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Abstract—In this paper, we propose a flow-level simulator 

called FSIM (Fluid-based SIMulator) for performance evaluation 

of large-scale networks, and verify its effectiveness using our 

FSIM implementation. The notable feature of our flow-level sim-

ulator FSIM is fast simulation execution compared with a con-

ventional flow-level simulator. For accelerating simulation execu-

tion speed, our flow-level simulator FSIM adopts an adaptive 

numerical computation algorithm for ordinary differential equa-

tions. Another features of our flow-level simulator FSIM are ac-

curacy and compatibility with an existing network performance 

analysis tool. For improving simulation accuracy, our flow-level 

simulator FSIM utilizes accurate fluid-flow models. In this paper, 

through extensive experiments using our FSIM implementation, 

we evaluate the effectiveness of our flow-level simulator FSIM in 

terms of simulation speed, accuracy and memory consumption. 

Consequently, we show that our flow-level simulator FSIM out-

performs a conventional flow-level simulator; i.e., it realizes ap-

proximately 200%-2,000% faster simulation with higher accuracy 

and less memory consumption than a conventional flow-level 

simulator. 

 
Index Terms—Flow-Level Simulator, Fluid-Flow Model, Large 

Scale Network, Performance Evaluation, Simulation 

 

I. INTRODUCTION 

N recent years, the scale of the Internet has been expanding 

rapidly. Because of widespread deployment and rapid    

advancement of Internet technologies, the number of hosts 

connected to the Internet and the capacity of the Internet has 

been increasing exponentially [1]–[3]. Such explosive         

expansions of the Internet in both size and speed make it     

difficult to understand behavior of the entire network [4]–[6]. 

Hence, performance evaluation technique for a large-scale 

network has been demanded by many networking researchers 

[7]–[9].  
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Fig. 1.  Packet-level simulator and flow-level simulator 

 

 

Performance evaluation techniques for communication net-

works are classified into three categories: mathematical     

analysis, simulation, and experiment [10].  

    Mathematical analysis is a technique for performance eval-

uation utilizing a mathematical model of the network under 

study. Mathematical analysis is generally suitable for analyzing 

comparatively small-scale networks. Application of         

mathematical analysis to performance evaluation of a 

large-scale network has been a hot topic among network     

researchers [11], [12]. However, since mathematical analysis 

usually requires a lot of simplifying assumptions, analytic   

results obtained from mathematical analysis sometimes don’t 

meet required accuracy. 

Simulation is a common technique for performance evalua-

tion utilizing computers. In simulation, computer models of 

building blocks of the network under study are built, and be-

havior of those building blocks are simulated [10]. Compared 

with mathematical analysis, simulation can be applied to per-

formance evaluation of rather complicated networks. 

Experiment is a technique for performance evaluation uti-

lizing a real system [10]. In experiment, the network under 

study is constructed using real devices and computers. Alt-

hough experiment enables detailed performance evaluation, it 
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generally lacks flexibility and also requires significant amount 

of cost for building the real system. For performance evaluation 

of a large-scale network, experiment requires a number of 

network devices and computers, making it unrealistic to apply 

to a large-scale network. 

Considering trade-offs between accuracy and cost, simula-

tion is a reasonable approach for performance evaluation of 

large-scale networks. In the literature, there are several studies 

on simulation techniques for a large-scale network (see 

[13]–[15] and the references therein). Depending on granularity 

of simulation models, network simulators can be classified into 

two categories: packet-level simulator and flow-level          

simulator. 

Packet-level simulator mimics behavior of every packet in 2 

a network [16]. For instance, packet arrivals at a router and 

packet departures from a router are simulated in packet-level 

simulator. Packet-level simulator has been widely used by 

many networking researchers. Advantage of packet-level sim-

ulator includes its accuracy compared with flow-level simulator 

[17]. Since packet-level simulator simulates behavior of every 

packet, packet-level performance metrics can be measured with 

packet-level simulator. On the contrary, disadvantage of pack-

et-level simulator is its inability to simulate large-scale net-

works. This is because computational complexity increases as 

the size and/or speed of a simulated network increases [17]. 

