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Abstract— The present approach highlights the synergies 
between application integration and interaction protocols.  Since 
both  fields have  advanced  in  different  directions,  a  number of 
important technical  problems  can be addressed  by their  proper  
synthesis. 

In our previous work [7][6][5], we proposed  a methodological 
approach based on Interaction Protocols for Enterprise Applica 
tion  Integration (EAI).  This  approach permits  to  specify MAS 
(Multi-Agent  System) interaction protocols, verify their  behavior 
and  use them to integrate multiple  business applications. 

The result of the proposed approach is a validated interaction 
protocol. Based on this protocol, we define in this paper, an agent- 
based  architecture for the EAI. It includes all the concepts nec- 
essary  to support  communication and  coordination mechanisms 
such as inter-agent and  agent-Web  services communication. 

Index Terms– Multi-Agent System, Interaction Protocol, 
Enterprise Application Integration 

 
I.  INTRODUCTION 

 

HE penetration of Internet and the World Wide Web in 

accordance with new technological advances urged 

companies to seize the opportunities offered by electronic 

commerce and electronic business. Especial promising are the 

opportunities for cooperation among several geographically 

distributed orga- nizations based on open networks and 

innovative information and communication technologies. 

Indeed, several companies have showed many interests to the 

integration of these tech- niques. 

Interaction Protocols (IP), provide a middle ground between 

rigid automation and flexible manual execution. Using proto- 

cols as a mechanism to structure communications, agents can 

be less sophisticated. Protocol designers analyze and design 

protocols for desirable properties. Agents publicly declare the 

protocols in which they can participate making it easier to find 

agents with whom to interoperate. 

The importance of interaction is increasing as more and 

more monolithic systems are broken down into smaller ser- 

vices. The importance of interaction has been stressed by many 

authors [23][7][12]. Moreover, interaction is also considered 

a key issue in various industry standard[22]. 

In  previous  work  [6][7], we  described the  use  of  IP  to 

define and manage collaborative processes in B2B (Business 

to Business) relationships where the autonomy of participants 

is preserved. We showed the practicability of our approach by 

embedding it in a Web services language for specifying pro- 

tocols, which conducive to reuse, refinement and aggregation 

of our business protocols. 

We also elaborated translation rules from interaction pro- 

tocols  notations  used  in  our  approach  into  Colored  Petri 

Nets (CPN). These rules are implemented in IP2CPN1 [7]: the 

tool we developed to automatically generate Petri nets from 

protocols specifications. Resulting Petri nets can be analyzed 

with dedicated tools to detect errors as early as possible. 

In this paper, we describe how the Multi-agent System 

(MAS) use the verified and the validated IP to establish the 

EAI. The proposed architecture based on the notion of agent. It 

includes all the concepts necessary to ensure all the phases of 

the EAI life-cycle. Our suggestion consists in the addition of 

a specific agent between the MAS application and its IP parts 

conceived as Web services. In fact, we defined two types of 

agent, namely, the Enterprise Agent representing an individual 

enterprise and the Integrator Agent. 

The remainder of the paper is organized as follows: Section 

2 discusses some related work. Section 3 overviews our previ- 

ous work : The use of IP to define and manage collaborative 

processes in B2B relationships. Section 4 and 5 give details 

about the proposed agent-based architecture. In section 6, we 

study the different aspects related to the communication in 

our architecture. Section 7 gives some implementation aspects. 

Finally, concluding remarks are given in section 8. 
 

II.  RELATED WO RK 
 

EAI is an active research domain. The community is still 

debating the issues of enterprises collaboration at the business 

process level. In fact, several areas of research are relevant to 

our work. We discuss some of them briefly and highlight the 

differences. 

a) Web services composition.:  BPEL4WS [17] is a 

language designed to specify the static composition of Web 

services. However, it mixes interaction activities and business 

logic  making  it  unsuitable  for  reuse  [13].  In  contrast  to 

our approach, BPEL4WS elements are only used to specify 

messages exchanges between the different business partners. 

