
International Journal of Computer Science and Telecommunications [Volume 4, Issue 11, November 2013] 10

Journal Homepage: www.ijcst.org

Nguyen Tram Hong An, Nguyen Tan Cam and Cao Dang Tan

Abstract—Virtualization environment provides VMs which are

isolated from each other. This isolation helps co-resident VMs use

original transport protocols like UDP and TCP for information

exchange. Using original protocols does not take advantage of

being on the same host of VMs because of unnecessarily

overheads. Running VMs are processes on physical host so that

inter-VM communication should be inter-process communication

to assure the profit of their exchange speed. It is very important

to conduct new researches to find out the best solution to

improving performance of inter-VM communication. Nowadays,

there are many up-to-date mechanisms to solve this problem.

However, most of related papers do not provide a general view

for developers in term of choosing suitable mechanisms for a

specific application with a specific group of data sizes nor any

applications with any data sizes when they implement inter-VM

communication. This article is focusing on analyzing and

comparing main mechanisms of three approaches, which are

being considered most now: Shared Memory, Unix Domain

Socket and Pipes. The three inter-process communication tools:

Unix Domain Socket (UDS), Shared Memory and Pipes are also

implemented by authors for analysis and comparison purpose.

The results of the experiments provide useful advices for

developers when they want to choose a suitable inter-VM

communication mechanism for applications depending on

different data sizes.

Index Terms— Inter-process Communication, Inter–VM

Communication and Performance of Information Exchange

I. INTRODUCTION

ASED on virtualization technology, Cloud Computing is

growing fast and providing different benefits for users [1].

Along with this growth, remained aspects of virtualization are

being studied widely. One of these important problems is

information exchange between co-resident VMs.

One of the key features that virtualization environment

provides is to assure the isolation barrier between VMs on the

1Nguyen Tram Hong An: Ho Chi Minh City University of Science,

Vietnam, (Email: annth2907@gmail.com)
2Nguyen Tan Cam: Hoa Sen University, Vietnam,

(Email: camnguyentan@gmail.com)
3Cao Dang Tan: Ho Chi Minh City University of Science, Vietnam,

(Email: tan@hcmus.edu.vn)

same host, called co-resident VMs. Co-resident VMs use

original transport protocols (such as TCP, UDP etc) to do the

information exchange [2]. Original protocols like TCP and

UDP do not take advantage of being on the same host of these

VMs because physical resources will be wasted by additional

overheads such as header encapsulation, routing [3].

In fact, there are many mechanisms were created to improve

information exchange performance between any two VMs on

the same host by bypassing one or two last layers of TCP/IP

protocol stack or bypassing protocol stack completely

[3], [16].

Running VMs are processes which run on the same physical

host so that information exchange between two co-resident

VMs should be as inter-process communication (IPC) [3].

The approach of improving performance of information

exchange between VMs on the same physical host is one of the

main trends and is being widely studied. The target of these

researches is creating new mechanisms to improve

performance by reducing additional overheads in data

information exchange and effectively utilizing physical

resources of the running system.

Mechanisms mainly based on the Shared Memory approach

are designed and implemented in different ways [4], [5], [6],

[7], [8], [9]. In contrast, UDS and Pipes are mainly used in

performance comparison [12], [13], [14]. Generally, all today

mechanisms are used or designed based on IPC’s concepts.

Up to now, performance of Shared Memory, Pipes and UDS

are not directly compared with each other. Besides that,

implementation of these IPCs were conducted on a few sizes

of data. Previous articles do not provide an all-sided view

about performance and features of newly developed

mechanisms for developers.

This article implements Shared Memory, Pipes and UDS on

different sizes of data and compares, evaluates, summarizes

the performance and features of most-considered mechanisms,

provides an all-sided view for developers in terms of choosing

a good inter-VM mechanism or create a better one.

