
International Journal of Computer Science and Telecommunications [Volume 4, Issue 4, April 2013] 14

Journal Homepage: www.ijcst.org

Abdullah Saad AL-Malaise AL-Ghamdi

Department of Information Systems, Faculty of Computing & Information Technology,

King Abdulaziz University, Kingdom of Saudi Arabia

aalmalaise@kau.edu.sa

Abstract– This article briefs a survey on software security

techniques. Software security testing is not the identical as

testing the correctness and competence of security functions

implemented by software, which are most frequently verified

through requirements-based testing. These tests are important;

they expose only a small piece of the depiction needed to verify

the security of the software. Security testing is necessary because

it has a distinct relationship with software quality. Software

meets quality requirements related to functionality and

performance, it does not necessary mean that the software is

secure.

Index Terms– Software Security, Assurance, Reliability and

Recoverability

I. INTRODUCTION

OFTWARE behaves in the presence of a malicious attack,

even though in the real world, software failures usually

happen spontaneously-that is, without intentional

mischief. Security is always next of kin to the information and

services being protected, the skills and resources of
adversaries, and the costs of potential assurance remedies;

security is executed in risk management. Risk analysis,

especially at the design level, can help us identify potential

security problems and their impact. Once recognized and

categorized, software risks can then assist software security

testing.

Software assurance is comprised of reliability,

recoverability, and resiliency aspects of the software.

Software testing must address all of these. Software testing

for functionality should always be improved with security

testing for resiliency [1]. Unit testing is performed by
developers and has the benefit of detecting functional and

software assurance issues early on in the life cycle because it

breaks the software into small convenient units. Regression

testing is essential when code changes. It can be used to

compute the relative attack surface from one version to

another and provide imminent into whether the state of

software security is improving or deteriorating. The difference

between software safety and software security is presence of

an smart adversary twisted on breaking the system. Software

quality, reliability and security belong to one family. Flaws in

software can be exploited by intruders to open security holes.

With the development of the Internet, software security

problems are becoming even more ruthless and excruciating.

Many critical software applications and services need

integrated security measures against malicious attacks. The

purpose of security testing of these systems include

identifying and removing software flaws that may potentially

guide to security violations, and validating the effectiveness

of security measures.

A vulnerability tools is a program that performs the

analytical phase of a vulnerability analysis, and assessment.

Vulnerability analysis defines, identifies, and classifies the
security holes and their weakness in computer systems

includes network, server, or communications channel. Also

vulnerability analysis can predict the effectiveness of

proposed countermeasures, and evaluate how well they work

after they are put into use. The tools relies on a database that

contains all the information required to check a system for

security holes in services and ports, anomalies in packet

construction, and potential paths to exploitable programs.

Vulnerability assessments that verify the presence of security

controls, and penetration testing which is used to determine if

those security controls are effectively working, are common
security Testing techniques.

II. REQUIREMENT FOR SECURITY TESTING

Basically there are three key quality components to

software assurance. These are reliability, resiliency, and

recoverability. Reliable software is that which functions as

needed by the end user. Resilient software is that which is

able to endure the attempts of an attacker to compromise

impact integrity, confidentiality and availability. We can say a
secure software should achieves these security requirements

A. Possible Attacks on Software

This section describes the various possible attacks. The

large systems are typically most susceptible to, due to

malicious outsiders and an insider includes users, processes

and applications. The possible attacks are

 Information Disclosure Attacks Applications can often
be forced to reveal sensitive or useful data. Error

S

A Survey on Software Security Testing Techniques

ISSN 2047-3338

Abdullah Saad AL-Malaise AL-Ghamdi 15

messages generated by the application often contain

information useful to attackers. Attacks of this type

include directory indexing attacks, path traversal attacks

and determination of whether the application allocates

resources from a conventional and accessible location.

The target with this set of attacks is to segregate any and
all cases of information leakage.

 System Dependency Attacks: Vital system resources

can be identified by monitoring the environment of use

of the application and targeted. A system must have the
ability to securely process corrupt, missing and

Trojaned files. Large systems are often vulnerable to

input strings that tend to cause insecure behaviors.

Attacks in this class include large strings, command

injection, LDAP injection, OS commanding, SQL

injection, SSI injection, format strings, escape

characters, and special/problematic character sets.

