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Abstract– Active Queue Management (AQM) employs some 

types of feedbacks to disseminate congestion information to the 

sources. Packet dropping is the most used feedback on the 

Internet. This paper discusses that an unfair dropping discipline 

leads to performance reduction, the unfair bandwidth sharing 

and the instability on the Internet. Then it proposes a fair 

dropping AQM algorithm and shows how this fairness improves 

the network performance, fairness and stability. Extensive 

packet-level simulations done in ns-2 environment, show that the 

proposed algorithm, on one hand, presents a fair bandwidth 

allocation among competitor flows and on the other hand, this 

fairness is a launcher for improved performance in terms of link 

utilization, queue size and packet drop rate.  

 

Index Terms– Fairness, Network Congestion Control and 

Active Queue Management 
 

I.    INTRODUCTION 

ONGESTION Control is one of the critical issues in 

computer networks and therefore, it has attracted a lot of 

attentions in recent years [1] – [7]. The congestion control 

mechanisms on the Internet consist of the congestion window 

algorithms of transmission control protocol (TCP), running at 

end-systems, and active queue management algorithms 

running at the routers, seeking to obtain high network 

utilization, small amounts of queuing delay, and some degree 

of fairness among users. TCP sends data packets to network 

according to additive increase multiplicative decrease 

(AIMD) algorithm [8] in which sending rate increases one 

packet per round trip time (RTT) for probing available 

bandwidth, when no congestion occurs, and multiplicatively 

decreases to half of past rate, when congestion detected in 

network. The active queue management algorithm in the 

routers is responsible for producing congestion information 

for sources. The router notifies source from network 

congestion by dropping packets or in some other ways such as 

explicit congestion notification (ECN) [9].  

RED [10] is the most famous AQM algorithm introduced to 

congestion control in 1993 (Fig. 1). After that, various works 

have been done to enhance RED's performance [11] – [16]. In 

spite of the vast amount of researches in this field, there are 

yet many problems such as stability, efficiency and fairness 

that need more attentions to be solved. Fairness, which simply 

means allocating the same share to all, has been addressed in 

some works as [17], [18]. The CHOKe proposed in [17] is a 

queue management discipline to fair bandwidth allocation 

which doesn’t require any per flow state information. This 

scheme aims to approximate the fair queuing policy and 

works with heuristic manner to decide to drop a packet during 

congestion in a random toss if it finds another packet of the 

same flow.  

The FABA [18] is a rate control based queue management 

algorithm which uses the notion of token buckets per flow for 

buffer management at the network edge. This scheme 

performs fair bandwidth allocation depend on permitted rate 

of token addition in a particular flow bucket. FABA could 

establish good fair allocation for both adaptive and non-

adaptive flows. In [22] a network rate management protocol 

(RMP) has been proposed that controls the rate of all flows 

based on the fair target rates computed by the RMP. Upon 

their suggestion, each non-TCP aggregate flow is policed by 

its respective edge router and each TCP flow adapts its rate 

according to the RMP suggested fair target rate. On the other 

hand, there are many published works that address 

performance of the Internet congestion control [19], [20], 

[21]. 

 

 
 

Fig. 1: Packet dropping function of RED 

 

As we know, TCP tunes its sending rate based on received 

feedbacks that are often in the form of dropped packets. 
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Hence, it seems that by accurately tuning of these feedbacks, 

we can direct the congestion control scheme to a stable, high-

performance, and fair operational point. In this paper we study 

the fairness issue from fair dropping point of view and discuss 

how it provides fair bandwidth allocation along with 

improved performance metrics. It proposes a modification 

over the packet dropping pattern of RED algorithm, to 

achieve a fair packet dropping scheme considering the flows' 

RTT. We show that this fair dropping scheme not only leads 

to fair bandwidth sharing among passing flows, but also it 

will have an interesting and important effect, namely, 

improved performance on individual sources as well as the 

whole network. The proposed algorithm is called, FDD-RED 

(Fair Dropping Discipline over RED). 

Rest of this paper is organized as follows. Section 2 presents 

the proposed algorithm. In section 3, we bring extensive 

packet-level simulation results and finally our conclusions are 

given in section 4. 

II.    FDD-RED: FAIR DROPPING DISCIPLINE FOR RED 

This section addresses two important issues that affect success 

of an active queue management i.e. the performance and the 

fairness. The performance can be characterized in terms of 

parameters such as utilization, queue length and packet drops 

count. The fairness, on the other hand, is an important feature 

that is pursued in any congestion control scheme. It means 

that all flows passing a bottleneck link share the same amount 

of the bandwidth.  

