

parallelism and minimize synchronization. The algorithm

scatters different size of chunks to different cores and obtained

comparative results.

A modified version with some changes is EasyPDP [36], a

runtime system is based on Directed Acyclic Graphs (DAG)

Data Driven Model for parallelizing DP algorithms on

multicore and multiprocessor platforms. The DAG Data

Driven Model consists of three modules: user application

module, DAG pattern module and DAG runtime system

module. The system handles fault tolerance, data partitioning,

International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 5

dynamic data task allocation and scheduling, and thread

creation.

In contrast to SDM architectures, DM architecture is

applicable approach to tackle long sequence comparisons. In

DM, many processors with its own private memory

incorporated to solve a complex phenomenon. Computational

tasks distributed among shared processors while data

exchanges through communication medium. An algorithm

based on DM approach has a number of attractive features.

However, communication complexity is a major challenging

issue. Master-Worker is a widely common technique used in

DM. In the parallelization of similarity detections algorithms,

this technique achieves good performance. The notion behind

this technique is to distributed workload as a chunk size

between workers according to load balance algorithm [37].

The master calculates chunk size and obtains the tasks of the

workers. MPI message-passing defines the communication

procedures among different processors. Time delays, which

occur between processors in the data communication is a

crucial issue for measuring the efficiency of parallel

computation [38].

IV. SW-BASED ALGORITHMS FOR SIMILARITY DETECTION

PROBLEM

Smith–Waterman algorithm (SW) detects similar regions

between two sequences using DP techniques. The algorithm

compares two sequences locally on a character-to-character

level in order to define optimal local alignments and to

discover subsequence that are potentially similar. On

sequential machines, SW is an expensive algorithm. However,

parallel architecture paves the way for a powerful method to

overcome sequential dilemma. Parallelization of SW

algorithm is a daunting work, because of the nature of the data

dependency arising when calculating the similarity matrix for

the compared sequences. Another complexity of data

dependency occurs by the designing of the memory, whether it

is DM or SDM. Furthermore, the architecture of the parallel

model represents an important issue in designing a parallel

system able to manage a huge amount of data dependency.

DM systems consist of multiple-processors machines,

where each processor has its own memory, see Figure 5.

Computational jobs operated on local data for each processor

while remote data required complex communications with

other processors. An advantage of using DM systems includes

feasibility of increasing further numbers of processors as well

as memory in order to increase system throughput and

efficiency. Furthermore, each processor work with it is own

data within local memory. However, the major drawback in

DM system includes adopting efficient load balancing

algorithm in order to minimize inter-processor

communications [39].

Developing parallel algorithms for sequence alignment is

daunting work requires in-depth knowledge of Bioinformatics

discipline as well as parallel techniques [31], [40]. Few

researchers have addressed implementing SW algorithm on a

DM. Some of these are divide and conquer algorithms [26],

[39], [41]-[43] and wavefront methods [44], [45].

Interconnect

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

...

Fig. 5. Main architecture of Distributed Memory (DM) systems

A. Divide and Conquer (DC)

DC technique provides a parallel paradigm based on

multiple recursion of the problem into two or more sub-

problems. The solution for the original problem is obtained by

a combination of sub-problems. DC technique is a changing

area for a number of years for most of the models, which are

carried out in similarity detection problems.

Hirschberg [26], pioneer in linear space alignment with

quadratic time presents a recursive divide and conquer

implementations. A modified version of very similar

algorithm adopted by Myers and Miller [41] with Gotoh [24]

affine gap penalty. The central notion of both algorithms are to

find a midpoint for an optimal alignment and recursively

determine optimal point on both sides of the midpoint. In very

similar work with some changes Huang, et al. [42] extended

Myers and Miller [41] algorithm to fit for subsequence

matching. However, quadratic time still remains complex.

Nordin, et al. [46], develop FRA-Search model to improve

comparisons of large DNA sequence. Two approaches are

used in the model: the string-matching algorithm and rough

set theory. Sequences are partitioned into k parts based on the

machine identification number in the parallel version of the

model using master worker process farm. Master processors

distribute workload to the idle worker and receive the results

after calculating optimal alignment; this process iterates until

all compared sequences finish. The model lack of load

balancing strategy to efficiently improve the movement of the

partitions. Furthermore, waiting for idle workers influence a

full utilization of resources. A much more systematic approach

would identify how workers interact with other in order to

reduce waiting time for results from every worker.