Several researchers try to enable packet-level simulation for a 

large-scale network [18], but there still remain several issues to 

be solved. 

On the contrary, flow-level simulator mimics behavior of 

every flow in a network [19]. For instance, packet arrivals at a 

router and packet departures from a router are aggregated as a 

flow (i.e., a stream of packets) in flow-level simulator. Ad-

vantage of flow-level simulator includes, contrary to pack-

et-level simulator, its fast simulation execution. Since a number 

of packets are statistically modeled as a single flow, flow-level 

simulator can simulate a large-scale network, where the number 

of in-flight packets is enormous [20]. Disadvantage of 

flow-level simulator is low granularity compared with pack-

et-level simulator. This is because that flow-level simulator 

ignores packet-level behavior. Hence, by using a flow-level 

simulator, packet-level performance metrics cannot be meas-

ured. However, it would not be a big problem since pack-

et-level performance metrics are not required for performance 

evaluation of large-scale networks; instead, flow-level and/or 

application-level performance metrics are required, which can 

be measured by flow-level simulator. 

In this paper, we propose a flow-level simulator called FSIM 

(Fluid-based SIMulator) for performance evaluation of 

large-scale networks, and verify its effectiveness using our 

FSIM implementation. The notable feature of our flow-level 

simulator FSIM is fast simulation execution compared with a 

conventional flow-level simulator [13]. For accelerating sim-

ulation execution, our flow-level simulator FSIM adopts an 

adaptive numerical computation algorithm for ordinary dif-

ferential equations. Another features of our flow-level simula-

tor FSIM are accuracy and compatibility with an existing 

network performance analysis tool. For improving simulation 

accuracy, our flow-level simulator FSIM utilizes accurate flu-

id-flow models [21]. Also, the flow-level simulator FSIM can 

input and output files compatible with ns-2 [16], which is one 

of the most popular packet-level simulators. In this paper, 

through extensive experiments using our FSIM implementa-

tion, we evaluate the effectiveness of our flow-level simulator 

FSIM in terms of simulation speed, accuracy and memory 

consumption. Consequently, we show that our flow-level sim-

ulator FSIM outperforms a conventional flow-level simulator; 

i.e., it realizes approximately 200%-2,000% faster simulation 

with higher accuracy and less memory consumption than a 

conventional flow-level simulator. 

This paper is organized as follows. In Section II, related 

works on fluid-flow models and flow-level simulators are 

summarized. Section III explains our flow-level simulator 

FSIM. Namely, fluid-flow models and the adaptive numerical 

computation algorithm utilized in our FSIM are explained. In 

Section IV, we evaluate the effectiveness of our flow-level 

simulator FSIM in terms of simulation speed, accuracy and 

memory consumption. Finally, Section V concludes this paper 

and discusses future works. 

II. RELATED WORKS 

There are several researches for large-scale network simula-

tion [13], [22]–[30]. They can be classified into two categories: 

simulation engine acceleration (e.g., the efficient packet-event 

execution [22], [23] and parallel simulation [24], [25]) and 

simulation model abstraction (e.g., flow level simulation [13], 

[26], [27] and hybrid simulation [28]–[30]). Simulation engine 

acceleration is an approach for decreasing simulation execution 

time of a packet-level simulation without simulation model 

abstraction. On the contrary, simulation model abstraction is 

another approach for improving computational complexity of a 

packet-level simulation by using the abstract model, which 

represents the behavior of a large-scale network. Although 

methods for simulation engine acceleration are important 

techniques, a packet-level simulation does not scale well as the 

bandwidth and/or the network size increases [13]. Hence, sim-

ulation model abstraction is indispensable in practice. In sim-

ulation model abstraction, flow-level simulation is one of the 

key techniques for large-scale network simulation. This is be-

cause that as a flow-level simulation becomes faster, the 

scalability of a hybrid simulation utilizing the flow-level sim-

ulation would be improved, too. 