It is clear that packet dropping function in AQM algorithms 

affects both fairness and performance issues. A flow that 

encounters more drops will have smaller congestion window 

size and so lower sending rate and flows that encounter fewer 

drops will have more sending rate. Hence, it seems that packet 

dropping function is a place that has enough potential to 

manage fairness issue. On the other hand, packet dropping 

function affects performance metrics such as throughput and 

queue size. When a flow's packets are dropped it reduces its 

throughput and consequently the queue will be shortened.  

We believe that performance, fairness and stability of the 

network can be realized by a fair packet dropping function. In 

an unfair dropping scheme almost all flows are damaged. 

Obviously flows that encounter many drops will have low 

throughput and even may face the timeout. On the other hand, 

when these sources encounter burst drops, some other sources 

likely won't see any drop and hence they won't be informed 

about existence of the network congestion. The result is that 

they don’t contribute in the congestion control process and 

since they continue to send with current rate, in the next round 

they may be faced with many drops. The network, on the 

other hand, is damaged in existence of such unfair packet 

dropping scheme. When AQM drops many packets from a 

certain flow with congestion window size of w, for the first 

drop the source's window size will be reduced by w/2, but for 

the second drop, the reduction amount will be w/4 and for the 

third one it will be w/8. This means that in an unfair dropping 

scheme, while some sources don’t receive any reduction 

commands from the AQM, some other sources receive many 

reduction commands but their reaction to these commands 

follows a decreasing trend. In other words, unfairness leads to 

reduced efficiency of the congestion control feedbacks that 

prevents the congestion control scheme reaching its target 

such as high performance, fairness and stability. 

A short review over the existing AQM algorithms such as 

Drop tail and RED shows that they often drop burst packets 

from a small number of flows. This paper proposes an 

improvement over RED algorithm that equips it with a fair 

dropping discipline. The proposed approach, called FDD-

RED, also takes into account a well-known drawback of TCP 

i.e. its unfair behavior against flows with different RTTs and 

tries to penalize the short RTT flows that utilize more than 

their fair share. To this end it maintains a Fair Dropping 

Index, defined as (1) for some recent flows and tries to keep it 

at the same level for various flows. According to this index a 

source whose RTT is lower than average of RTTs encounters 

more drops compared to the source whose RTT is longer than 

average of RTTs. 

nifor
RTT

RTT
DropFDI

i

avg

ii ...,,2,1
 

(1) 

Where n is the number of flows that have passed through the 

queue during the last RTTavg . Dropi is the number of packets 

that have been dropped from flow i, RTTi is RTT of flow i and 

RTTavg stands for the average of RTTs of all flows passing 

from the congested link.  

Note that, there are several methods available to online 

estimation of network parameters. For example, according to 

the methods proposed in [23] – [25] the network parameters 

such as RTT and number of flow connections (n) can be 

determined, accurately. 

The detailed description of FDD-RED algorithm has been 

given in Fig. 2. Note that this algorithm keeps a limited 

amount of information only for those flows that are passing 

during the last RTTavg and hence has low overhead and is 

scalable.  

 

 

    Variables: 

1: lastDropMarkTime[]: an array for last drop/mark time; 

2: penalty[]: an array to keep penalty value of flows; 

3: RTT[]: an array to keep round trip time of flows; 

4: avgRTT: average RTT of flows; 

5: pkt: network packet; 
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    Initialization:  

1: lastDropMarkTime[] ← 0; 

2: penalty[]← 0; 

   New flow arrival function(): 

1: for a new flow (newflow) arrival 

2:  RTT[newflow] = Estimate new flow’s RTT; 

3:  avgRTT = Estimated average RTT; 

   New packet arrival function(): 

1: for each Packet(pkt) arrival from flow(flow) 

2:  Calculate_drop_probability(pkt); 

3:  if pkt must be Drop/Mark then 

4:   PenalizeFlow(flow) 

5: end for 

PenalizeFlow function(flow): 

1: fid = select flow that has latest time in lastDropMarkTime[]; 

3: penalty[flow] = penalty [flow] + avgRTT/RTT[flow]; 

4: penalty [fid]   = penalty [fid] + avgRTT / RTT[fid]; 

5: fid = select flow that has greatest value in Penalty[]; 

6: pkt = select a packet from flow (fid); 

8: penalty [fid] = penalty [fid] – 1; 

