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Abstract—Layered decoding is known to provide efficient and 

high-throughput implementation of LDPC decoders. The Check-

Node Layered Belief Propagation (CL-BP) algorithm is a 

modification of Belief Propagation algorithm (BP), where the 

check nodes are divided in subgroups called layers and each 

iteration is broken into multiple sub-iterations. Some 

simplifications can also be made to lower the complexity of both 

BP and CL-BP algorithms, and particularly the complexity of 

the check node update rule. In this paper, we consider The 

Check-Node Layered Belief Propagation (CL-BP) decoding and 

propose efficient Variable-Node Layering (VL-BP) for updating 

extrinsic information based on corrective terms. Simulation 

results show that good performance can be achieved, and which 

can even be improved by the addition of a normalization term or 

an offset adjustment term. 

 

Index Terms— Layered decoding, CL-BP, VL-BP, Min-Sum 

and VL-BP 

 

I. INTRODUCTION 

OW Density Parity Check (LDPC) codes, first introduced 

by R. Gallager [1] in the early 1960s, deliver very good 

performance when decoded with the belief-propagation (BP) 

[15] or the sum-product algorithm [2-4]. As LDPC codes are 

being considered for use in a wide range of applications, the 

search for efficient implementations of decoding algorithms is 

being pursued intensively. 

The BP algorithm can be simplified using the so-called 

Min-Sum (BP-based) approximation [10]. But this 

simplification is made at the expense of a substantial loss in 

performance. In [11], an improvement is made to the Min-

Sum (BP-based) algorithm by using a correction factor in the 

check node update rule. It is denoted by offset BP-based 

algorithm when the correction factor is subtracted to the 

minimum value, or normalized BP-based algorithm when it is 

multiplied by the correcting factor. 

Recently, several papers have investigated different types of 

scheduling strategies in BP LDPC decoding. With sequential  
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scheduling, the messages are generated sequentially using the 

latest available information. Sequential scheduling was 

introduced as a sequence of check-node updates in [5, 6] and 

a sequence of variable-node updates in [7, 8]. It is also 

presented in [20] under the name of Layered BP (LBP), in [9] 

and [12] as serial schedule, in [13] as row message passing 

and column message passing. 

Check nodes Layered BP algorithm CL-BP is a 

modification of BP algorithm that divides check nodes into 

small subgroups called layers and breaks each iteration into 

multiple sub-iterations. In each sub-iteration one layer of 

check nodes and their neighboring variable nodes are 

processed [20]. 

In [23], an improvement is made to the Check nodes 

Layered BP (Cl-BP) algorithm by using an efficient variable 

node layering strategy that significantly increases decoding 

convergence of LDPC codes as compared to CL-BP. Results 

show that the decoding convergence of the proposed variable 

nodes layering outperforms CL-BP and BP decoding.  

In this paper, we consider Variable Node Layered BP (VL-

BP) algorithm and propose the VL-BP algorithm for LDPC 

code which has better performance not only from BP 

algorithm but also from CL-BP algorithm. 

The rest of the paper is organized as follows. Section II  

introduces the LDPC representation with bi-partite graph and 

describe the principal of LDPC optimal decoding algorithm. 

Section III presents the Check-Node Layered BP (CL-BP) 

algorithm. In section IV, a new decoding strategy for 

updating extrinsic information is proposed based on variable 

node layering. Sign-magnitude expression of the check node 

update rule is presented in section V. The section VI focuses 

on simplifying the check-node update rule to obtain reduced-

complexity Variable-Node Layered BP (VL-BP) derivatives 

that achieve near-optimum performance. The simulation 

results are discussed in section VII, and finally, conclusions 

are drawn in section VIII. 

