
52 International Journal of Computer Science and Telecommunications [Volume 5, Issue 4, April 2014]

Journal Homepage: www.ijcst.org

Seyyed Nasser Seyyed Hashemi
1
, Shahram Jamali

2
 and Hadi Motarez

3

1
Young Researchers Club, Ardabil branch, Islamic Azad University, Ardabil, Iran

2
Department of Computer Engineering, Mohaghegh Ardabili University, Ardabil, Iran

3
Department of Computer Engineering, Tabriz branch, Islamic Azad University, Tabriz, Iran

1
naser_seyed_hashemi@yahoo.com,

2
jamali@iust.ac.ir,

3
h.motarez@gmail.com

Abstract– Active Queue Management (AQM) employs some

types of feedbacks to disseminate congestion information to the

sources. Packet dropping is the most used feedback on the

Internet. This paper discusses that an unfair dropping discipline

leads to performance reduction, the unfair bandwidth sharing

and the instability on the Internet. Then it proposes a fair

dropping AQM algorithm and shows how this fairness improves

the network performance, fairness and stability. Extensive

packet-level simulations done in ns-2 environment, show that the

proposed algorithm, on one hand, presents a fair bandwidth

allocation among competitor flows and on the other hand, this

fairness is a launcher for improved performance in terms of link

utilization, queue size and packet drop rate.

Index Terms– Fairness, Network Congestion Control and

Active Queue Management

I. INTRODUCTION

ONGESTION Control is one of the critical issues in

computer networks and therefore, it has attracted a lot of

attentions in recent years [1] – [7]. The congestion control

mechanisms on the Internet consist of the congestion window

algorithms of transmission control protocol (TCP), running at

end-systems, and active queue management algorithms

running at the routers, seeking to obtain high network

utilization, small amounts of queuing delay, and some degree

of fairness among users. TCP sends data packets to network

according to additive increase multiplicative decrease

(AIMD) algorithm [8] in which sending rate increases one

packet per round trip time (RTT) for probing available

bandwidth, when no congestion occurs, and multiplicatively

decreases to half of past rate, when congestion detected in

network. The active queue management algorithm in the

routers is responsible for producing congestion information

for sources. The router notifies source from network

congestion by dropping packets or in some other ways such as

explicit congestion notification (ECN) [9].

RED [10] is the most famous AQM algorithm introduced to

congestion control in 1993 (Fig. 1). After that, various works

have been done to enhance RED's performance [11] – [16]. In

spite of the vast amount of researches in this field, there are

yet many problems such as stability, efficiency and fairness

that need more attentions to be solved. Fairness, which simply

means allocating the same share to all, has been addressed in

some works as [17], [18]. The CHOKe proposed in [17] is a

queue management discipline to fair bandwidth allocation

which doesn’t require any per flow state information. This

scheme aims to approximate the fair queuing policy and

works with heuristic manner to decide to drop a packet during

congestion in a random toss if it finds another packet of the

same flow.

The FABA [18] is a rate control based queue management

algorithm which uses the notion of token buckets per flow for

buffer management at the network edge. This scheme

performs fair bandwidth allocation depend on permitted rate

of token addition in a particular flow bucket. FABA could

establish good fair allocation for both adaptive and non-

adaptive flows. In [22] a network rate management protocol

(RMP) has been proposed that controls the rate of all flows

based on the fair target rates computed by the RMP. Upon

their suggestion, each non-TCP aggregate flow is policed by

its respective edge router and each TCP flow adapts its rate

according to the RMP suggested fair target rate. On the other

hand, there are many published works that address

performance of the Internet congestion control [19], [20],

[21].

Fig. 1: Packet dropping function of RED

As we know, TCP tunes its sending rate based on received

feedbacks that are often in the form of dropped packets.

