
International Journal of Computer Science and Telecommunications [Volume 4, Issue 5, May 2013] 18

Journal Homepage: www.ijcst.org

Prasanna Dhisale, Puja Firodiya, Priyanka Gawade and Manjiri Mahamuni

Pimpri Chinchwad College of Engineering, Nigdi-44, India

prasannad91@gmail.com, pujafirodiya9@gmail.com, priya.gawade91@gmail.com, manjiri992@gmail.com

Abstract– In computing, a Natural User Interface, or NUI, is

the common term used by designers and developers of computer

interfaces to refer to a user interface that is effectively invisible,

or becomes invisible with successive learned interactions, to its

users. The word ‘Natural’ is used because most computer

interfaces use artificial control devices whose operations have to

be learned. A NUI helps a user to quickly transit from novice to

expert. On the same way, we present Virtual Touch, a new

vision-based interaction system. Virtual Touch uses computer

vision techniques to extend commonly used interaction

metaphors, such as multi touch screens, yet removes any need to

physically touch the display. The user interacts with a virtual

plane that rests in between the user and the display. On this

plane, hands and fingers are tracked and sequences of gestures

are recognized in a manner similar to a multi touch surface.

Many of the other vision and gesture-based human-computer

interaction systems presented in the literature have been limited

by requirements that users do not leave the frame or do not

perform gestures accidentally, as well as by cost or specialized

equipment. Virtual Touch does not suffer from these

drawbacks. Instead, it is robust, easy to use, builds on a familiar

interaction paradigm, and can be implemented using a single

camera with off the-shelf equipment such as a webcam enabled

laptop. In order to maintain usability and accessibility while

minimizing cost, we present a set of basic Virtual Touch

guidelines. We have developed two interfaces using these

guidelines—one for general computer interaction, and one for

searching an image database. We present the workings of this

system for power point presentation, Mouse control, 3D

Interaction, Gaming, Image viewer and media player control.

Index Terms– Virtual, Blobs, Multi-Touch, HCI and NUI

I. INTRODUCTION

INCE the inception of graphical computer systems in

April 1981, interaction with graphical computer systems

has evolved over the past thirty years to include such

interface metaphors as the mouse and keyboard, pen

computing, touch, and recently multi touch. These enabling

developments have allowed interaction to become more

accessible and natural. A recent and notable example is the

Apple iPod, which sold more than 3 million units within its

first three months. Despite the broad range of technologies in

these developments, they all rely on one basic principle:

interaction happens on two-dimensional plane. As an

enabling technology, computer vision has great potential to

further improve the naturalness of these interaction

metaphors and also to take interaction off of the two-

dimensional plane constraint. Indeed, multiple attempts have

been made over the past decade to create methods for

computer interaction using computer vision, though none of

these systems have achieved widespread use.

Computer vision systems that allow for human interaction

generally use some sort of interface defined by the gestures

the user can perform. These gestures must happen within the

field of view and range of some camera device. Many

systems utilizing a gesture based interface allow for the

gestures to happen at many distances before the camera with

largely the same effect. Perhaps the simplest paradigm

attempted by some of these systems involves extending the

concept of Marking Menus (also known as “pie menus”) to

computer vision, which only requires a user’s hand to be

present in a specific region of the cameras view to perform an

action. Extensions of these ideas led to two mature vision

interaction systems based on localized interaction within

certain “hot spots” in the environment. However, the

localized interaction does not allow generalized control.

Many other systems attempt to use gestures for general

computer use.

II. RELATED WORK

There are various techniques have been proposed in the

literature to deal with the difficulties in computer vision to

control the devices from a distance. Vision based hand

gesture recognition is believed to be an effective technique.

The system tracks the motion of hand.

The problem of this approach is that it is slow and not

accurate on complex background. Moreover the user needs to

hold the hand pose still and frontally facing the camera for

several seconds to activate an operation. As described in [1]

camshift algorithm was used to track the user’s hands, but

camshift algorithm’s processing is not as fast as BLOB

DETECTION algorithm.

S

Virtual Touch – Human Computer Interaction at a

Distance

ISSN 2047-3338

Prasanna Dhisale et al. 19

To reliably track the user’s hands in a computationally

inexpensive way, we use the BLOB DETECTION algorithm

and require the user to wear a colored band. The use of band

could be relaxed via skin-color tracking.

Virtual Touch uses colored marker attached to fingertips

and Microsoft Kinect uses depth image sensor to segment

people's body, both of their approaches make the hand

detection easier. In short, most of the presented interaction

techniques of hand gestures interaction have limitations for

the purpose of taking self-portraits by using a digital camera.

Our proposed interaction technique is application oriented

designed especially for self-portrait; a higher speed hand

detecting algorithm and a cross motion recognition interface

are developed. By using this light-weighted algorithm, it is

easier to transfer the algorithm into the camera device.