II. LDPC CODES AND OPTIMAL DECODING 

A. LDPC Codes 

A binary ( kjN ,, ) LDPC code is a linear block code of 

length N  having a small fixed number ’ j ’ of ones in each 

column of the parity check matrix H , and a small fixed 
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number ’ k ’ of ones in each rows of H . A sparse NM  

parity-check matrix H  can be viewed as a Tanner graph.A 

Tanner graph is a bipartite graph where the elements of a first 

class can be connected to the elements of a second class. In a 

Tanner graph of an LDPC code, elements of the first class are 

N  variable nodes denoted by nv  corresponding to the 

encoded symbols and the elements of the second class are M  

parity-check nodes denoted by mc  corresponding to the parity 

checks represented by the rows of the matrix H . A variable 

node nv  is connected to a check node mc  if and only if 

),( nmH  has a non-zero entry. The Tanner graph 

representation of LDPC codes is very useful since their 

decoding algorithms can be explained by the exchange of 

information along the edges of these graphs. The notations 

related to the Tanner graph and an important hypothesis will 

be hereafter detailed. 

We take the same notation as it was done by Fossorier in 

[15], let M(n)  denotes the set of check nodes connected to 

symbol node nv  (i.e. the positions of ones in the n
th

 column 

of the parity-check matrix H ) and let N(m) denotes the set 

of symbol nodes that participate in the m
th

 parity-check 

equation (i.e. the positions of ones in the m
th

 row of H ). 

Furthermore, n\N(m)  represents the set N(m) excluding 

the n
th

 symbol node and similarly, M(n)  represents the set 

M(n) excluding the m
th

 check node. 

 

Let also kn ,  the k
th

 parity check constraint of M(n)  

with bit nv  excluded, |}M(n)|,{1,k .  

To calculate the decoding algorithms complexity, we 

can define |M(n)|  and |N(m)|  as follows: 

  

 • |M(n)|  is the number of parity-check equation by bit. 

 

 • |N(m)|  is the weight of the parity-check equation, i.e. the 

number of terms implied in the parity-check equation. 

 

 In order to have independant equations, we consider the 

cycle free hypothesis. A graph is cycle free if it contains no 

path which begins and ends at the same check node without 

going backward.  

B. Optimal Decoding 

The aim is to find the codeword )ˆ,ˆ(=ˆ
1 Nvvv   which is 

the most probable to have been sent over the channel, based 

on the received word ),,(= 1 Nyyy  , and on the 

knowledge of the code [16]. Using Bayes rule, the posterior 

probabilities for binary block codes are expressed by these 

formulas: 

)(
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vPvyP
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 The decision on binary symbols is defined as follows:  
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The received word ),,(= 1 Nyyy   can be split into two 

sets : ny  and nny  [17]. Under the hypothesis of a free Inter 

Symbol Interference channel, ny  depends only on nv , and is 

independent of nny . So the posterior probabilities are 

expressed by the following equation : 
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 Using equations (1) and (2), the estimated symbol can be 

defined as follows :  
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When we use the log-likelihood ratio nT  (LLR) of nv , 

defined by : 
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For each received bit nv ; Nn ,1,2,=  , in an N-bit 

block, a decoder uses its log-likelihood ratio nT  which can be 

expressed by:  

nnn EIT =
                                     

(8)
 

   

    • nT  is the overall information of the bit nv . 

 

    • )
1)=\(

0)=\(
(log=

nn

nn
n

vyP

vyP
I  is the  intrinsic 

information. It is related to the received value ny  and to the 

channel parameters. 
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    • 
)\1=(

)\0=(
log=

nnn

nnn
n

yvP

yvP
E  is the nv  extrinsic 

information. It is the information improvement gained by 

considering the fact that the coded symbols respect the parity 

check constraints.  

 

)\1=( nnn yvP )\1=,1,=(= )|(M|,,1 nnnnn yP 
  

(9) 

 
 Under the assumption of cycle free hypothesis, parity check 

constraints equations kn,  are in disjointed trees so the events 

1=,kn  for |})(M|,{1, nk   are conditionally 

independent given nny  [17]. As seen on Appendix A, the 

extrinsic information of bit nv  yield:  

 

kn

n

k

n EE ,

)|(M|
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(10)

 