In another attempt with the same researcher Nordin and

Rahman [39] present a parallel technique for comparing DNA

sequence using SW algorithm. Compared sequences are

partition into k blocks, which it is replicate to each processor.

Each worker has its own dataset and memory. While, for the

programmer decides how the data should be distributed among

the PCs. The existing techniques for distributing workload

among processors depend on the user, which is clearly

unacceptable way to balance between shared workers.

Furthermore, calculating matrix involves periodical

Manhal Elfadil Eltayeeb Elnour et al. 6

communications between workers and master, thus losing

valuable data can be occurred.

Wu, et al. [43], propose pGraph, a parallel algorithm for

detecting homology’s protein sequences using a hierarchical

multiple producer-consumer models. The algorithm uses

Generalized Suffix Tree (GST) data structure for distributing

tasks dynamically between super-master (the main node) and

the producers, which include masters and consumers nodes.

Task is distributed equally among subgroups. The main

advantage of such model is that it avoids a single point

breakdown and hides all overheads of data movement.

However, this approach has limitations such as changing

subgroup and buffer sizes, which require powerful parallel

model. The limitation of consumer local memory hinder

alignment input sequences and the dynamicity of workload

distribution wasted time in allocating subgroup to perform

calculations of scoring matrix.

Montanola, et al. [47], combine distributed and shared

memory architecture to implement the SW between nodes and

within cores inside node. Pairs of comparing sequences are

generated and distribute into three groups according to A-Z

alphabetical. Each worker manipulates a part of the subset of

pairs that made from letters combinations. Unfortunately,

imbalance distribution of workload maximizes the

communications and the computation cost of the worker tasks.

Furthermore, due to the limited letters used in residues (twenty

letters) and nucleotide (four letters) it is clear that the parts are

not equal in their length.

B. Wave-front Method

Wave-front is a technique adopted by Wozniak [23], it

mainly breaking the computation problems into fragments

where it distributed through shared processors. Optimal

granularity for any problem increase machine efficiency and

performance such as computational speed, and inter-process

communication latency [48]. However, a serious weakness in

wave-front method is that it required flood of communications

in orders to solve any problems. This limitation for long

sequences length is a bottleneck.

Few researchers use wave-front method to tackle the

problem of filling matrix in sequences alignment. Z-align

algorithm proposed by Batista, et al. [44] is to align biological

sequences locally into four stages using a parallel platform. In

order to run the comparisons in limited memory space, the

matrix is divided vertically into sub-matrices, each processor

calculating

 , where m and n are sequences lengths and

p is the number of processors. Each sub-matrix is divided

horizontally and vertically into blocks of two rows. Wave-

front method requires each processor to send the calculated

cell to the next processor. Communication complexity

between processors specifically for a long sequence makes

this solution impractical.

SWAMP+ [45] extends an approach for implementing SW

in parallel platforms using Associative Computing model

(ASC). ASC consists of an array of cells and a single

instruction stream; the cells compose of a Processing Elements

(PEs) each with a local memory and connecting via network

links. PEs listens to the instruction stream, which broadcast

data and instructions, see Figure 6. In associative models,

(m+1) PEs are used to calculate the scoring matrix using

wave-front approach, each PE calculates one row in SW. The

major drawbacks of this approach are the limitations of PEs

and wave-front vector due to the memory constraints in each

PE as well as the data dependencies in vector, which limit the

sequences length and make long sequences comparisons

unreasonable.

C
e
ll

 I
n

te
r
c
o
n

n
e
c
t
io

n
 N

e
tw

o
r
k

B
r
o
a

d
c
a

s
t

/
R

e
d

u
c

ti
o
n

 N
e
tw

o
r
kInstruction

Stream
PE Memory

PE Memory

PE Memory

PE Memory

...

Fig. 6. Associative computing models (ASC)

For evaluating DM and SDM Sánchez Castaño, et al. [49]

and Sánchez, et al. [50] analyses the performance of the

Ssearch, a parallel application implements the SW algorithm

on shared and DM architecture machines. Two different

synchronization strategies for the distribution of workload on

multicore architectures are analyzed. The study suggested the

efficient use of coarse and fine grain parallelism accelerates

the sequence comparisons. However, the limitation of memory

could be prohibitive. An observation in the study concludes

the possibility to minimize the impact of memory latency by

adopting double buffering techniques with large data blocks.