Afterwards, this specification is used by agents to enact the 

integration of business processes at run time. 

The  Symphony project [10]  has  developed  an  algorithm 

for analyzing a composite service specification for data and 

control dependences and partitioning it into a set of smaller 

components. These components are then distributed to differ- 

ent locations and, when deployed, cooperatively deliver the 

same  semantics  as  the  original  workflow. Symphony  does 

not provide any support for failures arising from workflow 
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mismatches since it assumes that the distributed processes will 

be derived from a single complete BPEL process. 

Other approaches try to combine Web services with multi- 

agent systems to ensure composition and interoperability. For 

example [8] summarize the relationship between agents and 

Web services with the aphorism Adaptive Workflow Engines 

= Web Services + Agents: namely, Web services provide the 

computational resources and agents provide the coordination 

framework. They propose the use of the BPEL4WS language 

as a specification language for expressing the initial social 

order  of  the  multi-agent system. [8]  does not  provide  any 

design  issues to  ensure the  correctness of  their interaction 

protocols. 

b) Interaction  protocols  modelling.:  Interaction proto- 

cols are specific, often standard, constraints on the behaviors 

of the autonomous agents in a multiagent system. Protocols 

are essential to the functioning of open systems, such as those 

that arise in most interesting Web applications. 

The Dooley graph [21] is an alternative formalism for visu- 

alizing agent inter-relationships within a conversation. Object- 

oriented methods like UML [15] offer a way to reduce the gap 

between users and analyst when considering message transfers, 

yet they only address the dynamic behavior of individual 

objects and are informal. 

The state transition diagram has been extensively used for 

IP  specification due  to  its  clarity. The  weakness is  that  it 

does not reflect the asynchronous character of the underlying 

communication [19]. Furthermore, it is not easy to represent 

integration of protocols. 

To ensure the correctness of IP specification at design time, 

[16]  propose a translation rules for the conversation of an 

interaction  protocol given  in  AUML  to  Petri net. Unfortu- 

nately, no automatic procedures were provided that guide the 

conversation of an interaction protocol given in AUML to Petri 

net representations. 

c) Discussion.:    As  shown  before,  several  important 

strands of research of relevance to interaction protocols have 

been carried out before. However, the synthesis, enhancement, 

and application of these techniques on business process inte- 

gration is a novel contribution of this paper. 

Given the autonomy and heterogeneity of business partners, 

we  believe  that  the  most  natural  way  to  treat  interactions 

is as communications. An interaction protocol involves the 

exchange of messages with a streamlined set of tokens. Indeed, 

the use of IP to define business process integration enables a 

greater autonomy of companies because each company hides 

its internal activities, services and decisions required to support 

public processes. 

In fact, our approach allows us to provide a clear separation 

of  the  inter-enterprise  collaboration management and  local 

business process one. This dichotomy makes full use of 

existing workflow system components, to support both public 

processes and private business processes. 

Formalisation and verification of autonomous and heteroge- 

neous collaborative business processes is a key prerequisite for 

the effective business application. As asserted by [20], mini- 

mal specifications based on external behavior will maximize 

interoperability. The present approach shows a design issues 

of how IP can be specified and verified. 

Another advantage of our approach is the integration com- 

pleteness property inherent from our BPEL4WS specification. 

It means that the IP is itself published and accessed as a Web 

service that can participate in other application integration. 

Particular protocols may then be selected and composed to 

support a desired business application. 
 

III.  AN OVERVIEW OF THE PROP OS ED AP P ROACH 

In  recent  years,  EAI  modelling  and  reengineering  have 

been longstanding activities in many companies. Most internal 

processes have been streamlined and optimized, whereas the 

external processes have only recently become the focus of 

business analysts and IT middleware providers. The static 

integration of inter-enterprise processes as common in past 

years can no longer meet the new requirements of customer 

orientation, flexibility and dynamics of cooperation [2]. 