So the extrinsic information nE  is the information given 

by each of the parity-check constraints )(M n  on the bit 

nv . Let lknv ,,  be the first bit implied in the parity check 

equation kn ,  of degree || ,kn . Then, applying equation (8) 

to the parity check kn ,  yields to:  
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Hence, the total information of the bit nv  is completely 

expressed by: 

kn

n

k

nn EIT ,

)|(M|

1=

=

                                

(12)

 

III. CHECK NODE LAYERED BP ALGORITHM (CL-BP) 

LDPC decoding is based on iterative algorithms. An 

iteration of Belief Propagation (BP) algorithm consists of a 

round of message passing from each variable node to all 

adjacent check nodes following by another round of message 

passing from each check node to its adjacent variable nodes 

[18].  

Check Node Layered BP (CL-BP) decoding is a 

modification of the Belief Propagation (BP) algorithm. It 

divides the Tanner graph of an LDPC code into smaller 

subgraphs, called layers, such that each subgraph consists of a 

set of check nodes and all their neighboring variable nodes. 

Each check node appears in exactly one layer, while variable 

nodes can appear in multiple layers. In each sub-iteration the 

check node and variable node updates are calculated in one 

layer [21].  

The decoding then progresses sequentially through layers 

by performing message updates sub-iteration by sub-iteration.  

A parity check test over the entire codeword is performed at 

the end of each sub-iteration. Decoding performance is 

achieved through repeated iterations of tow messages 

transmitted from nodes to nodes: ),( mnT  and ),( mnE . ),( mnT  

denotes the information which is sent by a variable node nv  

to its connected check node mc  and ),( mnE  denotes the 

information which is sent by a check node mc  to its 

connected variable node nv  [18].  
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Fig. 1: A parity-check matrix and the corresponding bipartite graph. 1  and 2  

are check node layers 

 

IV. PROPOSED LAYERING 

On this proposed layering strategy, we consider for the first 

layer a set of variable nodes that has a low value of the 

intrinsic information nI  of the bit nv . Each variable node 

appears in exactly one layer, while check nodes can appear in 

multiple layers. In each sub-iteration the check node and 

variable node updates are calculated in one layer. The 

decoding then progresses sequentially through layers by 

performing message updates sub-iteration by sub-iteration. 
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Fig. 2: Two layers ( 1 and 2 ) of the Tanner graph in Fig. 1 and their 

corresponding subgraphs 

 

 

Let },...,,{= 21 Nvvvv  denotes the set of all variable 

nodes and let },...,,{= 21 Mcccc  denotes the set of all check 

nodes. More specifically, for an LDPC code defined by an 

)( NM  parity-check matrix, the Variable Nodes Layered 

BP (VL-BP) algorithm is defined as follows: 

  

    • Initialization:   

a)  For each variable node vvn  calculate the 

intrinsic information nI .  

 b) Sort the variable nodes vvn  according to the 

absolute values of the intrinsic information nI  in the 

ascending order.  

   

    c)  Group the variable nodes into 0K  subgroups S  

for K,1,=   such that for all ji , Ø=ji SS .  

    d)  For the first layer , consider the subset of variable 

nodes that has a low values of nI .  

   e)  All check node messages are initialized to 0 

: 0=)(0,

),( mnE  for variable node Svn , K,1,=   and 

)(nMcm . As seen in section 2, )(nM  denotes the set of 

check nodes connected to symbol node nv .  

f) 1=  and 1=l  

 
• Iterative Processing: 

  

  - Variable node update rule: For each variable node 

Svn  calculate the variable node updated message to its 

adjacent check nodes nm Mc .  

 
)1,(

,

),(

,

)(

= l

mn

l

mn

nMm

nn EETT  

  

   - Check node update rule: For each check node 

nm Mc , compute the updated message to its adjacent 

variable nodes Svn   

 

)
2

(tanh(tanh2=

)1,(

),(

\)(

1),(

,

l

mnn

nmNn

l

mn

ET
E  

 

 

   - Decision rule:  

0<1=ˆ

0>0=ˆ

nn

nn

ifTv

ifTv

 

  - Generate )ˆ,,ˆ(=ˆ
1 Nvvv   and do the following:   

 * If 0=ˆTvH  then the decoding algorithm halts, 

and v̂  is considered as a valid decoding result.  