C

A High-Performance Router: Using Fair-Dropping Policy

ISSN 2047-3338

52 Seyyed Nasser Seyyed Hashemi et al.

Hence, it seems that by accurately tuning of these feedbacks,

we can direct the congestion control scheme to a stable, high-

performance, and fair operational point. In this paper we study

the fairness issue from fair dropping point of view and discuss

how it provides fair bandwidth allocation along with

improved performance metrics. It proposes a modification

over the packet dropping pattern of RED algorithm, to

achieve a fair packet dropping scheme considering the flows'

RTT. We show that this fair dropping scheme not only leads

to fair bandwidth sharing among passing flows, but also it

will have an interesting and important effect, namely,

improved performance on individual sources as well as the

whole network. The proposed algorithm is called, FDD-RED

(Fair Dropping Discipline over RED).

Rest of this paper is organized as follows. Section 2 presents

the proposed algorithm. In section 3, we bring extensive

packet-level simulation results and finally our conclusions are

given in section 4.

II. FDD-RED: FAIR DROPPING DISCIPLINE FOR RED

This section addresses two important issues that affect success

of an active queue management i.e. the performance and the

fairness. The performance can be characterized in terms of

parameters such as utilization, queue length and packet drops

count. The fairness, on the other hand, is an important feature

that is pursued in any congestion control scheme. It means

that all flows passing a bottleneck link share the same amount

of the bandwidth.

It is clear that packet dropping function in AQM algorithms

affects both fairness and performance issues. A flow that

encounters more drops will have smaller congestion window

size and so lower sending rate and flows that encounter fewer

drops will have more sending rate. Hence, it seems that packet

dropping function is a place that has enough potential to

manage fairness issue. On the other hand, packet dropping

function affects performance metrics such as throughput and

queue size. When a flow's packets are dropped it reduces its

throughput and consequently the queue will be shortened.

We believe that performance, fairness and stability of the

network can be realized by a fair packet dropping function. In

an unfair dropping scheme almost all flows are damaged.

Obviously flows that encounter many drops will have low

throughput and even may face the timeout. On the other hand,

when these sources encounter burst drops, some other sources

likely won't see any drop and hence they won't be informed

about existence of the network congestion. The result is that

they don’t contribute in the congestion control process and

since they continue to send with current rate, in the next round

they may be faced with many drops. The network, on the

other hand, is damaged in existence of such unfair packet

dropping scheme. When AQM drops many packets from a

certain flow with congestion window size of w, for the first

drop the source's window size will be reduced by w/2, but for

the second drop, the reduction amount will be w/4 and for the

third one it will be w/8. This means that in an unfair dropping

scheme, while some sources don’t receive any reduction

commands from the AQM, some other sources receive many

reduction commands but their reaction to these commands

follows a decreasing trend. In other words, unfairness leads to

reduced efficiency of the congestion control feedbacks that

prevents the congestion control scheme reaching its target

such as high performance, fairness and stability.

A short review over the existing AQM algorithms such as

Drop tail and RED shows that they often drop burst packets

from a small number of flows. This paper proposes an

improvement over RED algorithm that equips it with a fair

dropping discipline. The proposed approach, called FDD-

RED, also takes into account a well-known drawback of TCP

i.e. its unfair behavior against flows with different RTTs and

tries to penalize the short RTT flows that utilize more than

their fair share. To this end it maintains a Fair Dropping

Index, defined as (1) for some recent flows and tries to keep it

at the same level for various flows. According to this index a

source whose RTT is lower than average of RTTs encounters

more drops compared to the source whose RTT is longer than

average of RTTs.

nifor
RTT

RTT
DropFDI

i

avg

ii ...,,2,1

(1)

Where n is the number of flows that have passed through the

queue during the last RTTavg . Dropi is the number of packets

that have been dropped from flow i, RTTi is RTT of flow i and

RTTavg stands for the average of RTTs of all flows passing

from the congested link.

Note that, there are several methods available to online

estimation of network parameters. For example, according to

the methods proposed in [23] – [25] the network parameters

such as RTT and number of flow connections (n) can be

determined, accurately.