B

Performance Improvement of Information Exchange

between the Virtual Machines on the

Same Physical Host

ISSN 2047-3338

Nguyen Tram Hong An et al. 11

II. RELATED WORKS

A. Current State of the Mechanisms

Today, information exchange mechanisms between co-

resident VMs belong to the three main approaches: Shared

Memory, UDS and Pipes. However, the popularity and

usability of Shared Memory is more than those of Pipes and

UDS. This section is describing the design and implementation

of mechanisms in the Shared Memory approach. How Pipes

and UDS are used in the performance comparison is also being

described in this section.

Shared Memory:

Mechanisms of the Shared Memory approach create a

shared memory segment between sender and receiver.

Whenever these VMs want to exchange information with each

other, the sender writes data into the shared memory segment

and the receiver can read the data from the segment

immediately.

Two virtualization environments are usually used in this

approach: Xen and KVM. Some mechanisms were

implemented successfully on Xen such as Xen Loop [4],

XWAY [5], Xen Socket [6] and IDTS [7]. Unlike Xen, KVM

is a developing environment so that the numbers of

mechanisms based on KVM are not as great as that of Xen:

ZIVM [8], Inter Channel [9].

There are two ways to implement shared memory: use

existing libraries (such as Inter Channel [9]) or only base on

shared memory’s concept [4], [5], [6], [7], [8].

Mechanisms of Shared Memory approach are designed and

implemented as follows:

 Bypassing Network Protocol Stack completely by creating

a shared memory segment between the sender VM and the

receiver VM. Mechanisms using this design are XWAY

[5], Xen Socket [6] and IDTS [7].

 Beside bypassing Network Protocol Stack, some

mechanisms bypass one or two last layers of network

protocol stack. This design is used in Xen Loop [4].

 Mechanisms such as XWAY [5] and Xen Socket [6]

design their API in a the same way as socket API to help

developers use their API easily.

 In case of MMNet [10], when the sender VM wants to

communicate with the receiver VM, all Kernel Address

Space of the sender VM is mapped to the receiver VM’s

address space. Next, the sender uses Event Channel,

which is provided by Xen, to inform the receiver to read

the data from the shared memory segment.

 IDTS [7] and Inter Channel [9] are based on remained

aspects of I/O or default communication methods of

hypervisor to introduce improvement and remedies.

 Most of Shared Memory mechanisms use two shared

memory segments at the same time to speed up data

exchange processes. A VM can be both a sender and a

receiver at the same time, support bidirectional for data

exchanging.

Unix Domain Socket (UDS) and Pipes:

UDS and Pipes are rarely used in practice because their

implementation and libraries are not suitable for being applied

directly to the virtualization environment (one of these reasons

is the security problem which was mentioned in [2]). Besides,

performance of UDS and Pipes is lower than that of Shared

Memory in specific cases [3]. However, UDS has an API

socket which is widely used by developers so that many

mechanisms of Shared Memory simulate this UDS API socket

to help developers use easily (XWAY [5], Xen Socket [6]).

B. Performance of New Inter-VM Mechanisms

Shared Memory Approach:

Today, there are many mechanisms belonging to Shared

Memory approach, this article is comparing the main features

of the mechanisms using shared memory to improve the

communication throughput of co-resident VMs. Main features

of these mechanisms are compared in Table I(a) and I(b).

TABLE I(a):

 FEATURES OF XEN SOCKET, XWAY, XENLOOP AND ZIVM

 User transparancy: User applications and libraries do

not need to be rewritten against new APIs and system

calls of new mechanisms.