   * 1= , if K  then repeat the algorithm 

from variable node update of sub-layer .  

    * else 1= ll . A failure is declared if some 

maximum number of iteration stages occurs without a valid 

decoding.  

     * Otherwise, the algorithm repeats from variable 

node update. 

V. SIGN-MAGNITUDE CHECK NODE UPDATE RULE FOR VL-BP  

As seen in section (4), the check node update rule is 

expressed by:  
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 This equation can be separated into the sign and the 

magnitude, as derived hereafter. We have then from (13) :  
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,

l
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,
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 Let )(xf  be defined by:  
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Then, taking the logarithm of the inverse of both side of 

(16) yields:  
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 Using the propriety xxff =))(( , the magnitude of the 

extrinsic information can be expressed as follows:  
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 So the check node update rule of VL-BP algorithm can be 

written with separate sign and magnitude, yielding the 

following equation:  
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VI. APPROXIMATED GENERAL REPRESENTATIONS OF THE 

VARIABLE NODE LAYERING BELIEF PROPAGATION ALGORITHM 

This section focuses on simplifying the check-node update 

rules to obtain reduced-complexity VL-BP derivatives that 

achieve near-optimum performance. 

A. VL-BP Based Decoding 

There is an important simplification for the BP algorithm 

in the literature [10] : the BP-based algorithm. The same 

approximation can also be made for the proposed VL-BP 

algorithm since the check node update is replaced by a 

selection of the minimum input value. The check node update 

rule of VL-BP algorithm can be expressed by the following 

equation :  
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B. Offset VL-BP Based Decoding 

We propose, similarly to [11], another approximation for 

the VL-BP Based algorithm by using a correction factor in 

the check node update rule. We denote by offset VL-BP-based 

algorithm when the correction factor is subtracted to the 

minimum value. The check node update rule for the offset 

VL-BP-based algorithm is expressed by the following 

equation: 
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(23) 

C. Normalized VL-BP Based Decoding 

On this section, we propose a modified VL-BP based 

algorithm based on normalization term. We denote by 

normalized VL-BP-based algorithm when the check node 

update is multiplied by the correcting factor. Equation (22) 

yields to:  

1>,
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,),(
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mnl
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E
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VII.  SIMULATION RESULTS  

A. Simulation conditions 

In this section, we compare Bit Error Rate (BER) 

performance of BP algorithm, Check-Node Layered BP (CL-

BP) algorithm, and Variable-Node Layering and their 

reduced-complexity derivatives. For all the simulations, there 

is no encoding program so the decoder generates noisy 

samples from the all-zero codeword. The received bit are 

decided by comparing the total information to zero. 

     Let 0N  denotes the one sided noise power spectrum 

density and bE  denotes the average energy per information 

bit. 

All the simulations are specified with: 

 • The maximum number of iterations maxiter . The syndrome 

is computed at each iteration. If the syndrome is equal to 

zero, the iterations are stopped. 

 

 • The maximum number of errors (bit or word) to be reached 

before increasing the 

dB

b

N

E

0

 value. 

 • The maximum number of words that are to be generated for 

each 

dB

b

N

E

0

. 
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Fig. 3: Comparison between BP, CL-BP VL-BP algorithms and their derivatives 

(VL-BP based , offset VL-BP based, Normalized VL-BP based) for LDPC code 

1C  as a function of the 

0N

Eb  for itermax=2. The BER obtained with the CL-BP 

algorithm and VL-BP algorithm is computed by considering tow layers of check 

nodes and variable nodes, respectively. 

 

 

 
 

 

Fig.4: Comparison between BP, CL-BP VL-BP algorithms and their derivatives 

(VL-BP based , offset VL-BP based, Normalized VL-BP based) for LDPC code 

2C  as a function of the 

0N

Eb  for itermax=2. The BER obtained with the CL-BP 

algorithm and VL-BP algorithm is computed by considering tow layers of check 

nodes and variable nodes, respectively. 

