
International Journal of Computer Science and Telecommunications [Volume 4, Issue 6, June 2013] 32

Journal Homepage: www.ijcst.org

Vu Dinh Trung
1
 and Tran Van Lang

2

1
Faculty of Information Technology, Lac Hong University

2
Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology

1
trung@lhu.edu.vn,

2
tvlang@vast-hcm.ac.vn

Abstract— The paper presents the parallel algorithm for solving

the scheduling problem. This algorithm is implemented in the

distributed memory multi-computers, and with each machine

using CPU - GPU shared memory architecture, so that the time

to complete the work as quickly as possible. This algorithm is

based on the branching algorithm approach for searching. The

experimental results for the scheduling problem were calculated

with large data. From that determines the threshold of input data

of the problem in order to the computation time is minimum.

Index Terms— Schedule, Job-shop Problem, Parallel,

Distributed System and GPU

I. INTRODUCTION

CCORDING to Supercomputer Site

(http://www.top500.org), the world’s fastest

supercomputer was Titan supercomputer, a Cray XK7

system installed at Oak Ridge, achieved 17.59 Petaflop/s

(quadrillions of calculations per second) on the Linpack

benchmark. It has 560,640 processors, including 261,632

NVIDIA K20x accelerator cores. This is a computer network

includes more powerful CPUs, and the GPUs to speed up of

computations. From that, there is a supercomputer with

distributed memory architecture on multiple computers, and

the memory was shared between the CPU and GPU on a

single computer. Not only Titan, in the most of nowadays

supercomputer there are architectures like this. So that, the

building of parallel algorithms running on the distributed

shared memory system is indispensable problem.

In this paper, the parallel algorithm of Job Shop Problem

(JSP) was established to implement in distributed shared

memory architecture. The schedule is formed when human

activities need to be assigned tasks, and the tendency still

persists. A good schedule would help to reduce time for

completing the job, thereby saving time. So spent decades,

there are many researchers have continuously study and

develop the scheduling method to get a best solution.

The JSP is a problem in discrete or combinatorial

optimization and, it is a generalization of the famous TSP

(Travelling Salesman Problem). So that, it is NP-hard

problem. It could be established as follow:

Let be finite set with m elements,

where miM i ,...,1, is called machine. And

 be n-element set, where is called

job. The scheudule problem is sequential assignment of jobs to

machines such that:

 every job is done by every machine exactly once

 there are maximum m segments in every job

 if a job has started processing, then it cannot be

interrupted

 each job is processed on machines in a certain sequence

Let’s define all sequences of jobs to machines, such that the

completion time is minimum.

The Job Shop Problem can be applied for different

purposes. For example, the employee works scheduling on a

company. With this requirement, it could be described as

follows: the employee part of the company consists of a set of

staff and a set of work is done in the specified time. Each

employee has the ability to perform work depending on the

preferences as well as the time to work. Scheduling is to

assign work to an employee such that ensures the work must

be completed on schedule. With the above example, the Job

shop problem can be applied to other types of scheduling

problems such as setting up a schedule for students,

assignment shifts of nurses in hospitals, distributing of

teaching schedule in a training center, assignment driver of a

transport company...

Trest of paper was organized as follows. The section 2

describes the related work of solving the JSP. The method to

solve problem was presented in section 3. In the section 4,

some experimental results were presented, and the section 5

concludes and describes some future work.

II. RELATED WORK

Currently, there are two approach methods for solving the

JSP: approximate method and exact method. The research

papers on the world in recent years were using approximate

method. Using this method would build the algorithm that

runs much faster than the algorithm by exact method, but the

A

Parallelization the Job-shop Problem on Distributed and

Shared Memory Architectures

ISSN 2047-3338

Vu Dinh Trung and Tran Van Lang 33

major drawback is the resulting solution cannot be sure.

Meanwhile, the computation time of exact methods is very

slow, but their results are always optimal. So that, the

parallelization of algorithms to reduce the execution speed are

often use for building algorithm of JSP. Most of the

algorithms used in this papers are taken the basis of

approximation algorithms such as taboo search, simulated

annealing, ... For example, in paper [6] “A Branch and Bound

and Simulated Annealing Approach for Job Shop Scheduling”

of Tan Hui Woon and Sitinah Salim was published in 2004,

authors used Branch and Bound methods and Simulated

Annealing Algorithm for solving Job shop scheduling. This

paper also demonstrated the simulated annealing algorithm

accomplished with fewer steps. However, the major

disadvantage of the simulated annealing algorithm is

implemented to base on random factors. For example, the

algorithm starts with a random initial schedule, and then the

next schedule is randomly generated. So that, using of these

parameters can give better results on a specific problem, but

on other problem with same parameters, its good results are

not sure.