Mechanisms

Features

XenSocket

[2], [6]

XWAY

[2], [5]

XenLoop

[2], [4]

ZIVM

[8]

User

Transparency

Kernel

transparency

Transparent

Live Migration

Location in

Software stack

Below

socket layer

Below

socket

layer

Below IP

layer

User libs +

syscall

Copying

overhead
2 copies 2 copies 4 copies 0 copies

Standard prot.

support
 TCP

Autodiscovery

and connection

setup

Distributed

support

Data size
>512KB &

≤100MB
≤ 32KB ≤ 32KB

>512KB &

≤100 MB

International Journal of Computer Science and Telecommunications [Volume 4, Issue 11, November 2013] 12

 Kernel transparency: Code of Guest OS do not need to

be modified and recompiled to run new mechanisms.

 Transparent VM Live Migration: Supporting Live

Migration for VMs.

 Location in Software stack: Location of mechanism

modules in software stack.

 Copying overhead: The number of copies needed for

one time data transmission.

 Supported protocol: Protocols which are supported by

mechanisms.

 Autodiscovery and connection setup: Supporting

discover co-resident VMs and establishing connection

between two VMs automatically.

 Distributed support: Ability to work on Cloud

Computing environment.

 Data size: Suitable data sizes for mechanisms. This

criteria show developers which sizes of data this

mechanisms can work effectively. These sizes of data

are based on announced figures of mechanisms [4], [5],

[6], [7], [8], [9], [10], [11].

o Sizes of data equal or smaller than 32KB are often

used for message exchange such as TCP or UDP

packets, instant messages, emails without

attachments …

o Sizes of data which is 512KB ≤ x ≤ 100MB (x is

size of data) are usually used in file transfer or

internet accessing.

TABLE I(b):

 FEATURES OF SOCKET OUTSOURCING, MMNET, INTER CHANNEL, IDTS

Mechanisms

Features

Socket

Outsourcing

[11]

MMNet

[2], [10]

Inter

Channel

[9]

IDTS

[7]

User

Transparency

Kernel

transparency

Transparent

Live Migration

Location in

Software stack
Socket layer

Below IP

layer

User libs

+ Syscall

User libs +

syscall

Copying

overhead
2 copies 2 copies 2 copies 2 copies

Standard prot.

support

Autodiscovery

and connection

setup

Only

Connection

setup

Distributed

support

Data size ≤ 32KB ≤ 32KB ≤ 32KB ≤ 32KB

Feature-wise, ZIVM is the best mechanism which is

providing most of features for developers. However, ZIVM

still has disadvantage in security ensuring for all VMs which

are sharing the same shared memory segment. Xen Loop and

MMNet are two runner-up mechanisms which also support

many features but Xen Loop still has to improve copy

overheads and MMNet has to ensure the memory isolation

between VMs.

Regarding performance, based on figures from announced

papers, new mechanisms have a higher bandwidth than that of

UDS when data sizes are small (<1KB) but when the data sizes

become bigger, UDS will have a higher bandwidth (XWAY

[5]). In case of Xen Socket, Xen Socket bandwidth is lower

than the UDS bandwidth when the data size smaller than 16KB

but when data size is bigger than 16KB, the bandwidth of Xen

Socket become better [6]. Generally, all new mechanisms have

better bandwidth than original TCP and UDP.

In addition to comparing features of new mechanisms, this

article is also summarizing all the performance figures in the

announced papers of new mechanisms. The new mechanisms

are compared with original TCP and KVM default.

TABLE II:

BANDWIDTH OF SHARED MEMORY MECHANISMS COMPARE WITH ORIGINAL TCP

Bandwidth

(Mbps)

TCP Bandwidth

(Mbps)

Comparison

Result

XenSocket

(<16KB) [6]
9295 130 71.5 times.

XenSocket

(≥16KB) [6]
6535 141 46.3 times.

XWAY [5] 7800 2000 3.9 times.

IDTS [7] 6600 4000 1.65 times.

TABLE III:

BANDWIDTH OF SHARED MEMORY MECHANISMS COMPARE WITH KVM DEFAULT

Compared with original transport protocol TCP and

hypervisor default mechanisms, the target of improving

performance can be seen as being done very well by all new

Mechanisms Comparion with KVM Default

ZIVM 4.015 times

XenLoop 14.454 times

InterChannel 45.5 times

MMNet 9.855 times

Nguyen Tram Hong An et al. 13

mechanisms. They are faster than the original TCP and KVM

default.