In [4] we have developed an agent-based method for de- 

veloping cooperative enterprises information systems. This 

method permits to explicitly map the business process into 

software agents. In [5], we have described the use of IP to 

define and manage public processes in B2B relationships. 

The use of IP to define public processes enables a greater 

autonomy of companies. In this way, the IP provide a high 

abstraction level in the modelling of public processes. 

In other hand, the B2B integration scenarios typically in- 

volve distributed business processes that are autonomous to 

some  degree, hence the importance of IP-based modelling. 

IP are a useful way for structuring communicative interaction 

among business partners, by organizing messages into relevant 

contexts and providing a common guide to the all parts. 

Formally an IP is defined as follow: 

Definition :   An Interaction Protocol is a quadruplet: 

IP = <ID, R, M, fM  >, where: 

•  I D is the identifier of the interaction protocol 

•  R  = r1 , r2 , . . . , rn   (n  > 1) is a set of Roles  

(private business process or Web Services) 

•  M  is  a  set  of  non-empty  primitive  (or/and)  complex 

messages, where: 

–  A Primitive Message (P M ) corresponds to the sim- 

ple message, it is defined as follow: 

P M  = <Sender, Receiver, CA, Option>, where: 

∗  Sender, Receiver ∈  R 

∗  CA ∈   FIPA ACL Communicative Act (such as: 

cfp, inform, . . . ) 

∗  Option:   contain   additional   information   

(Syn- chronous / Asynchronous message, 

constraints on message,. . . ) 

–  A  Complex  Message  (CM)  is  built  from  simpler 

(primitive) ones by means of operators: 

CM = P M1 opP M2  . . . opP Mm , where: 

∗  m > 1, op ∈  {XOR, OR, AND}, and 
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∗  ∀    i ∈   [1,m[, P Mi .Sender   = P Mi+1 .Sender, 

P Mi .Sender  ∈  R. 

•   fM : a flow relation defined as : fM   ⊆   (RxR),  

where (RxR)  is  a  Cartesian  product  (r1 , r2 )  ∈   

(RxR),  for r1 , r2  ∈  R 

Figure 1 shows our approach for the treatment of business 

process integration based on interaction protocols. In this 

approach, we find two levels: 

•  Design level: Formalisation and verification of 

interaction protocols. 

•  Operational level: Management of interaction protocols 

at run-time. 

services composition. In our context, BPEL4WS was used as a 

specification language for expressing the interaction protocols 

of the multi-agent system [5]. 

When protocols are employed in open environments, such 

as the internet, they must be executed by agents that behave 

more or less autonomously and whose internal designs are 

not known. In such settings, therefore, there is a risk that the 

participating agents may fail to comply with the protocol [18]. 

Without a rigorous means to verify compliance, the very idea 

of protocols for interoperation is subverted. 

The use of formal methods is important because ensuring 

the correctness of complex protocols is seldom possible via 

other design approaches. High-level Petri nets are a suitable 

formal method for the design of IP because of their ability 
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rules into CPN. Consequently, lifelines, messages, constraints, 

splitting/merging paths, interaction terminations, and other IP 

construction elements are translated into a Petri net. After- 

wards, the resulting Petri net specification can be analysed by 

dedicated tools to detect errors as early as possible. 

In a previous work [6], we elaborated translation rules from 

interaction protocols notations used in our approach into Col- 

ored Petri nets. These rules are implemented in IP2CPN: the 

tool we developed to automatically generate the Petri net from 

protocols specification. The resulting Petri net specification 
Fig. 1.    The proposed approach 

 

 
A. Design level: Formalisation and Verification of Interaction 

Protocols 

Developing effective protocols to be executed by au- 

tonomous partners is challenging. Similar to protocols in 

traditional systems, IP in open and web-based settings need to 

be specified rigorously so that business partners can interact 

successfully. 

For this reason, developed a method for IP design and 

verification. This method (see figure 1) uses different models 

and languages. 