The detailed description of FDD-RED algorithm has been

given in Fig. 2. Note that this algorithm keeps a limited

amount of information only for those flows that are passing

during the last RTTavg and hence has low overhead and is

scalable.

 Variables:

1: lastDropMarkTime[]: an array for last drop/mark time;

2: penalty[]: an array to keep penalty value of flows;

3: RTT[]: an array to keep round trip time of flows;

4: avgRTT: average RTT of flows;

5: pkt: network packet;

52 International Journal of Computer Science and Telecommunications [Volume 5, Issue 4, April 2014]

 Initialization:

1: lastDropMarkTime[] ← 0;

2: penalty[]← 0;

 New flow arrival function():

1: for a new flow (newflow) arrival

2: RTT[newflow] = Estimate new flow’s RTT;

3: avgRTT = Estimated average RTT;

 New packet arrival function():

1: for each Packet(pkt) arrival from flow(flow)

2: Calculate_drop_probability(pkt);

3: if pkt must be Drop/Mark then

4: PenalizeFlow(flow)

5: end for

PenalizeFlow function(flow):

1: fid = select flow that has latest time in lastDropMarkTime[];

3: penalty[flow] = penalty [flow] + avgRTT/RTT[flow];

4: penalty [fid] = penalty [fid] + avgRTT / RTT[fid];

5: fid = select flow that has greatest value in Penalty[];

6: pkt = select a packet from flow (fid);

8: penalty [fid] = penalty [fid] – 1;

9: drop/mark(pkt);

10: lastDropMarkTime[fid] = now;

Fig. 2: The FDD-RED algorithm

Fig. 3: The network topology

III. PACKET LEVEL SIMULATION RESULTS

In order to evaluate the proposed algorithm, we implement

it as an extension to RED module of ns-2 simulator [27]. We

present a group of simulation results to demonstrate the

validity of our design. We demonstrate through extensive

simulations that FDD-RED outperforms RED especially in

environments with different RTTs. Our simulations also show

that FDD-RED drops less packets, dampens oscillations and

smoothly converges to high utilization, small queue size and

fair bandwidth allocation.

A) Simulation Setup

Our simulations use the topology in Fig. 3. The bottleneck

capacity is 1 Mbps, and the number of flows varies according

to the objective of the experiments. The buffer size will be

different in various scenarios. The data packet size is 500

bytes. Simulation duration varies depending on the

propagation delay but is always as long as 20 seconds. All

simulations were run long enough to ensure the system has

reached a consistent behavior. The basic parameters of RED

are selected as follows: minth = 25 packets, maxth = 75

packets, maxp = 0.01 and wq = 0.002.

We present three simulation scenarios. In the first scenario

we study about fairness and performance of FDD-RED

algorithm in a network with identical RTTs. Second scenario

studies the impact of the buffer size and number of flows on

the performance of FDD-RED and finally scenario 3

52 Seyyed Nasser Seyyed Hashemi et al.

examines how different RTTs affect FDD-RED's behavior. In

each scenario the network is simulated once under RED

algorithm and then under FDD-RED algorithm to compare the

results.

B) Scenario 1: Fairness study for a Network with Identical

RTTs

In this experiment 5 long-lived flows with RTT of 100 ms

share the bottleneck in topology of Fig. 3 and the buffer size

is set to 100 packets in each router. Simulation results are

given in Fig. 4 – Fig. 8. The Fig. 4 shows how the congestion

windows of various sources evolve during the time, when the

queue is managed by RED algorithm. This figure shows

clearly that different congestion windows have different

trends during the time and hence don’t follow a fair manner.