UDS and Pipes Approach:

In all papers which mention performance of UDS and Pipes.

UDS and Pipes are compared with original protocols such as

TCP and UDP. The results show that UDS and Pipes have a

higher bandwidth than bandwidths of TCP and UDP. When

compared with TCP, UDS has an outstanding bandwidth than

that of TCP [12], [13]. The difference in bandwidth between

TCP and UDS still high even though TCP is working in an

ideal condition [14]. When compared with TCP and UDP,

Pipes also has a higher bandwidth than that of TCP and that of

UDP but the difference in their bandwidth between Pipes and

TCP, UDP is lower than when we compare the difference

among the bandwidths of TCP, UDP with UDS [7]. In all

papers, UDS and Pipes are still used for performance

comparison, not for wide implementation.

III. EXPERIMENTAL RESULTS

Three IPCs: Pipes, UDS and Shared Memory had been

implemented to provide an all-sided view of performance and

concordance of these IPCs with three groups of data sizes.

A. Test Model

The performance of these three IPC was evaluated on a

machine equipped with Intel Pentium Dual Core E2200 of 2.2

Ghz, 2GB of RAM, 200GB of HDD and Ubuntu 12.04 LTS.

All test programs were written in C.

In the testing model, there are a sender process and a

receiver process. The sender sends an amount x Bytes of data

to the receiver (value of x can be found in Table IV). When the

receiver received all x Bytes of data, the progress of

communication completes. The result of a data size of an IPC

is an average result of 20 times of running the testing program.

All tested data sizes which are used in the experiment are

based on common data sizes in usual information exchange

and in the papers of all shared memory mechanisms.

TABLE IV:

DATA SIZES USED IN EXPERIMENT

Group of data

sizes

Data Sizes Remark

 Small Data Sizes 16KB, 32KB,

64KB, 128KB,

256KB, 512KB,

1MB, 2MB.

Common data sizes when

transferring small files,

sending emails without

attachment…

Average Data

Sizes

100MB, 200MB,

300MB, 400MB,

500MB, 600MB.

Common data sizes when

sending a CD or ISO file,

sending video files…

Big Data Sizes 1GB, 2GB, 3GB,

4GB.

Common data sizes when

sending DVD, sending ISO

file, streaming video HD…

Bandwidth of UDS, Pipes and Shared Memory are shown in

Fig. 1.

The graph shows that there are three ranges correlative with

three groups of data sizes. The small data sizes group

corresponds with the changing range. In this range, the

bandwidth of all three IPCs has a wide range of fluctuations.

The difference in bandwidth of a data size of the three IPCs is

large. In this range, a sudden fall or rise in the bandwidth of

the three IPCs happens frequently. The average data sizes

group corresponds with the decreasing range. The bandwidth

of all IPCs decreases when data sizes become bigger. The

level of decrease can be small (in case of UDS and Pipes) or

linear on the whole range (in case of Shared Memory). The

difference among the three IPCs of a data size is smaller than

in that of the changing range. The stabling range corresponds

with the big data sizes group. In this range, bandwidth of all

IPCs is at about 300 Mbps. Bandwidth does not decrease when

size of data increases, the difference in bandwidth at a data

size is not large.

Fig. 1: Bandwidth of UDS, Shared Memory and Pipes

The results of experiment are shown as follows in Table V.

Based on the experimental results, Table VI shows the

matching level of each IPC on the three data sizes groups.

