
International Journal of Computer Science and Telecommunications [Volume 4, Issue 3, March 2013] 34

Journal Homepage: www.ijcst.org

Y. Oussalah
1
 and N. Zeghib

2

1,2LIRE Laboratory, Computer Science Department, University of Mentouri, Algeria

Abstract— Web services have received much interest due to

their potential to design and build complex inter-enterprise

business applications. A particular interest concerns dynamic

Web services composition that offers the opportunity for

creating new Web services at runtime from those already

published. In this paper we focus on mismatches occurring

during dynamic composition of Web services. These mismatches

require adaptation to insure the correct working of the involved

components in the service composition. We propose an approach

for dynamic and automatic composition and adaptation of Web

services. The approach is based on the information that is

already available in interface descriptions. The approach allows

programmers to define dynamic Web service composition and

adaptation without changing the source code.

Index Terms— Web Service, Dynamic Composition, Interface

Description and Adaptation

I. INTRODUCTION

ervices Oriented Architecture (SOA) uses the concept of

service as an elementary brick to assemble complex

systems. It provides means for the self description,

announcement, discovery, interaction and usage of services.

Nowadays, an increasing amount of companies and

organizations only implement their core business and

outsource other application services over the Internet. Thus,

the ability to efficiently and effectively select and integrate

inter-organizational and heterogeneous services on the Web at

runtime is an important step towards the development of the

Web service applications. Unfortunately, individual Web

services cannot satisfy all the service requests. When that

happens, it is desired to seek possibilities of combining

existing services together to fulfill the request. Particularly,

the dynamic web service composition is very promoting

because it enables the user to select, at runtime, existing web

services to provide an unlimited number of new services from

limited set of services. This dynamic feature of service

composition provides flexibility and adaptability to

applications. For example, an application built on top

of the dynamic service composition system is able to

change its user interface dynamically according to user‟s

preference (e.g., English/Japanese menu, colorful/simple

buttons, …etc.), Furthermore, a totally new application may

emerge by combining several components designed for

entirely different purposes.

In the research related to Web services, several initiatives

have been conducted with the intention to provide platforms

and languages that will allow easy collaboration, composition

and integration of heterogeneous systems. In particular, some

standards have been developed such as Universal Description,

Discovery, and Integration (UDDI) [1], Web Services

Description Language (WSDL) [2], Simple Object Access

Protocol (SOAP) [3], Business Process Execution Language

for Web Service (BPEL4WS) [4].

Despite all these efforts, the Web service composition still

is a highly complex task. One source of this complexity is the

mismatches that may occur between two services in the

composition process. In fact, this may appear at different

levels: signature, behavior, quality of service and semantics.

Hence, there is a need for adaptation method to correct these

mismatches without modifying the service code due to its

black-box nature. The adaptation ensures correct working and

interaction among the involved components in the

composition.

In this paper we present an efficient algorithm to support

dynamic composition and adaptation of Web services.

Especially, we use the interface descriptions of services to

detect the mismatches between interfaces and we perform the

recovering of structural and behavioral mismatches via a set

of mapping operations.

The rest of this paper is organized as follows. Section II

introduces basic concepts of web service composition,

compatibility and adaptation. Section III describes service

interface. Section IV highlights the mismatch scenarios and

gives a motivating example. Section V presents the proposed

approach. Section VI discusses related work and existing

approaches supporting Web service adaptation and

composition. Finally, last section concludes the paper with

future works.

S

Adaptive Web Service Composition Based on Interface

Description

ISSN 2047-3338

Y. Oussalah and N. Zeghib 35

II. BASIC CONCEPTS

Prior to the presentation of the proposed approach, we

introduce basic concepts related to web services composition,

compatibility and adaptation.

A. Web Service Composition

Given the current proliferation of Web services, service

composition appears as an important strategy to implement

distributed applications. For example, if French to Chinese

translator does not exist, but there are French to English and

English to Chinese translators, each one implemented in a

Web service, the French to Chinese translator may be created

through their composition.