This unfairness stems from the fact that RED drop different

numbers of packets from various sources and hence they will

have different window sizes. But as shown in Fig. 5 when

router's queue is managed by FDD-RED, various congestion

windows follow similar trends and hence converge to a fair

point. This fairness has roots in the fair dropping function of

FDD-RED.

a). TCP window size in node 1

b). TCP window size in node 2

c). TCP window size in node 3

d). TCP window size in node 4

e). TCP window size in node 5

Fig. 4: The congestion window size of sources with original-RED

a). TCP window size in node 1

b). TCP window size in node 2

c). TCP window size in node 3

d). TCP window size in node 4

e). TCP window size in node 5

Fig. 5: The congestion window size of sources with FDD-RED

52 International Journal of Computer Science and Telecommunications [Volume 5, Issue 4, April 2014]

Fig. 6, on the other hand, shows bandwidth usage of various

flows over bottleneck link for RED and FDD-RED

algorithms. Fig. 6 (a) shows that under governance of RED,

various sources use different amounts of bandwidth, but as

shown in Fig. 6 (b), in case of FDD-RED throughput the

various sources are near to the fair amount.

a). unfair bandwidth allocation by original RED

b). fair bandwidth usage by FDD-RED

Fig. 6: Bandwidth allocations for sources (a) original-RED (b) FDD-RED

Fig. 7: Average throughputs for flows

Although fairness of FDD-RED was expected due to its fair

dropping function, simulation results show another important

achievement for FDD-RED i.e., its high performance in

compared with RED. Average throughput of RED and FDD-

RED have been given in Fig. 7 according to which FDD-RED

exhibits more fair behavior and its throughput for various

flows are identical approximately. Throughput of the

bottleneck link has been given in Fig. 8 for RED and FDD-

RED algorithms. This figure shows that FDD-RED converges

more rapidly to a steady-state in which the bottleneck is fully

utilized.

Fig. 8: Bottleneck link throughputs

Fig. 9 shows instantaneous queue length in bottlenecked

link for both RED and FDD-RED. It can be observed that fair

behavior of queue management discipline could affect

stability of queue length. The queue length fluctuation in

FDD-RED is obviously lower than original RED that has

been shown in Fig. 9 (a) and Fig. 9 (b).

a). RED's queue evolution

b). FDD-RED's queue evolution

Fig. 9: Instantaneous queue lengths for (a) original-RED (b) FDD-RED

03 Seyyed Nasser Seyyed Hashemi et al.

Table 1 compares number of packets dropped by RED and

FDD-RED algorithms. It shows that RED drops more packets

than FDD-RED algorithm. Since FDD-RED drops packets

uniformly from all passing flows then its feedbacks will be

timely and efficient. Consequently there will be no need to

further feedbacks in form of more dropped packets.

Table 1: Packet dropping for different RTTs

Algorithm total dropped

(packet)

avg. dropping rate

(packet/s)

RED 149 7.45

FDD-RED 67 3.35

C) Scenario 2: Effect of Flows’ Number and Buffer Capacity

This experiment fixes the bottleneck bandwidth at 1 Mbps

and RTT at 100 ms and repeats the simulation by various

numbers of FTP sources and different buffer sizes. Other

parameters have the same values used in the previous

experiment. Fig. 10 shows the number of dropped packets for

different buffer sizes ranging from 10 to 200 packets.

According to this figure, FDD-RED drops fewer packets

compared with RED. Fig. 11, on the other hand, shows the

dropped packets number for various flow numbers ranging

from 5 to 100 flows. Again it can be found that FDD-RED

has lower drop count than RED algorithm for different flow

numbers.

Fig. 10: Dropped packet versus buffer size

Fig. 11: Dropped packet versus flows number

D) Scenario 3: Effect of Heterogeneous RTTs

In this scenario the network setup is as in scenario 1, except

that it considers heterogeneous RTTs to study about fairness

of the proposed algorithm. For this purpose we consider two

experiments. In the first experiment all flows have same RTT

of 100 ms, but in the second scenario the five flows have RTT

values 20 ms, 40 ms, 60 ms, 80 ms and 100 ms. In both

experiments the network is simulated once under FDD-RED

algorithm and then under RED algorithm and we measure

their fairness by using Jain’s fairness index (FI) [26] shown in

equation (2).

