
International Journal of Computer Science and Telecommunications [Volume 5, Issue 3, March 2014] 9

Journal Homepage: www.ijcst.org

Hammad Ali Butt
1
, Junaid Arshad

2
 and Ehsan-ul-Haq

3

1,2,3
University of Engineering & Technology, Lahore

Abstract—In this study, we are discussing our experiences and

challenges we faced during the development of an Auto-

configuration Server (ACS) for TR-069 protocol. During the

development we studied many open-source products regarding

ACS. We learned and analyzed them and used some of code in

our project. During study we found that those products are not

developed maturely and also not properly documented, so we

need to go through the project by understanding the source code

to find out the product architecture and process flow. This paper

also discusses how we faced those challenges and solve the by

using different software engineering techniques. We studied

architecture of one the best product among the list and how we

change it into real time product for industry. We are sharing

those experiences that are helpful and provide some guidance for

others who are planning to develop such kind of system.

Index Terms— Auto-configuration Server, Open-Source

Software, Software Engineering Tools & Techniques and TR-069

I. INTRODUCTION

HE life cycle of large scale open source projects is very

long and multiple developers are involved in development

process [1]. The development of open source projects

goes through several phases like code-level peer reviews and

field testing [2], [3]. The process of bugs fixing and

highlighting is very rapid as so many people are involved in

using, developing and experimenting with these software [4].

The interest of the developers also fluctuates over time. The

other important thing is the availability of the documentation

of the existing system. If the documentation is not available or

is not in proper form then the developer finds it very difficult

to participate in development community. For this purpose of

case study we take an example of a server which we

developed, this server which allow service provider to manage

their devices remotely.

A. Auto Configuration Server

The Automatic Configuration Server (ACS) is software that

is used for managing the TR-069 enabled devices and their

statistics [5]. These devices are Customer Premises Equipment

(CPEs) that are provided by the service providers to their

customers for getting access to the Internet [7]. The service

providers need monitoring and management of their CPEs.

These management and monitoring tasks include recording the

statistics, updating the configurations of CPEs, upgrading

firmware on CPEs.

B. TR-069

TR 069 is a technical specification is defined by Broadband

Forum [5] [6]. It is also known as CPE WAN Management

Protocol (CWMP). It defines that how CPEs will communicate

with ACS server and how ACS manages CPEs remotely. Both

ACS and CPE communicate based on bidirectional

SOAP/HTTP messages.

II. CASE STUDY

One of the leading broadband services providing company

of Pakistan approached our organization for the purpose of

development of ACS according to their custom requirements.

The customer required to manage the CPEs in an automated

and efficient way. The company required an ACS for

managing their 10’s of thousands of CPEs, recording their

stats, generating reports and updating the firmware on their

devices. The initial requirement of the company was to

implement the ACS for CPEs working on TR069 protocol

which can manage up to 30,000 CPEs initially and they wanted

to extend 100,000 CPEs.

We started our research by finding the existing open source

ACS for TR069 protocol. They were very few open-source

ACS that we found on Internet, all of them are just only the

complete or even partial implementation of TR-069 protocol

[15]. No product was able to bear actual deployment load

under real circumstances. But after initial version of Open

ACS, it’s been improved a lot in newer version. It’s not only

the most matured product then all but also addresses scalability

issue. Product documentation is poor as others but a lot of

deployment help and material is available. Also many

researchers showed their confidence to use this product for

their experiment validation [24], [26].

 clj. TR-069

 Perl CWMP

 Open ACS

 Grail ACS

 jCWMP Server

T

A Case Study: Development of Auto-configuration

Server

ISSN 2047-3338

Hammad Ali Butt et al. 10

 freeacs-ng

 TR-069 D-Link

Here is a comparison in Table 1 between these open source

ACS servers mentioned above.

Table 1: Comparison between open-source ACS

ACS Server Implementation Scalable GUI Documentation Language

clj. TR-069 [8] Partial    Clojure

Perl CWMP [9] Basic   Basic Perl

Open ACS [10]    Basic Java

Grail ACS [11] Basic    Groovy

jCWMP Server [12] ×    Java, php

Freeacs-ng [13] partial Not now Not now  SCGI

TR-069 D-Link [14]
 (but only for

D-Link clients)
   Java

We started working on ACS in 2010, at that time only the

initial version of open ACS was available. In initial of version

Open ACS GUI was not well matured and also scalability

issue was not addressed till then also many functional

operations were needed to be automated. After selecting

OpenACS we understood the working of TR069 protocol. The

next step was to code the server software for this purpose we

picked the desired code portions from the OpenACS and

designed architecture for real time load.