Furthermore, a strategy based on preventing a worker to wait

for the response of the previous signal can minimize

synchronization overhead and maximize the performance of

the application.

V. DISCUSSION AND CONCLUSION

Most studies in the sequence alignment focus only on

comparing DNA sequences [39], [44], [46], [51]-[56] more

than RNA [1] or proteins sequences [43], [47], [57]-[59]. In

reality, sequences comparison is a problem for long sequences

length, while, in small sequences sizes, SW performs good

results. Nowadays, DNA length reaches 130,000,000,000

(130GBP) in largest vertebrate genome known while

the largest known protein is 27,000 residues [10], [60].

However, the existing studies fail to compare more than 3

MBP [44], there is still a need for an algorithm capable of

comparing longest length of DNA sequences.

DM and SDM are prominent platforms tackle long

sequence comparison problems. A variety of algorithms are

used to implement sequence alignment problems in DM and

International Journal of Computer Science and Telecommunications [Volume 5, Issue 8, August 2014] 7

SDM [39], [46], [47]. Each has its advantages and drawbacks.

Applicable parallel platform for DM and SDM is

multiprocessors architecture, where each processor has it is

own memory. However, one of the major drawbacks of

multiprocessor platforms is communication complexity in

shared processor. Hence, it could conceivably be hypothesized

that the existing load balancing algorithm to distribute tasks

across multiple processors could significantly reduce this

complexity.

One of the most current discussions in parallel computing is

the task distribution between shared processors. Difficulties

are arising, however, when an attempt made to distribute tasks

as well the system performance would increase significantly.

To date various methods have been developed and introduced

in workload and tasks distribution in sequences alignment

problems. In most recent studies, workload distribution for

parallelization of the similarity matrix in sequence alignment

problems has been implemented in four different ways:

substring of character [44], [47], [53], [55], [59], rows and

column [44], [51], [54], [56], partitioning into segments [39],

[46], [52], [58], and stages of distribution [1], [43], [57]. In

substring of three or four characters, algorithms tend to

distribute the workload between shared processors into groups

of characters or substrings. Since sizes of these groups are too

small compared to sequence length, thus a fine-grain

parallelism is applied. Traditionally, fine-grain is very

complex in communications; these can be time-consuming and

technically difficult to perform. Rows and column method

distribute workload as a matrix of rows and columns to every

shared processor. Unfortunately, these methods do not always

guarantee passing dependent cells for other processors.

Furthermore, there are no clear techniques adopting for

controlling shared variables in memory. Partitioning into

segment’s methods, always distribute workload dynamically

into k parts with different sizes based on machine

identification number, programmer setting, and the number of

register elements in the SIMD. However, dynamicity is always

a source of waiting time, which is for long sequences are

unreasonable and impractical. Finally, stages of distribution

method assign workload in every stage according to periodic

processing progress notifications or in super-master and

producer model. Synchronization cost in these methods is

always higher than others, this may cause delays in results as

well as communication complexity for such methods.

All the above reviews in this paper suffer from the fact that

they are ignoring or overlooking the load balancing

techniques, CPU complications in waiting-queue, space

complexity, and data-flow technique between processor with

synchronization and communication complexity. There is

remains a need for an efficient method to harness the huge

power obtainable by parallel platforms.

REFERENCES

[1] H. Martínez, J. Tárraga, I. Medina, S. Barrachina, M. Castillo, J.

Dopazo, et al., "Concurrent and Accurate RNA Sequencing on

Multicore Platforms," arXiv preprint arXiv:1304.0681, 2013.

[2] S. B. Needleman and C. D. Wunsch, "A general method applicable

to the search for similarities in the amino acid sequence of two

proteins," Journal of molecular biology, vol. 48, pp. 443-453,

1970.

[3] T. Smith and M. Waterman, "Identification of common molecular

subsequences," J. Mol. Bwl, vol. 147, pp. 195-197, 1981.

[4] W. R. Pearson and D. J. Lipman, "Improved tools for biological

sequence comparison," Proceedings of the National Academy of

Sciences, vol. 85, p. 2444, 1988.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.