In practice, the Web services composition can be done in a

static or dynamic way. The static composition allows the

requestor to create an abstract model that should be respected

during the execution of these Web services. While the

dynamic composition enables selecting the atomic Web

services automatically and combines them to create an

unlimited number of new Web services. The dynamic

composition is very challenging as it is done at runtime based

on the user‟s request. With dynamic composition, an

unlimited number of new services can be created from a

limited set of service components. Dynamic composition is

more suitable if the process has to adapt dynamically to

unpredictable changes in the environment. However, the

dynamic web service composition may lead to several faults

such as poor response, incorrect order, service

incompatibility, and unavailability. If the failure occurs, the

cause of the failure has to be detected and healed. Since

the web services composition is done dynamically, the

services need to reconfigure themselves when the

environment changes without any human intervention and

without stopping the composite service [5].

B. Compatibility in the Web Service Composition

To ensure the correct working between the involved

components in the composition there should be compatibility

between them i.e. they can invoke each other and the result of

the composition can be issued. In fact, the compatibility may

be affected when some heterogeneities occur between services:

1) The provided messages are delivered as flow when they

are required as single message.

2) The provided message is delivered as single when it is

required as flow of messages.

3) The provided messages contain irrelevant messages or

additional parameters so the additional parameters should

be hidden.

4) The type of the provided message does not match the type

of the required one.

The compatibility in the composition concerns not only the

exchanged messages but also the correct sequence of ordered

operations which can be achieved by combining compensable

operations.

Consequently, the compatibility between services can be

seen from two perspectives: structural (where the focus is on

the messages types) and behavioral (where the focus is on

control dependencies between message exchanges).

C. Adaptation

Due to the dissemination of ubiquitous and autonomic

computing, several issues related to adaptation have been

widely studied. In the context of Web services, adaptation

comes from the fact that services may be reused in context for

which they were not originally designed. Thus service reuse

leads to situations where a service is needed to participate in

multiple collaborations where various interfaces are required

from it. This requires adaptation of provided interfaces to the

required ones. This mechanism is known as web service

interface adaptation.

Adaptations can be static or dynamic, and manual or

automatic [6]. The static adaptation is carried out through

modifications in the source code, while the dynamic one

modifies software runtime characteristics. Manual adaptation

means direct intervention in the system, whilst automatic one

can be performed by the system itself.

III. WEB SERVICE INTERFACE

Web Services are autonomous software components that

can be published, discovered and invoked for remote use. For

this purpose, their characteristics must be made publicly

available under the form of Web service descriptions. The

business world has developed a number of XML-based

standards to formalize the description of Web services.

WSDL is the current standard of Web service description.

Web services are considered as a set of endpoints operating on

messages containing either document-oriented or procedure-

oriented information. The operations and messages are

described abstractly, and then bound to a concrete network

protocol and message format to define an endpoint. Related

concrete endpoints are combined into abstract endpoints

(services). WSDL is extensible to allow description of

endpoints and their messages regardless of what message

formats or network protocols are used to communicate [2].

Much functionality can be contained in one Web service,

and each is implemented by an operation. A Web service

can be expressed as a set of operations. An operation is

specified by its name, its input and output message types, i.e.

o: =<name, data Input, data Output >, which is the interface

of the Web service.

The WSDL interface document defines the message format

for operations and messages defined by a particular

portType. We can generate a monolithic WSDL document

that contains all WSDL elements, or a separate WSDL

interface document. A <message> element is needed to

compose such data types into messages. Messages need

to be grouped into operations, which may define an

<input>, an <output> and a <fault> message. Here is the

simplified structure of WSDL [7]. Figure 1 shows the

simplified structure of the WSDL description.