In [13], a flow-level simulation utilizing a TCP/RED flu-

id-flow model was proposed for large-scale network simula-

tion. By numerically solving ordinary differential equations 

(ODEs) directly derived from fluid-flow models, flow-level 

simulation is performed. However, the numerical computation 

algorithm for ODEs in [13] is quite simple; i.e., network states 

of fluid-level simulation are updated every fixed stepsize. 

Network states are updated even when network states are un-

changed, causing slowdown of fluid-level simulation. In [26], 

[30], heuristic approaches for adaptive stepsize control have 

been proposed. However, accuracy of those heuristic ap-

proaches is unpredictable/unstable. It is crucial for any adaptive 
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stepsize control to guarantee the accuracy of its solution 

[31]–[33]. In this paper, we take a rigorous approach for adap-

tive stepsize control in flow-level simulation.  

III. FSIM (FLOW-LEVEL SIMLATOR) 

The notable feature of our flow-level simulator FSIM is fast 

simulation execution compared with conventional flow-level 

simulators [13], [34]. For accelerating simulation execution, 

our flow-level simulator FSIM adopts an adaptive numerical 

computation algorithm for ordinary differential equations. 

Another features of our flow-level simulator FSIM are its ac-

curacy and its compatibility with other network performance 

analysis tools. For improving simulation accuracy, our 

flow-level simulator FSIM utilizes accurate fluid-flow models 

[21]. Also, the flow-level simulator FSIM can input and output 

files compatible with ns-2 [16], which is one of representative 

packet-level simulators.  

In what follows, details of our flow-level simulator FSIM — 

fluid-flow models, the adaptive numerical computation algo-

rithm for ordinary differential equations, and compatibility 

with an existing network performance analysis tool — are 

explained. 

A. Fluid-flow models 

We explain fluid-flow models [21] utilized in FSIM. The 

fluid-flow model derived in [21] models the TCP timeout 

mechanism with high accuracy. By comparing simulation re-

sults with analytic ones, the authors of [21] show it has higher 

accuracy than the fluid-flow model [13]. Definitions of sym-

bols (i.e., constants and variables) used throughout this paper 

are summarized in Tab. I. FSIM utilizes the fluid-flow model of 

the TCP congestion control mechanism derived in [21]. In the 

fluid-flow model of the TCP congestion control mechanism, 

the input x(t) is the arrival rate of ACK packets and the output 

y(t) is the transmission rate of TCP, which is given by  

      
    

         
 
 

 
                   

                
 

 
     

 

    
                                   

where                          . pTO(t) is the probability 

that a packet loss is detected by the TCP timeout mechanism 

rather than duplicate ACKs, and it can be approximated as 

                           . R(t) is the round-trip time of 

the flow, which is given by the sum of propagation delays and 

queuing delays on the path. 

FSIM utilizes the fluid-flow model of the RED router de-

rived in [21]. In the fluid-flow model of the RED router, the 

input x(t) is the arrival rate of RED router and the output y(t) is 

the departure rate of RED router, which is given by  

                                              

where p(t) is the packet loss probability. The packet loss 

probability p(t) is given by 

     

 
 

 
 

 
                              

      

       
              

               

where pq(t) is the packet marking probability. pq(t) is given by 

     

 

 
 
 
 
 

 
 
 
 

                                                
    

           

                                                    

                                                             
      

     
                                                      

                                                                
                                                            

      

where r(t) is the average queue length, and q(t) is the current 

queue length , which are given by 

                                                            

       
                                   

                         
                

In the fluid-flow model of the link, the input x(t) is the in-

coming transmission rate and the output y(t) is the outgoing 

transmission rate of the link, which is given by 

                                                         
where   is the propagation delay of the link. 