Lipman, "Basic local alignment search tool," Journal of molecular

biology, vol. 215, pp. 403-410, 1990.

[6] M. Elnour, M. Latif, and I. Isnin, "Coarse Grain Load Balance

Algorithm for Detecting Similar Regions in DNA and Proteins

Sequences," Indian Journal of Science and Technology, vol. 7, pp.

47-57, 2014.

[7] D. J. Lipman, J. Ostell, and E. W. Sayers, "Dennis A. Benson,

Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi," Nucleic

Acids Research, vol. 1, p. 7, 2012.

[8] N. Kaur, "GenBank: Implementation Model and Retrieval

Techniques," 2013.

[9] S. Velankar, C. Best, B. Beuth, C. Boutselakis, N. Cobley, A. W.

S. Da Silva, et al., "PDBe: protein data bank in Europe," Nucleic

Acids Research, vol. 38, pp. D308-D317, 2010.

[10] Protein Data Bank in Europe. (2014, 4 Jan). BDPe. Available:

http://www.ebi.ac.uk/pdbe/

[11] M. Y. Galperin and X. M. Fernandez-Suarez, "The 2012 Nucleic

Acids Research Database Issue and the online Molecular Biology

Database Collection," Nucleic Acids Res, vol. 40, pp. D1-8, Jan

2012.

[12] M. E. ELTAYEEB, M. S. A. LATIF, and I. F. ISNIN,

"PARALLEL MODEL AND SCHEDULING TECHNIQUE FOR

SPACES COMPLEXITY AND SYNCHRONIZATION

PROBLEMS IN SEQUENCES ALIGNMENT," Journal of

Theoretical & Applied Information Technology, vol. 63, pp. 251-

260, 2014.

[13] C. Sheel, M. I. Khan, M. I. H. Sarker, and T. Alam, "Algorithm for

Optimal Storage of a Distributed Bioinformatics System for

Analysis of DNA Sequences," Int J Comput Bioinfo In Silico

Model, vol. 2, pp. 106-109, 2013.

[14] F. Yu and C. Coarfa, "Sequence Alignment, Analysis, and

Bioinformatic Pipelines," in Next Generation Sequencing, ed:

Springer, 2013, pp. 59-77.

[15] M. Swain, C. G. Silva, N. Loureiro-Ferreira, V. Ostropytskyy, J.

Brito, O. Riche, et al., "P-found: Grid-enabling distributed

repositories of protein folding and unfolding simulations for data

mining," Future Generation Computer Systems-the International

Journal of Grid Computing-Theory Methods and Applications, vol.

26, pp. 424-433, Mar 2010.

[16] M. Ok, "An Auxiliary Storage Subsystem of Storage Space Hidden

for User Data to Distributed Computing Systems," in Web

Information Systems Engineering–WISE 2011 and 2012

Workshops, 2013, pp. 281-291.

[17] K. Samejima and T. Omori, "Adaptive internal state space

construction method for reinforcement learning of a real-world

agent," Neural Networks, vol. 12, pp. 1143-1155, 1999.

[18] J.-P. Martin, L. Alvisi, and M. Dahlin, "Minimal byzantine

storage," in Distributed Computing, ed: Springer, 2002, pp. 311-

325.

[19] G. Chockler, R. Guerraoui, I. Keidar, and M. Vukolic, "Reliable

Distributed Storage," Computer, vol. 42, pp. 60-+, Apr 2009.

[20] M. Imelfort, "Sequence comparison tools," Bioinformatics., pp. 13-

37, 2009.

[21] M. Axelson-Fisk, "Sequence Alignment," in Comparative Gene

Finding, ed: Springer London, 2010, pp. 89-155.

[22] P. Borovska and M. Lazarova, "Parallel models for sequence

alignment on CPU and GPU," in Proceedings of the 12th

International Conference on Computer Systems and Technologies,

2011, pp. 210-215.

http://www.ebi.ac.uk/pdbe/

Manhal Elfadil Eltayeeb Elnour et al. 8

[23] A. Wozniak, "Using video-oriented instructions to speed up

sequence comparison," Computer applications in the biosciences:

CABIOS, vol. 13, pp. 145-150, 1997.