Our proposal mainly has three contributions. First, we

propose a novel technique that enables user to manipulate

digital camera conveniently using hand gesture especially

when controlling it from a distant. Second, we developed a

real-time computer vision algorithm that tracks the hand and

fingertip with accuracy and high speed. Third, a cross motion

interface used to recognize hand motion direction has been

proposed.

III. PROPOSED SYSTEM

Virtual touch implement a motion based control system for

advanced Human Computer Interface (HCI). It enables

natural human-computer interaction at a distance without

requiring the user to adapt his or her behavior in any

significant way, or spend time calibrating the system. In this

system we use some sort of interface defined by the gestures.

These gestures must happen within the field of view and

range of camera device. The frontend web-cam will be

capturing the motion up to 3-4 feet apart from the Laptop .To

interact with the system the user has to wear a band on his/her

finger.

A. Computer Vision for General HCI

The Computer Vision for General HCI (CVHCI) system

allows the user to interact with the computer system from a

distance. In this context the Virtual Touch system is used to

mimic a touch screen floating in space. The user interacts

with the system through various motions. Processing the

users interactions happens on two distinct levels— tracking

and gesturing. Which, when combined, allow for a highly

usable system for human-computer interaction.

1) Tracking

To reliably track the user’s hands in a computationally

inexpensive way, we use the BLOB DETECTION algorithm

and require the user to wear a colored band. The use of band

could be relaxed via skin-color tracking, though we use them

primarily because of the low computational overhead of the

involved algorithms. Colored band is used with much success

in other real-time applications such as MIT’s hand tracking

system for virtual manipulation of objects.

The BLOB DETECTION algorithm allows us to determine

not only the X and Y coordinates of each tracked finger, but

also the diameter of the tracked area, which we treat as a

proxy to the Z-axis using only one camera. The diameter of

the finger is noted at the detection point, defining Dtouch, the

“depth” location of the Virtual Touch plane. To allow the

user to act normally in front of the camera, we use adaptive

color histograms to provide the finger tracking with

robustness to lighting changes and quick movement.

Periodically, the histogram of the tracked region is

reevaluated and compared with the histogram on which the

tracker’s back projection is currently based; if there is a large

enough discrepancy, the histogram is updated to reflect the

color of the tracked object in the current environment.

The histograms we use are in the HSV color space since

lighting and camera white balance changes cause variation

largely in the saturation and value components with less

effect on hue. For this reason, we only use the hue histogram

in tracking and we threshold the saturation and value

channels to try to maximize the presence of the tracked hue in

the back projection. When the histogram is updated, the

saturation and value threshold values are updated

automatically using a binary search of the respective spaces

to find the best back projection, the one containing the most

positive pixels in the tracked area. This update assists with

not only with lighting changes but also with quick movement

by ensuring the track is not lost if the hand blurs with fast

motion causing a slightly different histogram.

2) Gesturing

The system currently allows for three gestures for

interaction with the computer: mouse movement, mouse

clicking, and scrolling. All three gestures are variations on

pointing at the screen. To move the mouse the user moves

their pointer finger in front of the camera at a distance outside

of the Virtual Touch plane. This can be likened to how a

Tablet PC handles mouse movement, change the location of

the mouse pointer. Mouse clicking is actually two gestures—

moving the pointer finger into the plane to activate mouse

down, and removing it to mimic mouse up. In other words,

we have a virtual touch screen that allows for click-and-drag

type actions. Finally, the scrolling gesture is accomplished by

moving both the pointer and middle fingers into the

interaction plane and moving them vertically, which is

common on multi touch track pads. We have also

implemented an API for applications to plug-in to Virtual

touch and add their own gestures.

B. Processing steps in Virtual Touch

i. Webcam Interfacing

ii. Grabbing Image

iii. Background removal algorithm

iv. Color detection

v. Blurring an image

vi. RGB to HSV Conversion

vii. Color Thresholding

International Journal of Computer Science and Telecommunications [Volume 4, Issue 5, May 2013] 20

viii. Blob Detection

ix. Operating system Interface

x. Application program Interface(API)

C. System Flow Diagram

Figure 1 shows the flow diagram of the proposed system.

IV. SYSTEM ARCHITECTURAL DIAGRAM

Figure 2 shows the architectural diagram of our proposed

system.

A. Blur Filter

Sr. No. Steps

1. After getting input from webcam,

traverse through entire image array.

2. Read individual pixel color value.

3. Split color value into individual R, G, B

i.e. 8 bit values.

b = col & 0xff;

g = (col >> 8) & 0xff;

r = (col >> 16) & 0xff;

4. Calculate sum of R,G,B separately,

average of surrounding pixels & assign

that avg value to it.

sumR += r;

sumG += g;

sumB += b;

// average of 24 surrounding pixels and

center

r = sumR / 25;

g = sumG / 25;

b = sumB / 25;

5. Repeat above steps for each pixel.

6. Store new value at same location in

output image.

B. RGB to HSV Conversion

Sr.