An entire network is modeled with the analysis technique 

proposed in [21] by connecting models of the TCP congestion 

control mechanism, the RED router, and the link. When the 

RED router has multiple input links, input to the RED router is 

modeled as flow convergence of incoming TCP flows. Flow 

convergence can be described as the sum of transmission rates 

of incoming TCP flows. In other words, when the transmission 

rate for each TCP flow is xi(t) (    ) where Fr is the set of 

TCP flows passing through the RED router, the arrival rate x(t) 

(i.e., the sum of transmission rates) of the RED router is given 

by 

            

    

                                        

When the RED router has multiple output links, output from 

the RED router is modeled through distribution in outgoing 

TCP flows. Flow distribution can be described by distribution 

of outgoing traffic from the RED router to individual TCP 

flows. Let the departure rate from the RED router be y(t), the 

TABLE I 

DEFINITIONS OF SYMBOLS (CONSTANTS AND VARIABLES) 
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transmission rate yi(t) (    ) for each TCP flow is given by  

          
     

    
                                        

B. Adaptive numerical computation algorithm 

In fluid-flow models explained in Section III-A, network 

state is represented by TCP transmission rates y(t), the average 

queue lengths r(t) of RED routers, and current queue lengths 

q(t) of RED routers. Let z(t) be the state vector of a network 

given by 

     

 

 
 
 
 
 
 
 
 
 
 

     
 

     

           
 

           

     
 

     

     
 

      

 
 
 
 
 
 
 
 
 
 

  

where M is the number of TCP flows in the network, and N is 

the number of RED routers in the network. The change of the 

state vector z(t) is obtained from fluid-flow models (Eqs. (1), 

(5), and (6)). The state vector        is numerically obtained 

from z(t) and       by using a numerical computation algorithm 

for ordinary differential equations. By repeating this process, 

the time evolution for the network state starting from an initial 

state can be numerically obtained, and flow-level simulation 

can be performed. 

For accelerating simulation execution, FSIM uses the adap-

tive stepsize control, Dormand-Prince method [31], [32], which 

adjusts the stepsize   according change in ordinary differential 

equations. In other words, when change in the network state is 

large, the stepsize is decreased for decreasing error in the nu-

merical computation. On the contrary, when change in the 

network state is small, the stepsize is increased for speeding up 

the numerical computation. With such an adaptive control, 

computational complexity required for flow-level simulation 

can be significantly reduced. Even if an adaptive stepsize con-

trol is used for speeding up flow-level simulation with relia-

bility, the accuracy of simulation results should be maintained. 

Dormand-Prince method guarantees the error in a numerical 

computation algorithm [32] unlike adaptive stepsize controls 

used in [26], [30]. By using Dormand-Prince method, 

flow-level simulation should be accelerated while maintaining 

the accuracy of simulation results. 

Notice that the fluid-flow model of the TCP congestion 

control mechanism (Eq. (1)) requires past network state (i.e., 

      ). In FSIM, past network states (up to the maximum 

round-trip time of all TCP flows) are recorded in the memory 

for enabling application of the Dormand-Prince method. Since 

FSIM uses the adaptive stepsize control, the timing at which the 

network state is updated is varied. So past network state re-

quired for calculating the next network state might not have 

been calculated. In FSIM, the past network state in need is 

approximated as an interpolation of nearby network states [32]. 

C. Compatibility with existing performance evaluation tools 

The flow-level simulator FSIM realizes high compatibility 

with an existing network performance evaluation tool. Specif-

ically, FSIM can input and output files compatible with ns-2 

[16], which is one of the most popular packet-level simulators. 

Specifically, our flow-level simulator FSIM interprets typical 

ns-2 simulation file written in OTcl [35]; i.e., major ns-2 

commands such as duplex-link and create-connection are 

parsed and translated to FSIM objects.  Also, FSIM outputs its 

simulation logs in either ns-2 (generated with trace-all com-

mand) or nam [36] (generated with namtrace-all compatible 

format.  

IV. EXPERIMENT 

In this section, through extensive experiments using our 

FSIM implementation, we evaluate the effectiveness of our 

flow-level simulator FSIM in terms of accuracy, simulation 

speed, and memory consumption. 