International Journal of Computer Science and Telecommunications [Volume 4, Issue 3, March 2013] 36

Fig.1. Simplified WSDL structure

IV. MOTIVATING EXAMPLE

The scenarios in the Figure 2 show possible mismatches

which may occur at runtime between the involved components

in the composition. In the first scenario (a) the Web service

sends two different messages (A and B) while only one of

them (A) is expected. In the scenario (b) messages are sent

aggregated (A+B) when they are needed to be separated. The

third scenario (c) is the reverse of (b): the messages are sent

separately when they are needed in aggregation. In the last

scenario (d), the type of the sent message does not match with

the required type.

Fig. 2. Mismatch scenarios

In the aim to illustrate these mismatches, let‟s consider the

example of getting the weather report from an Ip address. We

suppose that the existing Web services do not perform the

required task, whereas the composition of the Web services

ResolveIp and GetWeather may be suitable : the first Web

service can provide the location corresponding to a given Ip

address, while the second gives the weather for each location.

The input and output of both Web services are illustrated in

Table I.

Table I. Input and Output of ResolveIp and GetWeather

Web services Input Output

ResolveIp
Ip:String

License :String

City:String

StateProvince :String

Country:String

Latitude:string

Longitude:String

CountryCode:String

Region name:string

GetWeather CityName:String

CountryName:String

GetWeatherResult : String

Such mismatch is easily highlighted using JOpera plugin

[8], as shown in Figure 3. The process Weatherfromip

cannot provide the value of weather (step 5) due to the

mismatch occurring at step 4.

The below scenario may be summarized in the following

steps:

0) The process of composition of the two web services:

ResolveIp and GetWeather.

1) The input parameters are: Ip and license.

2) The passage of parameters to the operation ResolveIP.

3) The output of ResolveIp is a complex type (as mentioned

in the Table 1).

4) Mismatch: the output of ResolveIp does not satisfy the

input of GetWeather.

5) No value returned because the operation GetWeather

cannot produce the output.

Fig. 3. Mismatch scenario in ResolveIp and GetWeather composition

W

S

D

L
Operation

Port Type

More Operations

More Port Types
Fault

Output

Input

Web Service

Service

Description

A + B

B

A

B

A

A

Ws1

Ws1

Ws1

Ws1

(a) A

B
Ws2

A + B Ws2

A

B

Ws2

 A’

bbb

„‟‟

„

Ws2

(b)

(c)

(d)

Y. Oussalah and N. Zeghib 37

V. ADAPTIVE WEB SERVICE COMPOSITION

Interactions between Web services involve the exchange of

messages. A message consists of one or more parameters,

each having a data type. Hence it is important to check if the

data types and number of the parameters sent by a service are

compatible with the parameters required by its partner. This

requires pre-conditions of input and post-conditions of the

outputs. Thus composing two Web services require

finding two compensable operations(one of each) that can

be linked: two operations can be linked when the output

parameters of the first (source) can cover the input parameters

of the second (target).

Automatic services composition relies on the automatic

matching of inputs/outputs of operations in Web services, i.e.

interface matching. In our approach we propose an automatic

and dynamic composition based on user request to choose

adequate services to perform composition and adaptation

when this latter is needed. To achieve our goal, we introduce

transformation operations of interfaces [9] which will be used

in the process of interface adaptation. Mainly we consider in

the algorithm the four following operations:

• Collapse: is used when a stream of messages is

aggregated into a single message.

• Burst: works in the reverse of the Collapse operation and

it is used when a single message needs to be split into a

stream of messages.

• Hide: is used when a message from the source interface is

not required in the target interface.

• resvType: is used when the type of message provided in

the source interface is not compatible with the required

one in the target interface.

A. Main Steps of the Approach

Fig. 4. Main Steps of the web service composition and adaptation

The proposed algorithm performs sequential composition of

two Web services. For more than two services, the function of

composition may be applied recursively. The algorithm

requires the ability to discover or detect pairs of services such

that the output of one service is equal or equivalent to the

input of another (correspondence between interfaces). If the

mismatch occurs, the adaptation will be performed using the

mapping operations presented above. Hence, we resolve

inadequacy resulted due to number and type of parameters.