 Logic/Implementation (business model) Attacks The
hardest attacks to apply are often the most profitable for

an attacker. These include broadcast temporary files for

sensitive information, attempts to mall-treatment

internal functionality to expose secrets and cause

insecure behavior, checking for faulty process validation

and testing the application’s ability to be remote-

controlled. Users may get in between the time-of-check
and time-of-use of sensitive data and perform denial of

service at the component level.

 Authentication/Authorization Attacks These attacks is

comprise both dictionary attacks and common
account/password strings) and credentials, exploiting

key materials , insufficient and poorly implemented

protection and recovery of passwords, key material both

in memory and at component boundaries.

III. SECURITY TESTING TECHNIQUES

We have reviewed many articles on security testing

techniques and brief here. Basically in software engineering
the:

 Code reviews

 Automated static analysis

 Binary code analysis

 Fuzz testing

 Source and binary code fault injection

 Risk analysis

 Vulnerability scanning

 Penetration testing

A. Risk Analysis

To review security requirements and to identify security

risks, risk analysis is carried out during the design phase of

development. Threat modeling is a methodical process that is

used to identify threats and vulnerabilities in software. It helps

system designers to analyze and think about the security
threats that their system might face. Therefore, threat

modeling is carried out as risk assessment for software

development. In fact, it enables the designer to develop

mitigation strategies for potential vulnerabilities and helps

them focus their limited resources and attention on the parts

of the system most at risk. It is recommended that all

applications have a threat model developed and documented.

Threat models should be created as early as possible in the

SDLC, and should be revisited as the application evolves and
development progresses. To develop a threat model,

implement a simple approach that follows the NIST 800-30

[7] standard for risk assessment. This approach involves:

 Decomposing the application - understand, through a
process of manual inspection, how the application

works, its assets, functionality, and connectivity.

 Defining and classifying the assets - classify the assets

into tangible and intangible assets and rank them
according to business importance.

 Exploring potential vulnerabilities - whether technical,

operational, or management.

 Exploring potential threats - develop a realistic view of

potential attack vectors from an attacker’s perspective,

by using threat scenarios or attack trees.

 Creating mitigation strategies - develop mitigating
controls for each of the threats deemed to be realistic.

B. Code Review

Source code review is carried by static analysis. It is the

process of manually checking source code for security

vulnerability. Many serious security weaknesses cannot be

detected with any other procedure of analysis or testing.

According to the security community there is no alternate for

actually looking at code for detecting subtle vulnerabilities.

Unlike testing third party closed software such as operating

systems, when testing applications the source code should be

made available for testing purposes. Many unintentional but
significant security problems are also extremely difficult to

discover with other forms of analysis or testing, such as

penetration testing, making source code analysis the technique

of choice for technical testing. The advantages of code review

are Completeness, effectiveness, and Accuracy.

Disadvantages are not practical for large code bases, requires

highly skilled reviewers, labor intensive, and infeasible to

detect runtime errors.

With the source code, a tester can accurately determine

what is happening and remove the speculation work of black

box testing. The issues includes concurrency problems, time

bombs, logic bombs, flawed business logic, access control
problems, and cryptographic weaknesses as well as back

doors, Trojans and other forms of malicious code can be

exposed by source code reviews. These issues often visible

themselves as the most harmful vulnerabilities in web sites.

Source code analysis can also be extremely efficient to find

implementation issues such as sections of the code where

input validation was not performed or where fail open control

procedures may be present.

Operational procedures need to be reviewed as well, since

the source code being deployed might not be the same as the

one being analyzed. Code review is highly work exhaustive,
but can, when reviewers with appropriate levels of experience

perform the review, produce the most complete, accurate

International Journal of Computer Science and Telecommunications [Volume 4, Issue 4, April 2013] 16

results early in the review process, before the reviewer

fatigues. It is common for the reviewer to begin by very

scrupulously checking every line of code, then to gradually

skip larger and larger portions of code, so that by the end of

the review, the inconsistent and decreasing amount of ”code

coverage” is insufficient to determine the true scenery of the
software. It is important to note, that as the size of the code-

base increases it becomes less feasible to perform a complete

manual review. Code reviews are also useful for detecting

indicators of the presence of malicious code. For example, if

the code is written in C, the reviewer might seek out

comments that indicate exploit features, and/or portions of

code that are complex and hard-to-follow, or that contain

embedded assembler code.

C. Automated Static Analysis

Automated static analysis is any analysis that examines the

software without executing it, and it involves the use of a

static analysis tool. In most cases, this means analyzing the

program’s source code, although there are a number of tools

for static analysis of binary executables. Because static

analysis does not require a fully integrated or installed version

of the software, it can be performed iteratively throughout the

software’s implementation. Automated static analysis does

not require any test cases and does not know what the code is

intended to do [11]. The main objective of static analysis is to
find out security flaws and to identify their potential fixes.