A. Experimental setup 

We compare performance of three simulators: our flow-level 

simulator FSIM, the conventional flow-level simulator FFM 

[37], and packet-level simulator ns-2 [16]. FFM is one of the 

famous flow-level simulators. Recall the major difference be-

tween FFM and FSIM; i.e., different from FSIM, FFM has no 

adaptive stepsize control, and the TCP fluid-flow model in 

FFM does not model the TCP timeout mechanism. For purely 

investigating the effectiveness of the adaptive stepsize control, 

we compare the performance of FSIM with and without the 

adaptive stepsize control. We performed simulations for the 

same topology and parameters with those three simulators. It is 

essential to investigate the performance of a network simulator 

for several simulation scenarios since network simulators are in 

nature used for several purposes. We therefore use three typical 

simulation scenarios: dumb-bell network, random network, and 

hierarchical network. 

 Dumb-bell network 

A dumb-bell network [38] consists of two RED routers and 

homogeneous TCP flows with identical propagation delays 

(see Fig. 2). The link between two RED routers is the bot-

tleneck since the access link (i.e., the link between an end 

host and an RED router) is much faster than that between 

RED routers. Unless explicitly stated, the number of TCP 

flows is 20,000, and the bottleneck link bandwidth is 5,000 

[Mbit/s]. Note that RED parameters (minth and maxth), and 

the buffer size of the RED router are proportional to the 

bottleneck link bandwidth C and then number N of TCP 

flows for stability of RED control. Also, note that the RED 

parameter is inversely proportional to the bottleneck link 

bandwidth C. Such a simple simulation scenario using a 

dumb-bell network has been widely adopted as a baseline 

model for many networking performance studies [38]. 

 Random network 

In the random network scenario (see Fig. 3), for a given 
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number of RED routers and the average degree (i.e., the 

average number of links connected to an RED router), a 

network topology is randomly generated as a random net-

work [39]. Also, for a given number of TCP flows, TCP 

source hosts and sinks are attached at randomly-chosen 

RED routers. The random network is widely used by 

large-scale network researchers [40]–[42]. Unless explicitly 

stated, the bandwidths of all links are equally set to 100 

[Mbit/s], the propagation delays of all links are equally set 

to 10 [ms], and the average degree is 3. 

 Hierarchical network 

The hierarchical network consists of three levels, are re-

ferred to as WAN, MAN and LAN levels (see Fig. 4). The 

hierarchical network is an Internet-like network [43]. For a 

given number of RED routers, a network topology is ran-

domly generated as a hierarchical network [43]. Then, for a 

given number of TCP flows, TCP source hosts and sinks are 

attached at randomly-chosen RED routers at LAN level. 

Unless explicitly stated, the bandwidths of all links are 

equally set to 100 [Mbit/s], and the propagation delays of all 

links are equally set to 10 [ms]. 

In all simulation scenarios, all TCP source hosts continu-

ously transmit data to their corresponding TCP sinks. 

In all experiments, a computer with Intel Core i7 CPU 960 

(3.20GHz) processors with 5 [GByte] memory running Debian 

GNU/Linux 5.0.7 (kernel version 2.6.26) is used for executing 

flow-level simulators or the packet-level simulator. 

In all experiments, we repeated 10 simulations, and meas-

ured the average and 95% confidence interval of measurements 

(e.g., simulation execution time and maximum memory con-

sumption). In the following figures, confidence intervals are 

not shown because they were sufficiently small in all experi-

ments. Note that we optimized ns-2 configurations following 

the guideline in [44]. 

B. Accuracy 

With three network simulators (i.e., FSIM, FFM, and ns-2), 

TCP packet transmission rate and the queue length of the RED 

router are measured (Figs. 5 through 8). Figures 6 and 8 illus-

trate the queue length of RED router between a flow-level 

simulator (FSIM or FFM) and the packet-level simulator ns-2 

for different link bandwidths and numbers of TCP flows, re-

spectively. These figures show that FSIM achieves slightly 

better accuracy than FFM. 

C. Simulation speed 

We investigate simulation speeds of flow-level simulators 

(FSIM and FFM) and the packet-level simulator ns-2 when 

changing the number of TCP flows, the link bandwidth, and the 

number of nodes. To investigate the simulation speed, we 

measured simulation execution times of three simulators.  With 

three simulators, simulation execution times required for per-

forming 50 [s] of simulation are measured. 