We use java technologies to develop our product.

Programing language was java and application server was

glassfish server, JMS queue is used for buffering the request

on server during peak time. MySQL is used as DBMS. All

tools and technologies are free and open-source.

The figure below is representing the architecture of the

TR069 Server as developed by us. Server and CPE

communicate with each other by exchanging SOAP Messages.

Server receive request from CPEs, then identify the type of the

message and sends a predefine response message according to

request or requirement. The patterns of request and response

messages are defined in TR069 protocol.

Fig. 1: Auto-configuration Server Architectures

Those response messages contain the information regarding

which method is to be invoked and for some methods it

contains the parameters and their values. The received

messages can be a message that contains CPE statistics or

response of any invoked method. CPEs are configured to send

their information to a server after some defined interval of

time. In our case one CPE sends its statistics after every fifteen

minute. If each informs request average is equal to 5KB to

5.5KB then 30, 000 CPE can generate traffic 150 MB of real-

time textual data during the interval approximately. Some

other requests which are far-more greater than inform request

is not considered. Currently, more than 200,000 CPEs are

registered on the server. We know CPE is a machine so its

need proper response of request after some interval of time

otherwise CPE may behave abnormally. Some CPE refuse to

send their statistics until next reboot other generate lot of

traffic with similar information on the server. So server should

be responsive in peak load as well in normal circumstances.

III. DEVELOPMENT EXPERIENCES AND

SUGGESTIONS

In this section, we are presenting our experiences that we

faced during the process of the development of the ACS. We

are reporting here the suggestions for the avoiding the

problems that we faced during the course of development.

A. Understand the legacy code

There is a lot of legacy code available on the Internet

without proper documentation. Those codes might be helpful

for many software engineers or developers but understand that

code might be complex and time consuming. Developer can

reverse engineer the code of product and can extract design of

the code by using existing software engineering techniques and

tool to understand code [18]. There are some logical and

software engineering technique and methodologies to

understand code

 Static code analysis (Like call graphs provide flow of the

program) [16].

 Dynamic code analysis (Like profilers provide

performance analysis) [17].

 Divide and Conquer (By inducing simplicity)

 Error messages (Review error messages document to

understand reason of errors) [1].

 Logging and Printing (Generate proper log in system if

missing, they also provide valuable information and

provide system state during execution) [23].

 Debugging (Many free debugging tools provide

forward/reverse debugging and real time footprint of the

software)

B. Robustness

As we discuss earlier that CPEs are machine which sends

data to server after some specific interval of time and during

peak time we cannot make CPEs that do not send more request

until ACS become free. And if we deny those request CPEs

may respond abnormally, which may be worse than normal

International Journal of Computer Science and Telecommunications [Volume 5, Issue 3, March 2014] 11

behavior.

The server that we have developed was required to be

robust enough as the company was planning to increase their

devices in future. The traffic load in initial stages was also

very high and the requirement was to design the architecture

that can handle the rapidly increasing traffic load in the future.

Designing a server for such devices it should be first priority to

plan the architecture in such a way that makes the server

robust. To manage such load we add a buffer between request

receiving and its processing module. So, if in peak time the

receiving requests are more than process requests then it

provide a cushion between both modules. In off-peak time

when number of receiving request are no more greater than

the number of process request in system then buffer will

become freed gradually. Also we made server communication

with database asynchronous, which helps application server to

become more responsive.

C. Scalability

OpenACS initial version was very limited; it only provided

simple implementation of the TR-069 protocol generically. It

was not designed for any specific product. There is no option

to handle vendor specific attributes in data model if devices

belong to different vendors. Also it was not designed to bear

load of CPEs when they are large in number.

The CPEs from other hardware vendors were supposed to

be added in the system. Initially, we have developed server for

Gemtek devices and after some time Motorola, ZyXEL and

sagecom were added. So the new ACS server should be

scalable which can add more feature and devices and should

allow different vendors CPE to be register on server easily.