9: drop/mark(pkt); 

10: lastDropMarkTime[fid] = now; 

 

Fig. 2: The FDD-RED algorithm 
 

 

 
 

 
 

Fig. 3: The network topology 

 

III.     PACKET LEVEL SIMULATION RESULTS 

In order to evaluate the proposed algorithm, we implement 

it as an extension to RED module of ns-2 simulator [27]. We 

present a group of simulation results to demonstrate the 

validity of our design. We demonstrate through extensive 

simulations that FDD-RED outperforms RED especially in 

environments with different RTTs. Our simulations also show 

that FDD-RED drops less packets, dampens oscillations and 

smoothly converges to high utilization, small queue size and 

fair bandwidth allocation.  

A) Simulation Setup 

Our simulations use the topology in Fig. 3. The bottleneck 

capacity is 1 Mbps, and the number of flows varies according 

to the objective of the experiments. The buffer size will be 

different in various scenarios. The data packet size is 500 

bytes. Simulation duration varies depending on the 

propagation delay but is always as long as 20 seconds. All 

simulations were run long enough to ensure the system has 

reached a consistent behavior. The basic parameters of RED 

are selected as follows: minth = 25 packets, maxth = 75 

packets, maxp = 0.01 and wq = 0.002.  

We present three simulation scenarios. In the first scenario 

we study about fairness and performance of FDD-RED 

algorithm in a network with identical RTTs. Second scenario 

studies the impact of the buffer size and number of flows on 

the performance of FDD-RED and finally scenario 3 
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examines how different RTTs affect FDD-RED's behavior. In 

each scenario the network is simulated once under RED 

algorithm and then under FDD-RED algorithm to compare the 

results.  

B) Scenario 1: Fairness study for a Network with Identical 

RTTs 

In this experiment 5 long-lived flows with RTT of 100 ms 

share the bottleneck in topology of Fig. 3 and the buffer size 

is set to 100 packets in each router. Simulation results are 

given in Fig. 4 – Fig. 8. The Fig. 4 shows how the congestion 

windows of various sources evolve during the time, when the 

queue is managed by RED algorithm. This figure shows 

clearly that different congestion windows have different 

trends during the time and hence don’t follow a fair manner. 

This unfairness stems from the fact that RED drop different 

numbers of packets from various sources and hence they will 

have different window sizes. But as shown in Fig. 5 when 

router's queue is managed by FDD-RED, various congestion 

windows follow similar trends and hence converge to a fair 

point. This fairness has roots in the fair dropping function of 

FDD-RED. 

 

 

   
 

a). TCP window size in node 1 

 

b). TCP window size in node 2 

 

c). TCP window size in node 3 
 

 

 

 
 

d). TCP window size in node 4 

 

e). TCP window size in node 5 
 

Fig. 4: The congestion window size of sources with original-RED 

 
 

 

   
 

a). TCP window size in node 1 

 

b). TCP window size in node 2 

 

c). TCP window size in node 3 

 

 

 

 
 

d). TCP window size in node 4 
 
e). TCP window size in node 5 

 

Fig. 5: The congestion window size of sources with FDD-RED 
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Fig. 6, on the other hand, shows bandwidth usage of various 

flows over bottleneck link for RED and FDD-RED 

algorithms. Fig. 6 (a) shows that under governance of RED, 

various sources use different amounts of bandwidth, but as 

shown in Fig. 6 (b), in case of FDD-RED throughput the 

various sources are near to the fair amount.  
 

 
 

a). unfair bandwidth allocation by original RED 

 
 

 
 

b). fair bandwidth usage by FDD-RED 
 

Fig. 6: Bandwidth allocations for sources (a) original-RED (b) FDD-RED 

 
 

 
 

Fig. 7: Average throughputs for flows 

 

Although fairness of FDD-RED was expected due to its fair 

dropping function, simulation results show another important 

achievement for FDD-RED i.e., its high performance in 

compared with RED. Average throughput of RED and FDD-

RED have been given in Fig. 7 according to which FDD-RED 

exhibits more fair behavior and its throughput for various 

flows are identical approximately. Throughput of the 

bottleneck link has been given in Fig. 8 for RED and FDD-

RED algorithms. This figure shows that FDD-RED converges 

more rapidly to a steady-state in which the bottleneck is fully 

utilized. 