We first investigate simulation speeds of three simulators 

when changing the number of TCP flows in the dumb-bell 

network. Figure 9 shows simulation execution times of three 

simulators for different numbers of TCP flows. 

Figure 9 shows that the simulation execution time of FSIM is 

much shorter than that of FFM regardless of the number of TCP 

flows. This is because the adaptive stepsize control imple-

mented in FSIM is effective regardless of the number of TCP 

flows. The average stepsize of FSIM with adaptive stepsize 

control is larger than that of FFM and FSIM without adaptive 

stepsize control (see Fig. 10). Figure 9 also shows that simula-

tion execution times of FSIM and FFM do not increase even 

  

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 2.  Dumb-bell network 

    
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 3. A random network with 20 nodes 

  

  
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 4. Hierarchical network 
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when the number of TCP flows increases. This is because 

flow-level simulators support flow aggregation, which aggre-

gates multiple flows with the same characteristics into a single 

one. 

We then investigate simulation speeds of three simulators 

when changing the bottleneck link bandwidth in the dumbbell 

network. Figure 11 shows simulation execution times of three 

simulators for dif ferent bottleneck link bandwidths. 

Figure 11 shows that the simulation execution time of FSIM 

is much shorter than that of FFM and ns-2 regardless of the 

bottleneck link bandwidth. Figure 11 shows that the simulation 

execution time of FSIM increases as the bottleneck link band-

width increases. This is resulted fro m our adaptive stepsize 

control. Namely, as the bottleneck link bandwidth increase, the 

queue length of RED router is drastically changed. Thus, the 

stepsize must be decreased when the bottleneck link bandwidth 

is large (see Fig.12). From Fig. 12, the average stepsize of 

FSIM with the adaptive stepsize control should approach to that 

of FSIM without the adaptive stepsize control. Hence, for larger 

bottleneck link bandwidth than that shown in Figs. 11 and 12, 

the simulation execution time of FSIM with the adaptive 

stepsize control should be smaller than that of FFM. 

Figure 11 shows that simulation execution times of FSIM 

without the adaptive stepsize control and FFM does not in-

crease even when the bottleneck link bandwidth increases. This 

clearly indicates the strength of flow-level simulators; the 

computational complexity of flow-level simulators does not 

increase as the link bandwidth increases. 

We then investigate simulation speeds of three simulators 

when changing the number of nodes. Figures 13 and 15 show 

simulation execution times of three simulators for different 

numbers of nodes in the random network and the hierarchical 

network, respectively. Due to memory exhaustion, we could 

not perform simulation of the random network with more than 

3,000 nodes for FFM, the random network with more than 500 

nodes for ns-2, and the hierarchical network with 5,000 nodes 

for ns-2. 

Figures 13 and 15 show that the simulation execution time of 

FSIM is much shorter than that of FFM and ns-2 regardless of 

the number of nodes. Figures 13 and 15 also show that simula-

tion execution times of FSIM and FFM increase when the 

number of nodes increases. This is because the number of TCP 

flows with a different path increases when the number of nodes 

increases. TCP flows with a different path cannot be aggregated 

into a single one by flow-aggregation. Thus, the computational 

complexity of FSIM and FFM increases when the number of 

nodes increases. 

In summary, the simulation speed of FSIM is much faster 

than that of FFM regardless of the number of TCP flows, the 

link bandwidth, and the number of nodes. FSIM realizes 2-20 

times faster simulation compared with FFM on the average.  

  
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 5. Time average of TCP packet transmission rates vs. the link bandwidth 

  

  
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 6. Time average of the queue length vs. the link bandwidth 

  

 
 

Fig. 7. Time average of TCP packet transmission rates vs. the number of TCP 
flows 

  
  
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Fig. 8. Time average of the queue length vs. the number of TCP flows 
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D. Memory consumption 

We investigate memory consumptions of flow-level simula-

tors (FSIM and FFM) and the packet-level simulator ns-2 when 

changing the number of TCP flows, the link bandwidth, and the 

number of nodes. Scalability of network simulators is some-

times limited by the memory size required for executing sim-

ulation [44]. To investigate the memory consumption, maxi-

mum memory consumptions (i.e., the sum of statistically and 

dynamically allocated memory size) during simulation run are 

measured for three simulators. 