Our method motivates the use of IP based on 

AUML/BPEL4WS   for   application   integration   modelling, 

where pre- and post-conditions, rules, guards are specified in 

OCL2 . 

AUML (Agent UML) notation [1] [3] is a UML profile 

dedicated to agents trying to simplify the transition from soft- 

ware engineering to multi-agent system engineering. In other 

hand, BPEL4WS [17] (Business Process Execution Language 

for Web Services) is a de facto standard for describing Web 
 

2 OCL: Object Constraint Language. (www.omg.org/cgi-bin) 

can be analyzed by CPN-AMI tool [11] to detect errors as 

early as possible. 
 

B. Operational Level: Management of interaction protocols at 

run-time 

As we already have said before, the BPEL4WS process 

specification is considered as a specifying language for ex- 

pressing the interaction protocol of the multi-agents system. 

In this the rest of this paper we briefly describe how the MAS 

use the verified and the validated BPEL4WS specification to 

establish the EAI. Our suggestion consists in the addition of 

a specific agent between the MAS application and its IP parts 

conceived as Web services. 
 

IV.  AN AGENT-BASED ARCHITECTURE FOR ENTERPRISE 

APP LI CATI O N IN TEG R ATI O N 

The proposed architecture based on the notion of agent. It 

includes all the concepts necessary to ensure all the phases 

of the Enterprise Application Integration life-cycle. As shown 

in Fig. 2, our suggestion consists in the addition of a spe- 

cific agent  between  the  MAS  application  and  its  IP  parts 

conceived as Web services. In fact, we defined two types of 

agent, namely, the Enterprise Agent representing an individual 

enterprise and the Integrator Agent. 

http://www.omg.org/cgi-bin
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Fig. 2.    The proposed architecture 

 

 
The main roles of  the  Integrator  agent are  the  creation, 

monitoring, and control of IP life cycle. Its architecture fea- 

tures two modules: an interaction manager and a service one. 

The interaction manager contains operational knowledge (e.g., 

Interactions states). It also provides operations for monitoring 

interaction (i.e., creating and deleting instances). The service 

manager provides methods for receiving service requests, 

tracing service executions, and communicating with service 

requesters in accordance with IP definition (e.g., sending a no- 

tification informing the requester that deadline for cancelling 

an operation is passed). 
 

A. Description of the Integrator Agent 

As shown in Fig. 2, the Integrator agent is composed of 

four main modules. 

•  The knowledge module includes a database and a set of 

actions. The role of this module is to store information 

that is necessary for the success of the interaction. Such 

information is traces of interaction used during the phases 

of the current states and coordination tasks running. This 

information is useful for future use of the protocol. 

•  The Interaction Manager module allows the processing 

of messages depending on the specification of the inter- 

action protocols (the BPEL4WS specification) and the 

knowledge parts. 

•  The services management module provides the services 

necessary for locating and invoking services. 

•  The communication module allows the transport of mes- 

sages. In our work, we use the FIPA-ACL [14] as the 

language of communication between the different agents. 

This  module  has  the  role  to  structure  the  messages 

 

constructed by the agent. 

 
B. Description of the Enterprise Agent 
 

We consider the Enterprise Agent as an entity including a 

communication module, a planning and coordination module, 

and an execution module (Fig. 3). 

•  The Communication Module: contains all the processes 

required to handle the messages: reception, filtering, and 

translation of incoming messages, and formulation and 

sending of the outgoing messages. 

•  The Planning and Co-ordination Module: is responsible 

for managing the cooperation and formulating the offers 

for  achieving  sub-goals  announced  by  the  Integrator 

agent. 

•  The Execution Module: this module contains the infor- 

mation about the internal resources of the individual 

enterprise, which makes possible the performance of local 

tasks that are assigned to the enterprise. It establishes 

the correspondence between the sub-goal assigned to the 

agent and the internal resources of the enterprise capable 

of achieving this sub-goal. 

• The Global Knowledge Module: contains information 

related to the organisational and operational rules defined 

by the enterprises. 