The selection of adequate services for composition will be

according to the outputs and inputs messages of operations if

they satisfy the input and the output of the user request,

starting from a known input, in order to compute the desired

output.

For the sake of simplicity we suppose that when selecting

the adequate services for composition, the function of

selection will reorder the services according to their

compensable operations which means : finding compensable

operations that can be linked. Hence, the operation of

selecting the adequate services performs a sequence planning

from a given input to produce the desired output. This insures

behavioral compatibility which concerns the dependences

between messages.

The composition of n Web services is defined recursively by

the function Rec_comp as follows:

Rec_comp (n) = compose (Rec_comp (n-1), Wsn) if n ≥ 2 .

Rec_comp (1) = Ws1.

For instance:

 Rec_comp (2) = compose (Rec_comp (1), Ws2) = compose

(ws1, ws2).

B. The Algorithm

Let‟s consider the service interface of a web service

I = (input,SO,output) , SO = set of operations.

Begin : (input = user_request)

Declaration
 Boolean compatibility = false ;

 Webservicelist wsl ={} ;

 Main() {

 wsl= search_for_adequateservcies(user_request);

 If (wsl.length == 1) then // no need for composition //

 Invoke(wsl(0));

 If(wsl.length >=2) then // wsi are the found services//

 For (i = 2 to n) do

 {
 compatibility = Compatibility_checking(comp(i-1),wsl(i)) ;

 while (compatibility == false) do {

 Resolve_mismatch() ;

 compatibility =Compatibility_checking(comp(i-1),wsl(i)) ;

 }

 Comp(i) = compose_Services(comp(i-1),wsl(i));

 }

 }

False

Select adequate services

Ws1,Ws2,…….,Wsn

n

User request

True Compose

services

Check compatibility (comp(i-1) ,Wsi)

i≥2

Resolve mismatch

n≥2

International Journal of Computer Science and Telecommunications [Volume 4, Issue 3, March 2013] 38

Compatibility_checking(service A, service B) {
 If (output(A) .Satisfy(input(B)) &

 (SO(A) . its related _Operation(SO(B)))

 then compatibility = true ; }

 Resolve_mismatch() {

 If (outputA :: List & inputB :: Single) then

 // cardinality of List is greater than 1//

 collapse (outputA) ;

 If (outputA :: Single & inputB :: List) then

 Burst (outputA) ;

 If (output1.hasAdditionalPar() = true) then

 // hasAdditionalPar: has additional parameter//

 hide (outputA,index) ;

 // the index is used to specify the parameter to hide //

 If NOT(outputA.typecompatible(InputB.type) then

 resvType(outputA.type)

 }

End.

C. Illustrating Example

Let‟s illustrate the use of the algorithm through an

example. We consider the example shown in the Table which

presents list of selected Web services as a response for the

user request “getWeatherReport”.

We apply our algorithm to perform the composition. It‟s

known that the constraint of sequential Web service

composition is that the output the of the former service should

satisfy the input of the next one. The possible combinations

as response for such service request are: (ws1,ws2) or

(ws1,ws3,ws4) or (ws1,ws5,ws4).

Table II. The selected web services for composition

The composite service (ws1,ws2) is selected to be the best

combination of services to satisfy the user request. In this case

the invoked service is comp(ws1,ws2) which results the

weather report as requested by the user .

If we choose the combination of services (ws1,ws3,ws4),

the heterogeneity will occur when comparing the output3 and

input4: they have different data types (output3.type=String,

input4.type= Integer) and this mismatch will be resolved by

mapping the type of output3 to the type of input4 to insure the

service communication.

We have developed a tool CompAdapt
1
 that implements

the presented algorithm in Java.

Fig. 5. ComAdapt „s user interface(for entering the user request)

The ComAdapt tool uses a database to store Web service

descriptions (as UDDI register). It retrieves the description of

the desired Web services to perform the composition as shown

in Table III.