In the paper [5], “Parallel Simulated Annealing

Algorithms”, D. Janaki Ram, T. H. Sreenivas, and K.

Ganapathy Subramaniam have presented the parallel-

simulated annealing algorithm to overcome the drawback of

slow convergence of the algorithm. This paper has proposed

two algorithms to solve; the first algorithm called the

clustering algorithm (CA), and second called genetic

clustering algorithm (GCA). By using the parallel algorithm

combining simulated annealing and genetic algorithms, so it

has somewhat improved execution speed from the classical

simulated annealing algorithm. However, in essence it is still

speculative search algorithm; therefore results are not proven

to be the best.

The paper [2] “Using Genetic Algorithm for solving of Job

Shop Problem”, and [3] “The Hybrid Genetic Algorithm for Job

Shop Problem” N.H. Mui and V.D. Hoa, presented the new

genetic algorithm for solving the JSP. In this algorithm,

authors proposed a new crossover operator combining on three

parents individual. With this method, children individual were

born by a crossover operator is an active schedule. The

convergence of this algorithm is also demonstrated based on a

theorem of Banach stability. However, the experimental

results of this study show that in the case input data of

problem are small size, then algorithm achieves optimal

results with a high rate; but the input data are larger, then

obtained results were at only near optimal level. In case with

20 jobs and 5 machines, the algorithm cannot find the optimal

schedule.

Towards to the approach mixed algorithms, the paper [1]

also gives some positive results. But it still did not fully solve

this problem.

The above works have the advantage that the completion

time of the algorithm is fast, but the major drawback that the

schedule was generated is not optimal schedule. Therefore, the

use of an algorithm using exact approach to create a good

schedule and complete in a reasonable period of time is the

problem of this paper.

III. IMPROVED AND PARALLEL ALGORITHM

A. The Branch and Bound Algorithm

There are two main algorithms in the branch and bound

algorithm [6]: The branch algorithm to create hierarchy tree

and algorithm for determining the bound. After determination

of the bounds of the tree nodes, the algorithm can be based on

these bounds to identify which branch can give the optimal

results.

The branch algorithm ([6]):

The algorithm given is based on the branching scheme. The

nodes of the branching tree are corresponding to the partial

schedules.

 Step 1: (Initial condition): The algorithm initiates a

set Ω, which is the first node is expanded from the

source node.  
o Ω : = { Initial segments of each job }
o rij := 0 for all (i,j) ∈ Ω

 Step 2: (Machine selection): Choose a machine of set

Ω on which completion time rij + Pij is the minimum
o Compute t(Ω) for current partial schedule.

o t(Ω) := min {rij + Pij}, (i,j) ∈ Ω

o i* := machine such that ri*j + Pi*j is the

minimum.

 Step 3: (Branching)
o Ω’ := { (i*j)| ri*j < t(Ω) }

o For all (i*,j) ∈ Ω’, extend a partial schedule
by scheduling (i*,j) next on machine i*

o For each such choice,
 find a bound of (i*,j)
 delete (i*,j) from Ω.

o Add segment successor of (i*,j) to Ω.
o Return to Step 2 until Ω = with all

elements of Ω’

The bound algorithm:

The goal of algorithm is to find a lower bound of the

makespan, this is a NP-hard problem. The largest makespan

obtained by algorithm in [6] can be used as the lower bound.

In there, continuing the branch and bound procedure to obtain

the makespan, which is corresponding to the minimum, lower

bound.

B. The Improved Branch and Bound Algorithm

In traditional branch and bound algorithm, the set Ω’ was

created from set Ω based on condition ri*j < t(Ω) to remove the

branches that are not completely feasible is not enough.

Hence, it need add some conditions to remove the feasible

branching. In this improved algorithm, lower bound condition

min LB was used to remove in the branch algorithm:

The improved branch algorithm:

 Step 1: (Initial condition): The algorithm initiates a

International Journal of Computer Science and Telecommunications [Volume 4, Issue 6, June 2013] 34

set Ω, which is the first node is expanded from the

source node.  
o Ω : = { Initial segments of each job }
o rij := 0 for all (i,j) ∈ Ω

o min LB (Lower Bound) = +

 Step 2: (Machine selection): Choose a machine of set

Ω on which completion time rij + Pij is the minimum
o Compute t(Ω) for current partial schedule.

o t(Ω) := min {rij + Pij}, (i,j) ∈ Ω

o i* := machine such that ri*j + Pi*j is

minimum.