•  The Individual Knowledge Module contains information 

about the agent itself: its capacities and skills, and the 

current state and workload, i.e. for each skill, indicators 

are assigned to determine availability, as well as the cost 

of such skill. 

 
V.  ROLES AND BEHAVIORS OF AGENTS 

 

IP must specify the semantics of the messages exchanged. It 

also describes the reactions of an agent in a given message. In 

our case, two main roles involved in the interaction protocols: 

1)  The Integrator agent supports data extraction from the 

IP specification and message exchange between agents 

involved in the interaction. 
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2)  The role of participants’ agents is to coordinate to satisfy 

all the requests of the Integrator agent. The interaction 

protocol that we specified in this paper describes the 

rules used by the participants’ agents for a correct 

coordinate. 

The behavior of agents, as shown in Figure 4, can then be 
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summarized as follows: 

1)  The Integrator agent (the initiator of the IP) announces 

the beginning of the integration process and the allo- 

cation of tasks. For each task to be performed, the 

Integrator agent announces a specification that includes a 

description, and a list of requirements and constraints for 

this task. This information is encapsulated in a message, 

which represents the initiator message (m0 in Fig. 4). 

2)  When participants’ agents are identified, the allocation 

phase of sub goals for participating agents begins. Each 

participant (Agent) performs the part that has been 

assigned. The composition of individual results leads to 

the realization of the overall goal. 

3)  The Integrator agent ensures the coordination between 

the different enterprises agents in accordance with the 

rules of interaction defined in the BPEL4WS specifica- 

tion. In the context of this work we will not discuss 

the aspect of local coordination, which may be different 

from one company to another. 

To ensure the successful completion of the interaction, the 

Integrator agent must know how many responses should be ex- 

pect from the participating agents. The analysis of interaction 

rules defined in the BPEL4WS specification and the semantics 

of the ACL allow when if others messages may be received 

or not. 
 

VI.  COMMUNICATION MODES 

This integration  process must keep  as  much as  possible 

the autonomy of architecture core based on agents. Indeed, 

The agents are coordinated with the Integrator agent and the 

exchange of messages to enact the EAI. In this architecture, 

the following communications pathways exist: 

•  agent to agent communication occurs via FIPAs Agent 

Communication Language (ACL) and is facilitate by a 

FIPA compliant Agent Management System. 

 

Fig. 5.    Agent-Web Services Communication 

 

 
•  agent to Web service communication is accomplished via 

SOAP messages. 

•  agent  to  BPEL4WS  dataspace  communication utilizes 

appropriate  protocols/interfaces provided  by  the  datas- 

pace. The dataspace is used to store BPEL4WS process 

variables, which maintain the state of the IP. 
 

A. Inter-Agent Communication 

FIPA [14] supplies a standard syntax for messages. These 

messages are based on the theory of the act of speech, which is 

the result of the linguistic analysis of human communication. 

The  basis of this theory is to produce an action from the 

language. In the FIPA-ACL, no specific language for the 

description of the contents of messages is imposed. Several 

languages can be used for the description of the contents of 

the exchanged messages such as KIF (Knowledge Interchange 

Format), Semantic Language (SL), Prologue and XML (eXten- 

sible Mark-up Language). XML will be used for the descrip- 

tion, the specification and the interpretation of the contents of 

messages exchanged. So, the messages exchanged among the 

agents are described in FIPA-ACL/XML. The use of XML 

for  the  contents  of  communications among  agents  permits 

the display of messages in a Web browser and facilitates the 

integration with existing Web-based applications. 
 

B. Agent - Web service Communication 

This  type  of  communication is  ensured by  the  Services 

Manager module of the Integrator agent. This module provides 

the necessary services for locating and invoking services. Its 

behavior is presented as follows (see Fig. 5): 

1)  When the Integrator agent detects a need for which it 

does not have the capacity , it uses the functionality of 
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the Service Manager module to find Web services that 

could satisfy his need. 