D. Playing with real hardware

During the development we found that there some devices

from different vendors some of them also provide ACS

services to their customers. So implementation protocol to

communicate with server is not as exact, as defined in the

specification of TR-06 protocol. Some vendors defined their

own flow of communication and some has different data

model. We needed a server which not only implement TR-069

server protocol but able to handle all requests from different

CPEs smoothly and transparently.

E. Database Design

Data is predefined and insertion is automated so chances of

anomalies are limited also in the trade-off between

performance verses quality, we focused more on performance

because in this type of environment, the performance of the

application is important than the database integrity.

So, if database de-normalization and results in maximizing

the performance of the application then it can be done [19],

[20]. The other important thing is to shift the load from

application server to DBMS as much as possible by handling

transaction using store-procedure and triggers. The stored

procedure and trigger runs on DMBS which tends to reduce

the load from application server. The application server will

remain busy with CPE request management, instead of doing

transactions with DBMS server.

Reporting of such system also generates load on system

because data is huge so data processing will take time to

generate reports. So for routine reports, developer should

provide facility of precompiled report and user just has to

download rather than to generate each time when he needed.

For customer support user only need real time data or latest

data and old data in database is always for analytical purpose.

So, it is better to archive data in data warehouse which reduce

the load on DBMS for routine queries.

F. Coding Standards

For large enterprise applications the coding techniques,

conventions and standards should be followed. The

programmer must use meaningful identifiers, add comments,

profile the time consuming areas of code [22]. If developer

follows the proper convention and standards then many IDEs

provide facility to generate documentation automatically.

Following the proper documentation standards can be useful in

understanding of the system in future for any other person who

may not involve in the process of development. But when he

goes through the documentation, he can understand system in

lesser time and be able to provide maintenance services or can

do modification and improvements in system.

G. Code Re-usability

When we coded for ACS we found similar products and

when found, we learned the code and picked the core code

which we believed was useful for us in the development of

ACS server. Before starting the development from scratch first

try to do research for similar or existing systems [21]. As

developers of these systems worked on them for so many years

so their available source code can be very helpful. Don't

reinvent the wheel. Also you can learn lots of new thing from

others experiences. This code re-usability can save a lot of

times and efforts.

H. Server Tuning

All technologies, used in our product provide concurrency

which allow application that maximum utilization of resources.

All tools which provide concurrency also provide facility to

configure thread for how many concurrent requests should

handle. We can increase those tread but increasing of thread is

not guaranteed that it will improve performance. Because,

there is always an optimum point when we achieve maximum

benefit from given resource after that performance will

decrease.

Threads are managed by operating system, as much number

of threads is increase context switching between them will also

increase. Server need to be well tuned under different

condition as you can see in Figure 2 that’s response time

decreases as threads increase on tomacat serve [27]. But at

certain point the response time again increase. In figure it is

highlighted that how much threads are most optimum for

system.

Hammad Ali Butt et al. 12

Fig. 2: Transaction response time versus number of threads

I. Deployment and Testing

Before deploying the system the stress testing should be

done as the actual environment is different from the

development environment. For ACS the most critical test is

stress test of ACS under heavy load. So, we needed to generate

extensive traffic which should be equal to actual environment.

We used jmeter an open-source product and run many instance

to generate traffic on server for testing purpose [25]. So, the

developer should create a virtual testing environment which

should be near to actual environment for monitoring the

system performance. Find tools and techniques which are most

suitable to do so and consider all possible factors those can be

involved in a real time scenario before deployment.

IV. CONCLUSION

In this paper, we have discussed our experiences while

developing large software system according to user

requirement with the help of existing legacy code and have

uses this project as case study for our understanding that what

are the challenges that developer has to face to develop such

system in which clients are machine and generate huge data

and request on server and how to deal with problems during

understanding the legacy source code by using software

engineering techniques. Although it is difficult to rationalize

that which process and technique is best to solve any problem

but we believe that our suggestions will provide help to

developer to develop similar kind project.

REFERENCES

[1] Butt, Khansa, A. Qadeer, and Abdul Waheed. “MIPS64 user

mode emulation: A case study in open source software

engineering.” Emerging Technologies (ICET), 2011 7th

International Conference on. IEEE, 2011.