Because the difference among the three IPCs in the

average data sizes group is small, if developers need an IPC

that can be used for many data sizes, then Shared Memory is

the best choice, the second choice is UDS. With applications

having data sizes in the small group data sizes such as DNS

request, DNS response, music file transfer, text file, email

without attachment, database query… Shared Memory will be

the best selection. For all applications having data sizes in the

average data sizes group such as videos file transfer, CD,

TFTP …, developers should use Pipes. Shared Memory is also

International Journal of Computer Science and Telecommunications [Volume 4, Issue 11, November 2013] 14

a good choice in case of big data sizes such as FTP, streaming

HD videos and transferring DVDs.

Some disadvantages of these IPCs:

 UDS: The size of UDS buffer is not as big as Shared

Memory buffer, all the connection establishment and

connection management manipulation are more

complex than the others.

 Shared Memory: All the synchronization and mutual

exclusion manipulation, which are used when

transferring data, decrease the advantages of having a

big buffer.

 Pipes: Buffer which is small-sized leads to increase in

the number of reading and writing times.

TABLE V

 BANDWIDTH OF SHARED MEMORY, PIPES AND UDS

TABLE VI

MATCHING LEVEL OF THREE IPCs IN EACH DATA SIZES GROUP

IV. FUTURE WORKS

Extending the Research to Other IPCs:

The experimental results show that Shared Memory has the

best performance and can be used for a wide range of data

sizes. However, Pipes and UDS have a little difference in

bandwidth with Shared Memory in specific cases. If UDS and

Pipes are studied and developed deeply, they may show better

performance.

Supporting Live Migration:

Supporting Live Migration can affect performance of new

mechanisms because of connection status controlling.

Supporting Live Migration without affecting their performance

is a necessary research.

Supporting Real Time Protocol:

 Hypervisors lack knowledge of real time applications

running on VMs, so they cannot guarantee real-time for those

applications. Today, there are some solutions such as AICT [2]

to help hypervisors support real time protocols. However, it is

still possible that processes running real time protocols within

VMs cannot obtain a priority in CPU usage. For real time

guarantees, the hypervisor’s CPU scheduler and VMs CPU

scheduler must coordinate with each other to meet real time

requirements.

V. CONCLUSION

This article has analyzed and compared the most considered

mechanisms of the three approaches: Shared Memory, UDS

and Pipes. Based on this research, Shared Memory was found

as the most popular approach while UDS and Pipes were

mainly used for performance comparison. The article has also

proposed the list of main useful features of the mechanisms in

the Shared Memory approach. From the list, ZIVM, which is

the mechanism of the Shared Memory approach, was selected

as the best existing mechanism for developers. Three IPCs are

implemented to provide an all-sided view about bandwidth for

developers when they want to choose a suitable IPC to

implement new inter-VM communication. From the

experimental results, Shared Memory was proposed to be used

for all data sizes. Finally, some open future researches are

mentioned to improve inter – VM communication problems.

REFERENCES

[1] Sun Microsystems, A guide to getting started with cloud

computing, 2009.

[2] Jian Wang, Survey of State-of-the-art in Inter-VM

communication Mechanisms, Research Proficiency Report –

Binghamton University, 2009.

[3] Nguyen Tram Hong An, Nguyen Tan Cam, Cao Dang Tan,

Research about performance improvement mechanisms for

Inter – VMs Communication, undergaduate thesis, 2013.

[4] Jian Wang, Kwame Lante Wright, Kartik Gopalan 2008:

XenLoop: A transparent high performance Inter-VM network

loopback, Proceedings of the 17th International Symposium on

Sizes (MB) UDS (Mbps) Shared Memory

(Mbps)

Pipes (Mbps)