Table III. Database of Web services descriptions

Fig. 6. The composite service with its input and output

1
 Composition Adaptation

Ws Name operation Input/type Output/type

ws1 getGeoIp getgeoIp IP:String City: String

ws2 getWeather getWeather City:String

Weather

-result :

String

ws3
MediCare-

Supplier

GetSupplier-

ByCity
City:string Zip: String

ws4 USWeather
GetWeather-

Report
ZipCode:Int

Weather

-Report:

String

ws5
ZipcodeLook-

upService

CityTo

-LatLong
city:string Zip:String

Input

data

of the

user

Desired

goal

Y. Oussalah and N. Zeghib 39

Fig. 7. Web service composition using JOpera (weather result from Ip)

VI. RELATED WORK

Service interfaces can be described from a structural

perspective (where the focus is on message types) and from a

behavioral perspective (where the focus is on control

dependencies between message exchanges). The problem of

interface adaptation from the structural perspective has

received considerable attention leading to a number of

transformation definitions such as XSLT [10] and schema

mapping tools such as Microsoft BizTalk Mapper [11], Stylus

Studio XML Mapping Tools [12], and SAP XI Mapping

Editor. However the problem of interface adaptation from

behavioral perspective is still open. A number of studies in

this field have been proposed. For instance, in [9] the authors

describe the interface as ordered sequence of actions and they

have proposed algebra of transformation of interfaces,

depending on the cases of mismatch that could occur to

resolve inadequacy between interfaces. They take as input a

source interface to produce a target interface by transforming

the interfaces via six operators which are:

Flow: where a defined action in the source interface

becomes another action in the target interface.

Gather: is applied when multiple actions from the source

interface map to a single action in the target interface.

Scatter: is applied when a single action in the source

interface is transformed into multiple actions in the target

interface.

Collapse: is used when a stream of messages resulting

from multiple instances of the same communication action is

aggregated into a single message.

Burst: works in the reverse of the Collapse operator and

is used when a single message needs to be split into a stream

of messages.

Hide: is used when an action from the source interface is

not required in the target interface.

In [13] authors proposed an approach to the composition

and adaptation of mismatching components in systems where

the number of transactions is not known in advance. Their

approach applies composition at run-time with respect to the

composition specification, using π-calculus to specify

component interfaces.

In [14] authors specify mediator with finite state automata

that resolves behavioral mismatches at runtime due to the

removal of operations in provided interfaces, they also

proposed an algorithm that resolves such mismatches .

In [7] authors have proposed an approach for composition

that only uses already available information in service

interface definitions. It does not require service providers to

describe their interfaces with semantic markup. They

proposed data types matching and service composition

algorithm, using the measure of linguistic similarity between

two data types.

In [15] authors present a framework for Dynamic service

composition and parameters matchmaking. They discussed

main problems faced by dynamic service composition. Among

which are transactional support and compositional

correctness. To make the system flexible they include user

involvement at few steps for example selection of service and

matchmaking decision.

In [16] authors propose a process mediation architecture

based on Triple space computing, and present potential

solutions for resolvable message sequence mismatches. In

addition, they categorize these resolvable mismatch scenarios

into five classes. This analysis generalizes the resolvable

message sequence mismatches, provides the basis for

checking Web service compatibility from the behavioral

aspect, and offers an opportunity to have a uniform solution to

address these mismatches.

In [17] authors have identified number of possible

mismatches between services and some basic mapping

functions that can be used to solve simple mismatches. Such

mapping functions can be combined in a script to solve

complex mismatches. Scripts can be executed by a mediator

that receives an operation request, parses it, and eventually

performs the needed adaptations.

In our approach we present an algorithm that support both

dynamic composition and adaptation. Our contribution

regarding the most approaches is that we have used the

dynamic composition and adaptation whereas the other

approaches resolve either the dynamicity of the composition

or the dynamic adaptation of static composition.