The static analysis tool output should provide enough detailed

information about the software’s possible failure points to

enable its developer to classify and prioritize the software’s

vulnerabilities based on the level of risk they pose to the

system.

Static analysis testing should be performed as early and as

often in the life cycle as possible. The most effective tests are

performed on granularly small code units-individual modules

or functional-process units-which can be corrected relatively

easily and quickly before they are added into the larger code

base. Iteration of reviews and tests ensures that flaws within
smaller units will be dealt with before the whole system code

review, which can then focus on the ”seams” between code

units, which represent the relationships among and interfaces

between components. Static analysis tools are effective at

detecting language rules violations such as buffer overflows,

incorrect use of libraries, type checking and other flaws.

Static analysis tools can scan very large code bases in a

relative short time when compared to other techniques. The

reviewer’s job is limited to running the tool and interpreting

its results. Static analysis tools are not efficient enough to

detect anomalies that a human reviewer would determine. The
tools can provide additional benefits, by allowing developers

to run scans as they are developing-addressing potential

security vulnerabilities early in the process. Similarly, the

level of expertise required for an automated review is less

than that required for a manual review. In many cases, the tool

will provide detailed information about the vulnerability

found, including suggestions for mitigation.

1) Limitation of Static analysis tools

Following are the limitations of Static analysis tools

 Limited number of path to analyze since a full
exploration of all possible paths through the program

could be very resource intensive.

 Third party code - If part of a source code is not
available, such as library code, OS, etc., the tool has to

make assumptions about how the missing code operates.

 Incapability to trace out unexpected flaws - Flaw
categories must be predefined.

 Incapability to trace out architectural errors.

 Incapability to trace out system administration or user
mistakes.

 Incapability to find vulnerabilities introduced or

exacerbated by the execution environment.

D. Source and binary code fault injection

Source code fault injection is a testing technique originated

by the software safety community where as Binary fault

injection is an adjunct to security penetration testing to enable

the tester to obtain a more complete picture of how the

software responds to attacks. .Source code fault injection is

used to induce stress in the software, create interoperability

problems among components, simulate faults in the execution
environment, and thereby reveal safety-threatening faults that

are not made apparent by traditional testing techniques.

Security fault injection extends standard fault injection by

adding error injection, thus enabling testers to analyze the

security of the behaviors and state changes that result in the

software when it is exposed to various perturbations of its

environment data. Software programs interact with their

execution environment though operating system calls, remote

procedure calls, application programmatic interfaces, man

machine interfaces, etc. Binary fault injection involves

monitoring the fault injected software’s execution at runtime.
For example, by monitoring system call traces, the tester

can decipher the names of system calls and the call’s return

code/value (which reveals success or failure of the access

attempt. In binary fault injection, faults are injected into the

environment resources that surround the program.

Environmental faults in particular are useful to simulate

because they are most likely to reflect real world attack

scenarios. However, injected faults should not be limited to

those simulating real world attacks. As with penetration

testing, the fault injection scenarios exercised should be

designed to give the tester as complete as possible an

understanding of the security of the behaviors, states, and
security properties of the software system under all possible

operating conditions.

IV. FUZZ TESTING

Fuzzing is a technique for finding security-critical flaws in

any software in a very less computational cost and time. Fuzz

testing takes random invalid data to the software under test

through its environment or another software component.
Fuzzing means a random character generator for testing

applications by injecting random data at their interfaces. In

other ward it means injecting noise at program interfaces.

Fuzz testing is implemented by a program or script that

Abdullah Saad AL-Malaise AL-Ghamdi 17

submits a combination of inputs to the software to disclose

how that software responds. The idea is to look for interesting

program behavior that results from noise injection and may

indicate the presence of vulnerability or other software fault.

Fuzzers are generally specific to a particular type of input,

such as HTTP input, and are developed to test a specific
program; they cannot be reused. Their value is their

specificity, because they can often reveal security

vulnerabilities that generic testing tools such as vulnerability

scanners and fault injectors cannot.