No.
Steps

1. Find min and max values of RGB.

rgbMin = Math.min(Math.min(r,g),b);

 rgbMax = Math.max(Math.max(r,g), b);

2. Compute and normalize values(V) to 1.

V = rgbMax;

if(V==0) then h = s = 0;

3. Compute and normalize saturation(S) to

1.

If V is not 0 then

s = 255 * (rgbMax-rgbMin)/V;

if(s==0) then h=0;

4. Compute hue(H).

If s is not equal to 0 then,

if(rgbMax == r) then

h = 0 + 43*(g-b)/(rgbMax-rgbMin);

 if(rgbMax == g) then

 h = 85 + 43*(b-r)/(rgbMax

 -rgbMin);

if(rgbMax == b) then

h = 171 + 43*(r-g)/(rgbMax -rgbMin);

 if(h<0)

then h = 255+h;

C. Color Thesholding

Sr.

No.
Steps

1. Traverse through entire input image array

2. Read individual pixel color value (24-bit)

and convert it into grayscale.

b = col & 0xff;

g = (col >> 8) & 0xff;

 r = (col >> 16) & 0xff;

gs = (r+g+b) / 3; //gs=Grayscale

3. Calculate the binary output pixel value

(black or white) based on current threshold.

if(gs < th) {

 pix = 0;

 // pure black color

 }

 else

 {

 pix = 0xFFFFFF;

 // pure white color }

4. Store the new value at same location in

output image

Prasanna Dhisale et al. 21

D. Blob Detection

Sr.

No.
Steps

1. Check the first line of the image and find

groups of one or more white pixels. These

are the blobs on a certain line, called

lineblobs.

2. Number each of these groups.

3. Repeat this sequence on the next line.

4. While collecting the lineblobs, check the

lineblobs on the line we have checked

before this current line and see if these blobs

overlap each other.

5. If we merge these lineblobs as one blob i.e.

give the current lineblob the same number

or id as the lineblob(s) on the other line.

Repeat this for every line and have a

collection of blobs.

V. ADVANTAGES OF PROPOSED SYSTEM

i. System is robust.

ii. Easy to use.

iii. It is built on a familiar interaction paradigm.

iv. It can be implemented using a single camera with

off-the-shelf equipment such as a frontend webcam-

enabled laptop.

v. In combination with gesture recognition, the

interaction between human and machine can be

greatly simplified.

VI. APPLICATIONS

 1. PowerPoint presentation-

 Using Virtual Touch we can move slides up-

 down or shift towards right or left while doing

 presentation.

 2. Media Player Control-

 We can control volume, Play, Pause or select

 other songs using this system.

 3. 3D Interaction-

 We can rotate 3 Dimensional image to see top

 view side view bottom view etc.

 4. Gaming-

 We can play games from a distance without

 touching mouse.

 5. Image viewer-

 To see next and previous images.

VII. CONCLUSION

We believe that this interface metaphor is one which has

nearly limitless applications in offices, labs, households,

industry, and on the move. We hope this system will be

adopted by others and used to promote efficient and natural

methods of human-computer interaction. The issue of natural

and comfortable interaction between humans and computers

has received much study in recent years. On several

occasions vision systems have been proposed in an attempt to

create a natural method for interacting with machines while

not directly touching them. These systems have primarily

been restricted to lab settings, likely due to robustness

problems, difficulty of set-up, and cost issues. In contrast, we

have focused our efforts on a vision based interaction system

that uses standard hardware and extends already well-known

interaction metaphors.

International Journal of Computer Science and Telecommunications [Volume 4, Issue 5, May 2013] 22

REFERENCES

[1]. Daniel R. Schlegel, Albert Y. C. Chen, Caiming Xiong,

Jeffrey A. Delmerico, Jason J. Corso, “AirTouch: Interacting

With Computer Systems at a Distance”, 2010 IEEE.

[2]. L. Bretzner, S. Lenman, and B. Eiderbck. “Computer vision

based recognition of hand gestures for human-computer

interaction”, Technical report, University of Stockholm, 2002.

[3]. R. Wang and J. Popovi, “Real-time hand-tracking with a color

glove”, ACM Transactions on Graphics, 2009.

[4]. T. Lindeberg (2008/2009). Scale-Space, “Scale-space”.

Encyclopedia of Computer Science and Engineering

(Benjamin Wah, ed), John Wiley and Sons, IV: 2495–2504.

doi:10.1002/9780470050118.ecse609. ISBN 0-470-05011-X.

[5]. K. Mikolajczyk, K. and C. Schmid (2004), “Scale and affine

invariant interest point detectors”, International Journal

of Computer Vision 60 (1): pp:

63–86.doi:10.1023/B:VISI.0000027790.02288.f2.

[6]. T. Lindeberg (1998), “Feature detection with automatic scale

selection”, (abstract page). International Journal of Computer

Vision 30 (2): pp: 77–116.

Prasanna Dhisale et al. 23

Fig. 1: Proposed System Flow Diagram

International Journal of Computer Science and Telecommunications [Volume 4, Issue 5, May 2013] 24

Fig. 2: System Architecture