International Journal of Computer Science and Telecommunications [Volume 4, Issue 3, March 2013] 40

VII. CONCLUSION

We have presented an algorithm performing automatic and

dynamic composition of web services. The searching of

services is based on user request at runtime. The algorithm

also performs adaptation (if the heterogeneity occurs between

service interfaces). This adaptation is performed via mapping

operations to fulfill the compatibility requirement. Thus, the

services may interact and be interchangeable at runtime.

Consequently, our algorithm enhances the flexibility of the

interfaces to insure the correct working and interaction among

them. We have also implemented the algorithm in Java

language to specify the process of web service composition

and adaptation (ComAdapt tool), and to prove the efficiency

of our approach.

 In future it will be interesting to perform adaptation in

more general cases such as when the composition includes

different partners producing the output from different services

that should satisfy their next input (including parallel

composition). In this case, more operations might be needed

to perform adaptation and to insure the correct working

among services.

REFERENCES

[1] T. Bellwood and al. “Universal Description, Discovery and

Integration specification (UDDI)”, http://uddi.org/pubs/uddi-

v3.00-published-20020719.htm., 2002.

[2] R. Chinnici and al. “Web Services Description Language

(WSDL) ”, http://www.w3.org/TR/wsdl/, 2001.

[3] D. Box and al. “Simple Object Access Protocol (SOAP)” ,

http://www.w3.org/TR/SOAP/, 2001.

[4] T. Andrews et al. “Business Process Execution Language for

WebServices(BPEL4WS)”,http://www106.ibm.com/developer

works/webservices/library/ws-bpel, May 2003.

[5] S.Poonguzhali, R.Sunitha, and G.Aghila,Self-Healing in

Dynamic Web Service Composition, International Journal on

Computer Science and Engineering, Vol. 3, No. 5. (2011), pp.

2054-2060.

[6] Lins FAA, dos Santos JC and Rosa NS “Improving

Transparent Adaptability in Web Service Composition”,

Proc. IEEE International Conference on Service-

Oriented Computing and Applications, Newport Beach,

2007,CA, pp.80–87 .

[7] J. Zhang, S.Yu, X.Ge and G.Wu, “Automatic Web Service

Composition Based on Service Interface Description”, In

Proceedings of International Conference on Internet

Computing'2006. pp.120-126.

[8] http://www.jopera.org/

[9] M. Dumas, M. Spork and K. Wang, “Adapt or Perish: Algebra

and Visual Notation for Service Interface Adaptation”, 4th

International Conference on Business Process Management, 5-

7 September 2006, Vienna, Austria.

[10] http://www.w3.org/TR/xslt

[11] http://msdn.microsoft.com/enus/library/ee253382(v=bts.10).asp

[12] http://www.stylusstudio.com/xml_schema.html

[13] J. Camara, G. Salaun, and C. Canal, “Run-time Composition

and Adaptation of Mismatching Behavioural Transactions”,

Fifth IEEE International Conference on Software Engineering

and Formal Methods SEFM 2007, London, pp. 381-390.

[14] Aït-Bachir and M. Fauvet , “Reconciling Web Service Failing

Interactions: Towards an Approach Based on Automatic

Generation of Mediators”, 16th IEEE International Workshops

on Enabling Technologies: Infrastructure for Collaborative

Enterprises, WETICE 2007, Paris.

[15] M. Allauddin, F. Azam, Dynamic Web Service Composition

and Parameters Matchmaking, International Journal of

Computer Applications 36(9):21-26, December 2011.

Published by Foundation of Computer Science, New York,

USA.

[16] Z. Zhou, B. Sapkota, E. Cimpian, D. Foxvog, L. Vasiliu, M.

Hauswirth and P. Yu: “Process Mediation Based on Triple

Space Computing”. Proceedings of the 10th Asia-Pacific Web

Conference, April 2008, Shenyang, China.

[17] L. Cavallaro and E. Di Nitto, “An Approach to Adapt Service

Requests to Actual Service Interfaces”, In: SEAMS '08

Proceedings of the 2008 international workshop on Software

engineering for adaptive and self-managing systems. ACM,

New York, NY, USA, pages 129–136.