 







n

i i

n

i i

xn

x
FI

1

2

2

1

*

 (2)

Where n is the number of current flows and xi is the average

throughput of flow i. Value of FI is always no more than 1

and its larger value indicates better fairness performance. For

example when all the competing flows in a network achieve

definitely equivalent throughput, FI will be equal to 1.

Table 2 shows the simulation results. In both experiment,

FDD-RED is fairer than RED algorithm and exhibits better

performance in terms of flows throughput and bottleneck

utilization. This better performance results from the decreased

drop rate.

Table 2: The simulation result for FI

 Homogeneous RTT Heterogeneous RTT

 RTT Original-RED FDD-RED RTT Original-RED FDD-RED

Flow0 100 ms 203056 bps 186856 bps 20 ms 295936 bps 306304 bps

Flow1 100 ms 244312 bps 195928 bps 40 ms 202840 bps 212128 bps

Flow2 100 ms 182320 bps 185704 bps 60 ms 161800 bps 189232 bps

Flow3 100 ms 196576 bps 219600 bps 80 ms 244528 bps 168496 bps

Flow4 100 ms 151216 bps 199976 bps 100 ms 89224 bps 124496 bps

Average flows'

Throughput
- 195496 bps 197612 bps - 198865 bps 200131 bps

Aggregated

Throughput
- 977480 bps 988064 bps - 994328 bps 1000656 bps

FI - 0.967 0.996 - 0.888 0.901

03 International Journal of Computer Science and Telecommunications [Volume 5, Issue 4, April 2014]

IV. CONCLUSION

This paper studied the Internet congestion control scheme

from a novel perspective and proposed that an appropriate

packet dropping function can direct the congestion control

scheme to its targets. Based on this idea, it proposed a fair

packet dropping discipline which distributes dropped packets

uniformly among various sources considering their RTT. We

implemented the proposed model in ns-2 environment by a

modification over RED module. Simulation results showed

that the proposed algorithm not only is fairer than RED

algorithm but also outperforms RED in terms of throughput,

utilization, number of dropped packets, queue size and even

stability.

REFERENCES

[1]. Wang, J. (2005), A Theoretical Study of Internet Congestion

Control: Equilibrium and Dynamics, PhD thesis, university of

Caltech.

[2]. Guo, S. Liao, X. Li, C. (2008), stability and hopf bifurcation

analysis in a novel congestion control model with communication

delay. Nonlinear Analysis: Real World Applications, 9, 1292-

1309.

[3]. Analoui, M. Jamali, S. (2007), Congestion Control In the Internet:

Inspiration from Balanced Food Chains In the Nature. Springer

Journal of Network and System Management, 16, 1-10.

[4]. Jamali, S. Analoui, M. (2011), Globally Stable and High-

Performance Internet Congestion Control through a

Computational Inspiration from Nature, Springer Journal

Information science, Science in China, 54, 6, 1251-1263.

[5]. Wang, X. Eun, D. (2007), Local and global stability of TCP-

newReno/RED with many flows. Computer Communications, 30,

1091-1105.

[6]. Pei, L. Mu, X. Wang, R. Yang, J. (2011), Dynamics of the internet

TCP-RED congestion control system. Nonlinear Analysis: Real

World Applications, 12, 947-955.

[7]. Liu, F. Guan, Z. Wang, H. (2010), Controlling bifucations and

chaos in TCP-UDP-RED. Nonlinear Analysis: Real World

Applications, 11, 1491-1501.

[8]. Chiu, D. Jain, R. (1989), Analysis of the increase and decrease

algorithms for congestion avoidance in computer networks.

Computer Networks and ISDN Systems, 17, 1, 1–14.

[9]. Floyd, S. (1994), TCP and Explicit Congestion Notification. ACM

Computer Communication Review, 24, 10-23.

[10]. Floyd, S. Jacobson, V. (1993), Random early detection gateways

for congestion avoidance. IEEE/ACM Transactions Networking, 1,

4, 397-413.

[11]. Chen, W. Yang, S. (2009), The mechanism of adapting RED

parameters to TCP traffic. Computer Communication, 32, 1525-

1530.