0.016 809.187820 620.791504 956.030671

0.032 1164.376361 989.435395 1521.859206

0.064 1297.750579 1320.761495 2046.689259

0.128 1438.782221 1449.634922 922.175598

0.256 930.850198 1629.027372 1018.145735

0.512 1439.323902 1639.157721 1266.550103

1 1514.535314 1666.517742 1332.025816

2 1514.199543 1727.163538 1365.058813

100 1162.956768 1151.480499 1118.280336

200 826.913941 838.702989 775.814498

300 725.788015 735.704989 718.129286

400 653.629809 647.515371 676.763066

500 626.976399 551.312155 654.772608

600 390.708846 431.000848 466.886044

1000 272.213147 281.198555 276.734680

2000 289.001141 290.171336 287.532941

3000 282.014764 284.038015 283.381890

4000 283.249123 283.283408 282.230225

 Data sizes

Matching

Level

Small Data

Sizes

Average Data

Sizes

Big Data Sizes

I Shared

Memory

Pipes Shared

Memory

II UDS UDS UDS, Pipes

III Pipes Shared Memory -

Nguyen Tram Hong An et al. 15

High Performance Distributed Computing (HPDC), 2008, p.

109–118.

[5] Kangho Kim, Cheiyol Kim, Sung-In Jung, Hyun-Sup Shin,

Jin-Soo Kim: Inter-domain socket communications supporting

high performance and full binary compatibility on Xen,

Proceedings of the fourth ACM, SIGPLAN/SIGOPS, 2008,

Page 11-20.

[6] Xiaolan Zhang, Suzanne McIntosh, Pankaj Rohatgi, John

Linwood Griffin, XenSocket: A hight-throughput interdomain

transport for Virtual Machine, In Proceedings of Middleware,

2007.

[7] Dingding Li, Hai Jin, Yingzhe Shao, Xiaofei Liao, A high-

efficient Inter-Domain data transferring system for Virtual

Machine, ICUIMC '09, Proceedings of The 3rd International

Conference on Ubiquitous Information Management and

Communication, New York, 2009, Pages 385-390.

[8] Hamid Reza Mohebbi, Omid Kashefi, Moshen Sharifi, ZIVM:

A Zero-Copy Inter-VM communication mechanism for Cloud

Computing, Computer and Information Science, Volume 4,

Number 6, 2011, Pages 18-27.

[9] Shengge Ding, Ruhui Ma, Alei Liang, Haibing Guan:

Optimization for Inter-VMs Network Performance.

[10] Prashanth Radhakrishnan, Kiraan Srinivasan, MMNet. An

efficient Inter-VM communication mechanism, Proceedings of

Xen Summit, 2008.

[11] Hideki Eikaru, Yasushi Shinjo, Calton Pu, Younggyun Koh,

Kazuhiko Kato, Fast networking with Socket-outsourcing in

Hosted Virtual Machine Environments, Proceedings of the

2009 ACM symposium on Applied Computing, New York

USA, 2009, Pages 310 – 317.

[12] Kwame Wright, Kartik Gopalan, Hui Kang, Performance

analysis of various mechanisms for Inter-process

Communication.

[13] Manoj Nambiar, Sricharan Smudrala, Sundar Narayanan,

Experiences with UNIX IPC for low latency messaging

solutions, The Proceedings of the Computer Measurement

Group’s 2009 Internation Conference, United States of

America,2009.

[14] W. Richard Stevens, TCP/IP Illustrated Volume 3: TCP for

transactions, HTTP, NNTP and the UNIX domain protocols,

13th printing, Addison Wesley, USA, 2003.

[15] Jonathan S. Shapiro, David J. Farber, Jonathan M. Smith, The

measured performance of a Fast Local IPC, IWOOOS ’96,

Proceedings of the 5th International Workshop on Object

Orientation in Operating System, Washington, 1996, Page 89.

[16] Nguyen Tan Cam, Huynh Van Tho Nguyen Hoang Sang, Cao

Dang Tan, nFTP: An Approach to Improve Performance of

FTP Protocol on The Virtual Network Environment in the

same physical host, The International Joint Conferences on

Computer, Information, and Systems Sciences, and

Engineering (CISSE 2012), Bridgeport, Connecticut, USA,

December 7-9, 2012.

http://icuimc.org/