We first investigate memory consumptions of three simula-

tors when changing the number of TCP flows in the dumb-bell 

network. Figure 17 shows that the maximum memory con-

sumption of FSIM is much smaller than that of FFM regardless 

of the number of TCP flows. This can be explained as follows. 

FFM is embedded in ns-2, which has many functions not to be 

related to flow-level simulation. FFM loads such functions on a 

memory during execution. It is not trivial to modify FFM to 

load functions required only for flow-level simulation due to its 

high module coupling. Figure 17 also shows that maximum 

memory consumptions of FSIM and FFM does not increase 

even when the number of TCP flows increases. Similar to the 

phenomenon observed in Fig. 9, this is because flow-level 

simulators support flow-aggregation. 

We then investigate memory consumptions of three simula-

tors when changing the bottleneck link bandwidth in the 

dumb-bell network. 

Figure 18 shows that the maximum memory consumption of 

FSIM is independent of much smaller than that of FFM and 

ns-2 regardless of the bottleneck link bandwidth. Similar to the 

phenomenon observed in Fig. 11, this is because flow-level 

simulators mimics behavior of every flow in a network. 

We then investigate memory consumptions of three simula-

tors when changing the number of nodes. Figures 19 and 20 

show maximum memory consumptions of three simulators for 

different numbers of nodes in the random network and the 

hierarchical network, respectively. 

Figures 19 and 20 show that the maximum memory con-

sumption of FSIM is much smaller than that of FFM regardless 

of the number of nodes. This is because FSIM stores the path of 

a TCP flow as a list with the number of elements equal to the 

path length whereas FFM stores the path of a TCP flow in an 

array with the number of elements equal to the total number of 

nodes. The maximum memory consumption of FSIM when 

performing simulation of the random network with 10,000 

nodes is approximately 1,430 [Mbyte]. Figures 19 and 20 also 

show that maximum memory consumptions of FSIM and FFM 

increase as the number of nodes increases. Similar to the phe-

nomenon observed in Figs. 13 and 15 this is because the  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Simulation execution time vs. the number of TCP flows 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Average stepsize time vs. the number of TCP flows 

  

 
 

Fig. 11. Simulation execution time vs. the bottleneck link bandwidth 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Average of stepsize vs. the bottleneck link bandwidth 
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number of TCP flows with a different path increases when the 

number of nodes increases. 

Figures 17 through 20 show that the memory consumptions of 

FSIM are slightly larger than that of FSIM without the adaptive 

stepsize control. We have confirmed that the overhead of the 

adaptive stepsize control would be vanishingly small.  

In summary, the memory consumption of FSIM is always 

smaller than that of FFM regardless of  t he number of TCP 

flows, the link bandwidth, and the number of nodes. FSIM 

realizes more than 3-7 times memory efficiency compared with 

FFM. This suggest s that for a given memory size, our 

flow-level simulator FSIM can simulate a larger network than 

FFM. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we have proposed a flow-level simulator called 

FSIM (Fluid-based SIMulator) for performance evaluation of 

large-scale networks, and have verified its effectiveness using 

our FSIM implementation. Through extensive experiments 

using our FSIM implementation, we have evaluated the effec-

tiveness of our flow-level simulator FSIM in terms of simula-

tion speed, accuracy and memory consumption. We have  

 

 

shown that our flow-level simulator FSIM outperforms a con-

ventional flow-level simulator; i.e., it realizes approximately 

200%-2,000% faster simulation with higher accuracy and less 

memory consumption than a conventional flow-level simulator. 

In particular, we should note that FSIM is effective for per-

formance evaluation of a network with large link capacities and 

many TCP flows. 

As future work, we are planning to further improve the nu-

merical computation algorithm of differential equation. We are 

also planning to include support for various types of network 

protocols such as UDP, DCCP, high-speed TCP, and XCP 

utilizing fluid-flow models derived in [45]–[47]. 

Our FSIM implementation is available at http://www.ispl. 

jp/fsim/. 
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