[12]. Abbasov, B. Korukoglu, S. (2009), Effective RED: an algorithm

to improve RED's performance by reducing packet loss rate.

Journal of the Network and computer Applications, 32, 703-709.

[13]. Zhou, K. Yeung, L. Li, K. (2006), Nonlinear RED: A simple yet

efficient active queue management scheme. Computer Networks,

50, 3784-3794.

[14]. Xiong, N. Visilakos, V. Yang, T. Wang, Ch. (2010), A novel self-

tuning feedback controller for active queue management

supporting TCP flows. Information Sciences, 180, 2249-2263.

[15]. Cho, H. Fadali, S. Lee, H. (2008), Adaptive neural queue

management for TCP networks. Computers and Electrical

Engineering, 34, 447-469.

[16]. Athuraliya, S. Li, V. Low, S. Yin, Q. (2001), REM: active queue

management. IEEE Network, 15, 3, 48–53.

[17]. Pan, R. Prabhakar, B. Psounis, K. (2000), CHOKe: a stateless

active queue management scheme for approximating fair

bandwidth allocation, In Proceedings of IEEE INFOCOM2000,

Tel-Aviv, Israel, 26–30.

[18]. Kamra, A. Saran, H. Sen, S. Shorey, R. (2004), Fair adaptive

bandwidth allocation: a rate control based active queue

management discipline. Computer Networks, 44, 135-152.

[19]. Wu, H. Ren, F. Mu, D. Gong, X. (2009), An efficient and fair

explicit congestion control protocol for high bandwidth-delay

product networks. Computer Communications, 32, 1138-1147.

[20]. Sall, C. Alaoui, E. Doubabi, S. Warraki, E. (2011), Design of a

robust digital controller for congestion control in Internet.

Simulation Modeling Practice and Theory, 19, 301-313.

[21]. Barrera, I. Arce, G. Bohacek, S. (2011), Statistical approach for

congestion control in gateway routers. Computer Networks, 55,

572-582.

[22]. Rosberg, Z. Matthews, J. Zukerman, M. (2010), A network rate

management protocol with TCP congestion control and fairness

for all. Computer Networks, 54, 1358-1374.

[23]. Karn, P. Partridge, C. (1995), Improving round-trip time estimates

in reliable transport protocols. ACM Computer Communication

Review, 25, 1, 66-74.

[24]. Ott, T. Lakshman, T. Wong, L. (1999), SRED: stable RED, In

Proceedings of IEEE INFOCOM, NY, 3, 1346-1355.

[25]. Zhang, H. Hollot, C. Towsley, D. Misra, V. (2003), A self-tuning

structure for adaptation in TCP/AQM networks. ACM Sigmetrics

Performance Evaluation Review, 31, 1, 302-303.

[26]. Jain, R. Chiu, D. Hawe, W. (1984), A quantitative measure of

fairness and discrimination for resource allocation in shared

computer systems. DEC Research Report TR-301.

[27]. UCN/LBL/VINT, Network Simulator-NS2, <http://-

mash.cs.berkelay.edu/ns>.

 Seyyed Nasser Seyyed Hashemi is research

member of Young Researchers Club (BPJ) of

Islamic Azad University, Ardabil branch. He

received his M.SC from Islamic Azad

University of Qazvin in 2012. His research

interests are as follow: Computer Networks,

Congestion Control, Transport Protocols,

AQM and also Routing Protocols.

 Shahram Jamali is an assistant professor

leading the Autonomic Networking Group at

the Department of Engineering, University of

Mohaghegh Ardabili. He teaches on computer

networks, network security, computer

architecture and computer syetems

performance evaluation. Dr. Jamali received

his M.Sc. and Ph.D. degree from the Dept. of

Computer Engineering, Iran University of

Science and Technology in 2001 and 2007, respectively. His

research interests are computer networks and communication

systems.

 Hadi Motarez received his M.SC from

Islamic Azad University of Tabriz in 2014.

His research interests are computer network

and grid computing.