 Step 3: (Branching)
o Step 3.1: Ω’ := { (i*j)| ri*j < t(Ω) }

o Step 3.2: For all (i*,j) ∈ Ω’, extend a partial
schedule by scheduling (i*,j) on next
machine i*

o Step 3.3: For each such choice, expand the
branch and find a bound of (i*,j):

 If min LB < bound of (i*,j) then

 jump this branch

 return Step 3.2
 Else

 min LB = bound of (i*,j)
o Step 3.4: Delete (i*,j) from Ω.
o Step 3.5: Add segment successor of (i*,j) to

Ω.
o Step 3.6: Return to Step 2 until Ω = with

all elements of Ω’

C. The Parallel Algorithms with Distributed-Memory

Architecture

The parallel algorithm is based on expansion of the

branches in the branch and bound algorithm. During the

process of the branch expansion, these branches would be

expanded simultaneously from different tasks. After these

tasks have done, they would send results to the master. The

parallel algorithm as follows:

Master

 Step 1: Ω : = { Initial segments of each job }

 Step 2: Send Ω to Slaves

 Step 3: rij := 0 for all (i,j) ∈ Ω

 Step 4: t(Ω) := min {rij + Pij}, (i,j) ∈ Ω

o Select machine i* such that rij + Pij is

minimum.
o Ω’ := { (i*j)| ri*j < t(Ω) }

 Step 5: Partition set Ω’ into subset Ω’’ and send

them to Slaves

 Step 6: Receive results from Slaves and store the
optimal result.

Slave

 Step 1:
o Receive Ω from Master
o min LB = +

 Step 2: Receive Ω’’ from Master

o Step 2.1: For all (i*,j) ∈ Ω’, extend the
partial schedule by scheduling (i*,j) on next
machine i*

o Step 2.2: For each such choice, expand the
branch and find a bound of (i*,j) of machine
i*:

 If min LB < bound of (i*,j) then

 jump this branch

 return Step 2.1
 Else

 min LB = bound of (i*,j)
o Step 2.3: Delete (i*,j) from Ω
o Step 2.4: Add segment successor of (i*,j) to

Ω
o Step 2.5: : Return to Step 2 until Ω = with

all elements of Ω’

 Step 3: Send result to Master

D. The Parallel Algorithms with Shared-Memory

Architecture

In GPU-CPU environment, data were commonly used in all

processes. Hence, in the improved branch and bound

algorithm, some follow statements were run concurrently on

GPU:

 Finding the minimum t of set Ω: t(Ω) = min{rij + Pij}

 Finding the machine t* such that ri*j + Pi*j = t

 For all segments (i*, j) ∈ Ω’, extend partial schedule
by scheduling (i*,j) on next machine i*

The parallel algorithm on GPU-CPU as follows:

On the CPU

 Step 1: (Initial condition)
o Ω : = { Initial segments of each job }
o rij := 0 for all (i,j) ∈ Ω

o min LB (Lower Bound) = +

 Step 2: (Machine selection)
o Invoke CUDA_SelectMachine (Ω, t, i*)

 Step 3: (Branching)
o Step 3.1:

 Invoke CUDA_ ExtendSchedule (Ω,
Ω’,i*)

o Step 3.2: For each such choice, expand the
branch and find a bound of (i*,j):

 If min LB < bound of (i*,j) then

 jump this branch

 return Step 3.2
 Else

 min LB = bound of (i*,j)
o Step 3.3: Delete (i*,j) from Ω.
o Step 3.4: Add segment successor of (i*,j) to

Ω.
o Step 3.5: Return to Step 2 until Ω = with

all elements of Ω’
On the GPU

The program run on GPU would init all the processes, and

each process would calculate the value rij + pij concurrently.

Vu Dinh Trung and Tran Van Lang 35

These processes also compare the values rij + pij to find

minimum, from that select machine i*.

 Step 2 (Fig. 1): CUDA_MachineSelection(Ω, t, i*)
o tib := getThreadID
o if t > r[tib] + p[tib] then

 t := r[tib] + p[tib]

 i* := machine such that t is

minimum

With each segment on set Ω’ of a job that run on machine

i*, the processes of GPU would find the rest segments to add

the new path into schedule (Fig. 2).

 Step 3.1: CUDA_ ExtendSchedule (Ω, Ω’,i*)
o tib := getThreadID
o if i* = machine executed operation[tib] of

set Ω then
 add operation[tib] to Ω’

 extend a partial schedule by

scheduling the machine executed

operation[tib] of set Ω’

Figure 1. Finding the minimum and machine i* on GPU

Figure 2. Extending schedule on disjunctive graph

IV. EXPERIMENTAL RESULTS

A. Using the Multi-Computers

Using the parallel algorithms with 3 processes in the MPI

Environment on computer with 256Mb RAM. The algorithm

was implemented by Language C using Libarary MPI. The

experimental results are dicribled in Table 1 and Figure 3.