[24] O. Gotoh, "An improved algorithm for matching biological

sequences," Journal of molecular biology, vol. 162, pp. 705-708,

1982.

[25] A. Nordin, M. Yazid, A. Aziz, and M. Osman, "A guided dynamic

programming approach for searching a set of similar DNA

sequences," in Applications of Digital Information and Web

Technologies, 2009. ICADIWT'09. Second International

Conference on the, 2009, pp. 512-517.

[26] D. S. Hirschberg, "A linear space algorithm for computing

maximal common subsequences," Communications of the ACM,

vol. 18, pp. 341-343, 1975.

[27] M. O. Dayhoff and R. M. Schwartz, "A model of evolutionary

change in proteins," in In Atlas of protein sequence and structure,

1978.

[28] S. Henikoff and J. G. Henikoff, "Amino acid substitution matrices

from protein blocks," Proc Natl Acad Sci U S A, vol. 89, pp.

10915-9, Nov 15 1992.

[29] M. E. E. Elnour, M. S. A. Latif, and I. F. Isnin, "Validation

Experimentations of Local Alignment Parameters for Comparing

DNA and Protein Sequences," IOSR Journal of Computer

Engineering (IOSR-JCE) vol. 16, pp. 56-61, 2014.

[30] A. Hudek and D. Brown, "FEAST: sensitive local alignment with

multiple rates of evolution," Computational Biology and

Bioinformatics, IEEE/ACM Transactions on, pp. 1-1, 2011.

[31] X. Zhang, X. Zhou, and X. Wang, "Basics for Bioinformatics," in

Basics of Bioinformatics, ed: Springer, 2013, pp. 1-25.

[32] H. Li and N. Homer, "A survey of sequence alignment algorithms

for next-generation sequencing," Briefings in bioinformatics, vol.

11, pp. 473-483, 2010.

[33] W. Haque, A. Aravind, and B. Reddy, "Pairwise sequence

alignment algorithms: a survey," in Proceedings of the 2009

conference on Information Science, Technology and Applications,

2009, pp. 96-103.

[34] H. You, B. Rekapalli, Q. Liu, and S. Moore, "Autotuned Parallel

I/O for Highly Scalable Biosequence Analysis," in Proceedings of

the 2011 TeraGrid Conference: Extreme Digital Discovery, 2011,

p. 29.

[35] S. Sathe and D. Shrimankar, "Parallelization of DNA sequence

alignment using OpenMP," in Proceedings of the 2011

International Conference on Communication, Computing &

Security, 2011, pp. 200-203.

[36] S. J. Tang, C. Yu, J. Z. Sun, B. S. Lee, T. Zhang, Z. Xu, et al.,

"EasyPDP: An Efficient Parallel Dynamic Programming Runtime

System for Computational Biology," Ieee Transactions on Parallel

and Distributed Systems, vol. 23, pp. 862-872, May 2012.

[37] C. C. Wu, L. T. Huang, L. F. Lai, and M. L. Chen, "Enhanced

parallel loop self-scheduling for heterogeneous multi-core cluster

systems," in Pervasive Systems, Algorithms, and Networks

(ISPAN), 2009 10th International Symposium on, 2009, pp. 568-

573.

[38] S. Brenner, "Optimal Pairwise Alignment," in Introduction to

computational biology: an evolutionary approach, B. Haubold and

T. Wiehe, Eds., ed: Springer, 2006, pp. 11-42.

[39] M. Nordin and A. Rahman, "Utilizing MPJ Express Software in

Parallel DNA Sequence Alignment," in International Conference

on Future Computer and Communication, 2009, ICFCC, , 2009,

pp. 567-571.

[40] J. T. Dudley and A. J. Butte, "A quick guide for developing

effective bioinformatics programming skills," PLoS Comput Biol,

vol. 5, p. e1000589, Dec 2009.

[41] E. W. Myers and W. Miller, "Optimal alignments in linear space,"

Computer applications in the biosciences: CABIOS, vol. 4, pp. 11-

17, 1988.

[42] X. Huang, R. C. Hardison, and W. Miller, "A space-efficient

algorithm for local similarities," Computer applications in the

biosciences: CABIOS, vol. 6, pp. 373-381, 1990.