 

 
 

Fig. 8: Bottleneck link throughputs 

 

Fig. 9 shows instantaneous queue length in bottlenecked 

link for both RED and FDD-RED. It can be observed that fair 

behavior of queue management discipline could affect 

stability of queue length. The queue length fluctuation in 

FDD-RED is obviously lower than original RED that has 

been shown in Fig. 9 (a) and Fig. 9 (b). 
 

 
 

a). RED's queue evolution 

 

 
 

b). FDD-RED's queue evolution 

 

Fig. 9: Instantaneous queue lengths for (a) original-RED (b) FDD-RED 
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Table 1 compares number of packets dropped by RED and 

FDD-RED algorithms. It shows that RED drops more packets 

than FDD-RED algorithm. Since FDD-RED drops packets 

uniformly from all passing flows then its feedbacks will be 

timely and efficient. Consequently there will be no need to 

further feedbacks in form of more dropped packets.  

 
Table 1: Packet dropping for different RTTs 

  

Algorithm total dropped 

(packet) 

avg. dropping rate 

(packet/s) 

RED 149 7.45  

FDD-RED 67 3.35 

 

C) Scenario 2: Effect of Flows’ Number and Buffer Capacity 

This experiment fixes the bottleneck bandwidth at 1 Mbps 

and RTT at 100 ms and repeats the simulation by various 

numbers of FTP sources and different buffer sizes. Other 

parameters have the same values used in the previous 

experiment. Fig. 10 shows the number of dropped packets for 

different buffer sizes ranging from 10 to 200 packets. 

According to this figure, FDD-RED drops fewer packets 

compared with RED. Fig. 11, on the other hand, shows the 

dropped packets number for various flow numbers ranging 

from 5 to 100 flows. Again it can be found that FDD-RED 

has lower drop count than RED algorithm for different flow 

numbers.  
 

 
 

Fig. 10: Dropped packet versus buffer size 

 
 

Fig. 11: Dropped packet versus flows number 
 

D) Scenario 3: Effect of Heterogeneous RTTs 

In this scenario the network setup is as in scenario 1, except 

that it considers heterogeneous RTTs to study about fairness 

of the proposed algorithm. For this purpose we consider two 

experiments. In the first experiment all flows have same RTT 

of 100 ms, but in the second scenario the five flows have RTT 

values 20 ms, 40 ms, 60 ms, 80 ms and 100 ms. In both 

experiments the network is simulated once under FDD-RED 

algorithm and then under RED algorithm and we measure 

their fairness by using Jain’s fairness index (FI) [26] shown in 

equation (2). 

 







n

i i

n

i i

xn

x
FI

1

2

2

1

*
   

 (2) 

 

Where n is the number of current flows and xi is the average 

throughput of flow i. Value of FI is always no more than 1 

and its larger value indicates better fairness performance. For 

example when all the competing flows in a network achieve 

definitely equivalent throughput, FI will be equal to 1.  

Table 2 shows the simulation results. In both experiment, 

FDD-RED is fairer than RED algorithm and exhibits better 

performance in terms of flows throughput and bottleneck 

utilization. This better performance results from the decreased 

drop rate.  

 
Table 2: The simulation result for FI 

 

 Homogeneous RTT Heterogeneous  RTT 

 RTT Original-RED FDD-RED RTT Original-RED FDD-RED 

Flow0 100 ms 203056 bps 186856 bps 20 ms 295936 bps 306304 bps 

Flow1 100 ms 244312 bps 195928 bps 40 ms 202840 bps 212128 bps 

Flow2 100 ms 182320 bps 185704 bps 60 ms 161800 bps 189232 bps 

Flow3 100 ms 196576 bps 219600 bps 80 ms 244528 bps 168496 bps 

Flow4 100 ms 151216 bps 199976 bps 100 ms 89224 bps 124496 bps 

Average flows' 

Throughput 
- 195496 bps 197612 bps - 198865 bps 200131 bps 

Aggregated 

Throughput 
- 977480 bps 988064 bps - 994328 bps 1000656 bps 

FI - 0.967 0.996 - 0.888 0.901 
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IV.    CONCLUSION 

This paper studied the Internet congestion control scheme 

from a novel perspective and proposed that an appropriate 

packet dropping function can direct the congestion control 

scheme to its targets. Based on this idea, it proposed a fair 

packet dropping discipline which distributes dropped packets 

uniformly among various sources considering their RTT. We 

implemented the proposed model in ns-2 environment by a 

modification over RED module. Simulation results showed 

that the proposed algorithm not only is fairer than RED 

algorithm but also outperforms RED in terms of throughput, 

utilization, number of dropped packets, queue size and even 

stability. 
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