Table 1. Comparing time (in second) of 3 algorithms using MPI

Job/Machine
The classical

algorithm

Improved

algorithm

Parallel

algorithm

3/3 0.005532 0.003456 0.439290

4/4 0.123183 0.058664 0.535645

5/5 3.471250 0.490766 0.912148

6/6 141.143496 9.916246 5.028870

7/7 * 77.56584 21.485825

8/8 * 89.629005 55,020864

9/9 * 141.547706 71.993723

10/10 * 477.874597 389.455488

Figure 3. The graphs on computation time of algorithms

With mention results, the execution time of the improved

sequence algorithm is faster than time of the traditional

algorithm. Besides, in the case of large data, the parallel

algorithm is always best algorithm.

B. Using GPU – CPU with nVIDIA Card

The deployment environment for testing as follows:

 Computer: Intel core 2 Dual 2.66 GHz, 2GB RAM

 Graphic Card: GeForce GTX 250

The algorithm was implemented by Language C using

Library CUDA. The experimental results are dicribled in

Table 2 and Figure 4.

Table 2. Comparing time (in second) of 3 algorithms using CUDA

Job/Mach. Improved Alg. Alg. using GPU Alg. using MPI

3/3 0.003456 0.218000 0.779147

4/4 0.058664 0.718000 9.377534

5/5 0.490766 1.560000 37.634233

6/6 9.916246 6.833000 369.530780

7/7 77.56584 27.75200 1663.936657

8/8 89.629005 41.71400 *

9/9 141.547706 57.56400 *

10/10 477.874597 59.17100 *

International Journal of Computer Science and Telecommunications [Volume 4, Issue 6, June 2013] 36

Figure 4. The graphs on computation time with CUDA

Comment:

 The improved sequential algorithm is better than the

parallel algorithm with small input data. But in the case

of large data input, the computation time of the

improved sequential algorithm is slower than parallel

algorithm’s one.

 On GPU-CPU environment, this algorithm would

execute parallelly at the time that needs to handle data

(step 2, step 3.1), instead of processing the elements of

data array in succession. These elements were run

concurrently on different processes, and the value of

them would be calculated many times at different

periods. Thus, if the data elements are processed on a

computer network environment, then they need to be

divided into several parts and sent to the slaves to

handle. After slaves have finished, the result would be

sent back to the server computer via transmission

network line. So that, the calculation time the values of

data array are proportional to communication time, this

would take a lot of time. Hence, the algorithm

described in section D only effects on CPU-GPU

environment, and no effect on the computer network

environment (multicomputer).

V. CONCLUSION

The improved branch and bound algorithm in this paper is

very effective for JSP problem. Especially when this problem

was implemented on the shared memory architecture using

GPU. In JSP problem, this improved algorithm removes many

feasible branches; so finding the job schedule is faster than the

classical algorithm. In this paper, the improved branch and

bound algorithm also were changed to develop into 2 parallel

algorithms implemented on a computer network, as well as on

computer with graphic card as nVIDIA (GPU). The

experimental results show that computing environments with

shared memory when applied to the JSP problem using the

branch and bound algorithm.

REFERENCES

[1] Rui Zang, Cheng Wu (2010), A hybrid approach to large-scale

job shop scheduling, Applied Intelligence, Volume 32, Number

1, pp. 47 – 59.

[2] Nguyen Huu Mui, Vu Dinh Hoa (2010), Using Genetic

Algorithm for solving of Job Shop Problem, Proceeding of The

15th Vietnam National Conference “Some Selective Problems

on Information and Communication Technology”, Hung Yen,

19 - 20 Aug, 2010, Sci and Tech Pub. House, pp. 71 - 82.

[3] Nguyen Huu Mui, Vu Dinh Hoa (2011), The Hybrid Genetic

Algorithm for Job Shop Problem, Proceeding of The 5th

Vietnam National Conference on Fundamental and Applied

Information Technology Research, Dong Nai, 11-12 August,

2011. Sci and Tech Pub. House, pp. .239 - 249

[4] Brian Patrick Ivers (2003), Job shop optmization through

multiple independent particle swarms, Thesis of Bachelor of

Science in Electrical Engineering, Oklahoma State University.

[5] D. Janaki Ram, T. H. Sreenivas, K. Ganapathy Subramaniam

(1996), Parallel Simulated Annealing Algorithms”, Journal of

Parallel and Distributed Computing, V.37, No.0121, pp. 207–

212.

[6] Tan Hui Woon, Sutinah Salim (2004), A Branch and Bound

and Simulated Annealing Approach for Job Shop Scheduling,

Matematika, Jabatan Matematik, University of Teknologi

Malaysia, Jilid 20, bil.1, hlm. pp. 1–17.