[43] C. Wu, A. Kalyanaraman, and W. R. Cannon, "A scalable parallel

algorithm for large-scale protein sequence homology detection," in

Parallel Processing (ICPP), 2010 39th International Conference

on, 2010, pp. 333-342.

[44] R. B. Batista, A. Boukerche, and A. C. M. A. de Melo, "A parallel

strategy for biological sequence alignment in restricted memory

space," Journal of Parallel and Distributed Computing, vol. 68,

pp. 548-561, 2008.

[45] S. Steinfadt, "Fine-grained parallel implementations for SWAMP+

Smith–Waterman alignment," Parallel Computing, vol. 39, pp.

819-833, 2013.

[46] A. Nordin, M. Yazid, A. Aziz, and M. Osman, "Parallel Guided

Dynamic Programming Approach for DNA Sequence Similarity

Search," International Journal of Computer and Electrical

Engineering., vol. 1, pp. 402-409, 2009.

[47] A. Montanola, C. Roig, and P. Hernandez, "Pairwise sequence

alignment method for distributed shared memory systems," in

Parallel, Distributed and Network-Based Processing (PDP), 2013

21st Euromicro International Conference on, 2013, pp. 432-436.

[48] A. Hoisie, O. Lubeck, and H. Wasserman, "Performance analysis

of wavefront algorithms on very-large scale distributed systems,"

in Workshop on wide area networks and high performance

computing, 1999, pp. 171-187.

[49] F. Sánchez Castaño, A. Ramirez, and M. Valero, "Quantitative

analysis of sequence alignment applications on multiprocessor

architectures," in Proceedings of the 6th ACM conference on

Computing frontiers, 2009, pp. 61-70.

[50] F. Sánchez, F. Cabarcas, A. Ramirez, and M. Valero, "Long DNA

sequence comparison on multicore architectures," Euro-Par 2010-

Parallel Processing, pp. 247-259, 2010.

[51] N. Alachiotis, S. Berger, T. Flouri, S. P. Pissis, and A. Stamatakis,

"libgapmis: extending short-read alignments," BMC

Bioinformatics, vol. 14, p. S4, 2013.

[52] N. Neves, N. Sebastiao, A. Patricio, D. Matos, P. Tomás, P. Flores,

et al., "BioBlaze: Multi-core SIMD ASIP for DNA sequence

alignment," in Application-Specific Systems, Architectures and

Processors (ASAP), 2013 IEEE 24th International Conference on,

2013, pp. 241-244.

[53] D. Satyanvesh, K. Balleda, and P. Baruah, "Genalign—A high

performance implementation for aligning the compressed DNA

sequences," in Advanced Computing Technologies (ICACT), 2013

15th International Conference on, 2013, pp. 1-6.

[54] N. Sebastião, G. Encarnação, and N. Roma, "Implementation and

performance analysis of efficient index structures for DNA search

algorithms in parallel platforms," Concurrency and Computation:

Practice and Experience, pp. n/a-n/a, 2012.

[55] D. Satyanvesh, K. Balleda, A. Padyana, and P. Baruah,

"GenCodex-A Novel Algorithm for Compressing DNA sequences

on Multi-cores and GPUs," in 19th IEEE International conference

on High Performance Computing., December 2012., 2012.

[56] G. Delgado and C. Aporntewan, "Data dependency reduction in

Dynamic Programming matrix," in Computer Science and

Software Engineering (JCSSE), 2011 Eighth International Joint

Conference on, 2011, pp. 234-236.

[57] F. M. Mendonca and A. C. M. A. d. Melo, "Biological Sequence

Comparison on Hybrid Platforms with Dynamic Workload

Adjustment," in Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th

International, 2013, pp. 501-509.

[58] P. Borovska, V. Gancheva, G. Dimitrov, and K. Chintov, "Parallel

performance evaluation of multithreaded local sequence

alignment," in Proceedings of the 12th International Conference

on Computer Systems and Technologies, 2011, pp. 247-252.

[59] S. Bandyopadhyay and R. Mitra, "A parallel pairwise local

sequence alignment algorithm," NanoBioscience, IEEE

Transactions on, vol. 8, pp. 139-146, 2009.

[60] NCBI. (2014, 15 Feb). National Center for Biotechnology

Information. Available: http://www.ncbi.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/