Fuzzing might be characterized as a blind fishing mission

that hopes to uncover completely unsuspected problems in the

software. For example, suppose the tester intercepts the data

that an application reads from a file and replaces that data

with random bytes. If the application crashes as a result, it

may indicate that the application does not perform needed

checks on the data from that file but instead assumes that the

file is in the right format. The missing checks may (or may
not) be exploitable by an attacker who exploits a race

condition by substituting his or her own file in place of the

one being read, or an attacker who has already subverted the

application that creates this file. The main focus of fuzzing is

on functional security assessment. As fuzzing is essentially

functional testing, it can be conducted in various steps during

the overall development and testing process.

V. BINARY CODE ANALYSES

In Binary code analysis the technique of reverse

engineering and analysis of binary is used. This executes as

decompiles, disassembles, and binary code scanners,

reflecting the varying degrees of reverse engineering that can

be performed on binaries.

The least intrusive technique is binary scanning. Binary

scanners, analyze machine code to model a language-neutral

representation of the program’s behaviors, control and data

flows, call trees, and external function calls. Such a model

may then be traversed by an automated vulnerability scanner

in order to locate vulnerabilities caused by common coding
errors and simple back doors. A source code emitter can use

the model to generate a human-readable source code

representation of the program’s behavior, enabling manual

code review for design level security weaknesses and subtle

back doors that cannot be found by automated scanners. The

most intrusive reverse engineering technique is de-

compilation, in which the binary code is reverse engineered

all the mode back to source code, which can then be subjected

to the same security code review techniques and other white

box tests as original source code. Note, however, that de-

compilation is technically problematical: the quality of the
source code generated through de-compilation is often very

poor.

Such code is rarely as navigable or comprehensible as the

original source code, and may not accurately reflect the

original source code. This is particularly true when the binary

has been obfuscated or an optimizing compiler has been used

to produce the binary. Such measures, in fact, may make it

impractical to generate meaningful source code. In any case,

the analysis of decompiled source code will always be

significantly more difficult and time consuming than review

of original source code. For this reason, de-compilation for

security analysis only makes sense for the most significant of

high effective components. The next least intrusive technique

is disassembly, in which binary code is reverse engineered to

intermediate assembly language [3]. The drawback of

disassembly is that the resulting assembler code can only be
meaningfully analyzed by an expert who both thoroughly

understands that particular assembler language and who is

skilled in detecting security-relevant constructs within

assembler code.

VI. VULNERABILITY SCANNING

Application vulnerability scanners are a very important

software security testing technique. These tools scan the

executing application software for input and output of known
patterns that are associated with known vulnerabilities In

application level software, automated vulnerability scanning

is used. Also uses for Web servers, database management

systems, and some operating systems. These vulnerability

patterns, or ”signatures”, are comparable to the signatures

searched for by virus scanners, or the ”dangerous coding

constructs” searched for by automated source code scanner,

making the vulnerability scanner, in essence, an automated

pattern-matching tool. While they can find simple patterns

associated with vulnerabilities, automated vulnerability

scanners are unable to pinpoint risks associated with
aggregations of vulnerabilities, or to identify vulnerabilities

that result from unpredictable combinations of input and

output patterns.

In addition to signature-based scanning, some Web

application vulnerability scanners attempt to perform

”automated state full application assessment” using a

combination of simulated reconnaissance attack patterns and

fuzz testing techniques to ”probe” the application for known

and common vulnerabilities. Like signature-based scans, state

full assessment scans can detect only known classes of attacks

and vulnerabilities [10].

Most vulnerability scanners do attempt to provide a
mechanism for aggregating vulnerability patterns. The current

generation of scanners is able to perform fairly

unsophisticated analyses of risks associated with aggregations

of vulnerabilities. In many cases, especially with commercial

off the-shelf (COTS) vulnerability scanners, the tools also

provide information and guidance on how to mitigate the

vulnerabilities they detect.

Archetypical application vulnerability scanners are able to

recognize only some of the types of vulnerabilities that exist

in large applications: they focus on vulnerabilities that need to

be truly remedied versus those that can be mitigated through
patching. As with other signature-based scanning tools,

application vulnerability scanners can report false positives,

unless re-calibrated by the tester. The tester must have enough

software and security expertise to meaningfully interpret the

scanner’s results to weed out the false positives and negatives,

so as not to identify as vulnerability what is actually a benign

issue, and not to ignore a true vulnerability that has been

overlooked by the tool. This is why it is important to combine

different tests techniques to examine the software for

weakness in a variety of ways, none of which is adequate on

International Journal of Computer Science and Telecommunications [Volume 4, Issue 4, April 2013] 18

its own, but which in combination can greatly increase the

likelihood of vulnerabilities being found [8]. Because

automated vulnerability scanners are signature-based, as with

virus scanners, they need to be frequently updated with new

signatures from their vendor. Two important evaluation

criteria for selecting a vulnerability scanner are: (1) how
extensive the tool’s signature database is, and (2) how often

the supplier issues new signatures. Before penetration testing,

in order to locate straightforward common vulnerabilities, and

thereby eliminate the need to run penetration test scenarios

that checks for such vulnerabilities.