[2] Mcconnell, S., Open-Source Methodology: Ready for Prime

time?, IEEE software, pages. 6-8, July/August 1999.

[3] Debona, C., Ockman, S. & Stone, M., OpenSources: Voices

from the Open Source Revolution, published in O'Reilly1999,

Sebastopol, CA.

[4] Raymond, E. S, The Cathedral and the Bazaar, published in

O'Reilly 1999, Sabastopol, CA

[5] http://en.wikipedia.org/wiki/TR-069

[6] http://www.broadband-forum.org/

[7] Eldering, Charles A. “Customer premises equipment for

residential broadband networks.” Communications Magazine,

IEEE 35.6 (1997): 114-121.

[8] https://github.com/moonranger/clj.tr069

[9] https://github.com/dpavlin/perl-cwmp

[10] http://sourceforge.net/projects/openacs/

[11] https://github.com/andersnorgaard/grailsacs

[12] http://sourceforge.net/projects/jcwmpserver/

[13] http://freeacs-ng.org/

[14] http://sourceforge.net/projects/tr069dlink/

[15] http://tr069.wordpress.com/2012/09/10/open-source-tr-069-

efforts/

[16] Zitser, Misha, Richard Lippmann, and Tim Leek. “Testing

static analysis tools using exploitable buffer overflows from

open source code.” ACM SIGSOFT Software Engineering

Notes. Vol. 29. No. 6. ACM, 2004.

[17] Eaddy, Marc, et al. “Cerberus: Tracing requirements to source

code using information retrieval, dynamic analysis, and

program analysis.” Program Comprehension, 2008. ICPC

2008. The 16th IEEE International Conference on. IEEE,

2008.

[18] Fenske, Wolfram, Thomas Thüm, and Gunter Saake. “A

taxonomy of software product line reengineering.” Proceedings

of the Eighth International Workshop on Variability Modelling

of Software-Intensive Systems. ACM, 2014.

[19] Vajk, Tamas, et al. “Denormalizing data into schema-free

databases.” Cognitive Infocommunications (CogInfoCom),

2013 IEEE 4th International Conference on. IEEE, 2013.

[20] Sanders, G. Lawrence, and Seungkyoon Shin.

“Denormalization effects on performance of RDBMS.” System

Sciences, 2001. Proceedings of the 34th Annual Hawaii

International Conference on. IEEE, 2001.

[21] Mahmood, Ahmad Kamil, and Alan Oxley. “An evolutionary

study of reusability in Open Source Software.” Computer &

Information Science (ICCIS), 2012 International Conference

on. Vol. 2. IEEE, 2012.

[22] Smit, Michael, et al. “Code convention adherence in evolving

software.” Software Maintenance (ICSM), 2011 27th IEEE

International Conference on. IEEE, 2011.

[23] Satyanarayanan, Mahadev, et al. “Transparent logging as a

technique for debugging complex distributed systems.”

Proceedings of the 5th workshop on ACM SIGOPS European

workshop: Models and paradigms for distributed systems

structuring. ACM, 1992.

[24] Rachidi, Houda, and Ahmed Karmouch. “A framework for

self-configuring devices using TR-069”, Multimedia

Computing and Systems (ICMCS), 2011 International

Conference on. IEEE, 2011.

[25] http://jmeter.apache.org/

[26] Rachidi, Houda. Design and Implementation of a Framework

for Self-Configuring Devices Using TR-069. Diss. University

of Ottawa, 2011.

[27] https://today.java.net/pub/a/today/2006/06/06/distribute-

detach-parallelize-tomcat.html?page=2

http://en.wikipedia.org/wiki/TR-069
http://www.broadband-forum.org/
https://github.com/moonranger/clj.tr069
https://github.com/dpavlin/perl-cwmp
http://sourceforge.net/projects/openacs/
https://github.com/andersnorgaard/grailsacs
http://sourceforge.net/projects/jcwmpserver/
http://freeacs-ng.org/
http://sourceforge.net/projects/tr069dlink/
http://tr069.wordpress.com/2012/09/10/open-source-tr-069-efforts/
http://tr069.wordpress.com/2012/09/10/open-source-tr-069-efforts/