 

 

 

All the simulations ends when 200  erroneous codewords 

are detected. A bit is said to be wrong if the intrinsic 

information nI  is negative, and it is said to be right if it is 

positive. 

 

B. Codes used for simulations 

For all the simulations, we design tow LDPC codes of rate 

0.5 taken from the MacKays online database. 

The code 1C  is a regular (5,10)-LDPC code of length 

1008=N . The code 2C  is a regular (3,6) -LDPC code of 

length 96=N .  

C. Codes Algorithm Comparison 

The result of the check node update equation, which is 

over-estimated for the BP-based algorithm, is then closer to 

the result obtained with the BP algorithm. Some LLR 

computed with different algorithms on the same channel 

input are given in table 1, where the input are listed in the 

ascending order for the code 2C . We can observe that all the 

approximations of the VL-BP algorithm are over-evaluated. 

Of course, when increases, the approximation is improved. 

 

 
 

Fig .5: Comparison between BP, CL-BP VL-BP algorithms and their derivatives 

(VL-BP based , offset VL-BP based, Normalized VL-BP based) for LDPC code 

2C
 as a function of the number of iterations for a fixed 0N

Eb

 of 1.5dB. 

   

 

A comparison between the BP algorithm , the layered BP 

and the proposed layered BP algorithm for LDPC codes 1C  

and  2C  as a function of the 

0N

Eb
 is depicted on figures 

(1),(2),(3),(4),(5),(6) and (7).  Many  conclusions can be 

made for this comparison: 
 

• The performance for all the cases is increasing with the 

length of code. And the differences between BP, CL-BP VL-

BP and their derivatives (VL-BP based , offset VL-BP based, 

Normalized VL-BP based) is also increasing. 

•  VL-BP improves the decoding convergence compared to 

the BP and CL-BP algorithms. 
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Fig.6: Comparison between BP, CL-BP VL-BP algorithms and their derivatives 

(VL-BP based , offset VL-BP based, Normalized VL-BP based) for LDPC code 

2C
 as a function of the number of iterations for a fixed 0N

Eb

 of 2.5dB. 

 

 
   

   

Fig.7: Comparison between BP, CL-BP VL-BP algorithms and their derivatives 

(VL-BP based , offset VL-BP based, Normalized VL-BP based) for LDPC code 

2C  as a function of the number of iterations for a fixed 0N

Eb

 of 3.5dB. 

 

 

 • the VL-BP based algorithm reduces the complexity of 

decoding but there is a degradation compared to the VL-BP 

algorithm. 

 • The performance of the VL-BP Based algorithm is 

improved by the addition of a correction factor in the check 

node update rule.The performance of offset VL-BP Based 

algorithm is very closed to the performance of the VL-BP 

algorithm. 

We conclude that the variable nodes layering strategy VL-

BP based on least a priori information layering can 

outperform both the BP and the CL-BP algorithms on terms 

of BER. This is explained by a faster convergence, when the 

number of iterations increases.  

The complexity of the check node update is reduced at the 

expense of no significant performance loss. Moreover, the 

addition of an offset or a normalized factor increases the 

convergence speed of the VL-BP Based algorithm: for a given 

number of iterations, it can outperform the BP algorithm. 

VIII. CONCLUSION 

This paper discusses a solution to accelerate convergence of 

LDPC decoding algorithm. We propose an efficient 

simplification of Belief propagation algorithm, for updating 

extrinsic information that finds good variable node layering 

under the Layered Belief Propagation decoding. can also be 

made to lower the complexity of the BP algorithm, and 

particularly the complexity of the check node update rule. A 

trade-off is then to be decided between the simplifications of 

the algorithm, and the loss of performance. Simulation results 

show that good performance can be achieved and improved 

by the addition of a correction factor. 

 

APPENDIX A: PROOF OF THE EXPRESSION OF THE EXTRINSIC 

INFORMATION  

Assuming cycle free hypothesis and combining equations 

(8), (9) and (10) , the extrinsic information of bit nv  can be 

expressed as follow:  
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