VII. PENETRATION TESTING

The alternate name of Penetration testing is ethical hacking.

It is a very common technique for testing network security.
While penetration testing has proven to be effective in

network security, the technique does not naturally translate to

applications. Penetration testing is, for the purposes of this

guide, the”art” of testing a running application in its”live”

execution environment to find security vulnerabilities.

Penetration testing observes whether the system resists attacks

successfully, and how it behaves when it cannot resist an

attack. Penetration testers also attempt to exploit

vulnerabilities that they have detected and ones that were

detected in previous reviews [2]. Types of penetration testing

include black-box, white box and grey box. In black-box
penetration testing, the testers are given no knowledge of the

application [9]. White-box penetration is the opposite of

black-box in that complete information about the application

may be given to the testers. Grey-box penetration testing, the

most commonly used, is where the tester is given the same

privileges as a normal user to simulate a malicious insider [5]

Penetration testing should focus on those aspects of system

behavior, interaction, and vulnerability that cannot be

observed through other tests performed outside of the live

operational environment. Penetration testers should subject

the system to sophisticated multi-pattern attacks designed to

trigger complex series of behaviors across system
components, including non-contiguous components. These

are the types of behaviors that cannot be forced and observed

by any other testing technique.

Penetration testing is used to find security problems that are

likely to originate in the software’s architecture and design as

it is this type of vulnerability that tends to be overlooked by

other testing techniques.

VIII. CONCLUSIONS

In this paper, we have described various software security

testing techniques that may help to the community of software

developer. Software quality, reliability and security are tightly

coupled. Flaws in software can be exploited by intruders to

open security holes. With the development of the Internet,

software security problems are becoming very challenging

job. Many critical software applications and services need

integrated security measures against malicious attacks. The

purpose of security testing of these systems include

identifying and removing software flaws that may potentially

lead to security violations, and validating the effectiveness of

security measures. Simulated security attacks can be

performed to find vulnerabilities.

REFERENCES

[1] J. Whittaker and H. Thompson, How to Break Software

Security, Addison-Wesley, 2003. Brown Jeremy. "Fuzzing for
Fun and Prot." Krakow Labs Literature, 02 Nov. 2009.

[2] Caballero, Yin, Liang, Song, "Polyglot: Automatic Extraction
of Protocol Message Format using Dynamic Binary Analysis",
In Proceedings of the 14th ACM Conference on Computer and
Communication Security, Alexandria, VA, October 2007.

[3] P. Godefroid, M. Levin, D. Molnar. Automated Whitebox
Fuzz Testing. NDSS Symposium 2008.San Diego, CA. 10-13
February, 2008.

[4] Charles Miller The legitimate vulnerability market: the
secretive world of 0-day exploit sales. Work-shop on the
Economics of Information Security (WEIS) 2007. The Heinz
School and CyLab at Carnegie Mellon University Pittsburgh,
PA (USA). June 7-8, 2007.

[5] P. Godefroid. Compositional Dynamic Test Generation, In
Proceedings of POPL-2007, 34th ACM Symposium on
Principles of Programming Languages, pages 47-54, Nice,

January 2007.
[6] G. McGraw "Software Security," IEEE Security & Privacy,

vol. 2, no. 2, 2004, pp. 80-83.
[7] M. A. Hadavi, H. M. Sangchi, V. S. Hamishagi, H. Shirazi

"Software Security, A Vulnerability- Activity Revisit", The
Third International Conference on Availability, Reliability and
Security, 2008.

[8] G. Hoglund and G. McGraw, Exploiting Software, Addison-

Wesley, 2004.
[9] Tina R. Knuston "Building Privacy into Software Products and

Services", IEEE Security and Privacy, pp.72-74, Mar-Apr
2007.

[10] D. Verndon and G. McGraw, "Risk Analysis in Software
Design," IEEE Security & Privacy, vol. 2, no. 4, 2004, pp. 79-
84.

[11] Donald G.Firesmith "Security Use Cases", JOURNAL OF

OBJECT TECHNOLOGY, Vol. 2, No. 3, May-June 2003.