2)  The Service Manager module requests the UDDI registry 

3)  The Service Manager module obtains from the registry 

a list of descriptions of Web services that matching the 

search criteria. 

4)  The Service Manager module starts the invocation of 

services found to obtain their attributes. 

5)  The Integrator agent requests the service manager mod- 

ule to invoke the Web service selected. 

6)  The Service Manager module sends a parallel invocation 

message to the selected service and cancel messages to 

other services not concerned. 
 

VII.  SOME IMP LEM EN TATIO N ASP ECTS 

The platform chosen for the implementation is Java Agent 

 
public class Integrator extends Agent { 

protected void setup() { 

addBehaviour(new SimpleBehaviour(this) 

{ 
 

// Traitement ... 

} 

} 
 

 
public class EntrepriseAgent extends 

Agent { 

class recevoir extends 

SimpleBehaviour { 
 

//Traitement ... 

} 

public recevoir(Agent a) 

{ 

super(a); 

 

import java.util.*; 

import jade.core.*; 

import jade.core.behaviour.*; 

import jade.lang.acl.ACLMessage.*; 

class Communication extends CyclicBehaviour 

{ 

public Communication (Agent a) 

{super(a);} 

Vector goals = new Vector(); 

public void action() { 

// wait for message 

ACLMessage received = 

myAgent.receive(); 

if(ACLMessage == null) {block();} 

else { 

// message interpretation 

Development framework (JADE) [9]. JADE is a software de- 

velopment framework, fully implemented in Java, which aims 

at the development of multi-agent systems and applications 

that comply with FIPA standard. To achieve such a goal, JADE 

offers the following list of features to the agent programmer: 

•  Distributed agent platform. The agent platform can be 

} 

protected void setup() { 

recevoir mybehaviour = new 

recevoir(this); 
addBehaviour(mybehaviour); 

}} 

………………………… 

// Start PlanRetrieval Behaviour 

addBehaviour(new 

PlanRetrieval(this,goals)); 

} } } 

distributed on several hosts, each one of them executes 

one Java Virtual Machine. 

•  FIPA-Compliant  agent  platform,  which  includes  the 

Agent Management System, the Directory Facilitator and 

the Agent Communication Channel. 

•  Efficient transport of ACL messages between agents. 
 

A. Using JADE to Develop the Proposed Architecture 

Creating a  JADE  agent is  as  simple as  defining a  class 

extending the Jade.core.Agent class and implementing the 

setup()  method. The setup() method is intended to include 

agent  initializations. The  actual job  an  agent has  to  do  is 

presented as JADE behaviors. The Fig. 6 represents the imple- 

mentation of the Integrator and the Enterprise agent classes. 

These classes are extensions of the basic Agent class defined 

in JADE. 

The communication module presented in our architecture is 

derived from JADE class CyclicBehaviour and will therefore 

run continuously. If no messages have arrived, the behavior 

will block and restart after a new message has arrived. If a 

message has arrived, the perception interface has to interpret 

this message into a set of goals, starts the execution module 

and resumes waiting for incoming messages. The communi- 

cation module behavior code is shown in Fig. 6. 

The Interaction Manager Module is derived from the class 

SimpleBehaviour. This module takes as input a BPEL4WS 

specification and builds the appropriate interaction protocol. 

In  this  context,  an  interaction  protocol  is  implemented  as 

an  FSMBehaviour behavior.  The  FSMBehaviour class  is  a 

CompositeBehaviour that executes its children (sub behaviour 

that are going to be used by FSMBehaviours) according to a 

Finite State Machine defined by the user. In fact, each sub- 

behaviour is dedicated to an interaction that represents the set 

of messages exchanged to satisfy a given set of requirements. 

- a - - b - 
 
 
 
Fig. 6.    a) Agent Class Extension, b) Partial specification of the Communi- 

cation module 

 

 
VIII.  CO N CLUSI O N 

 

In this paper, we have proposed an agent-based architecture 

for enterprise application integration. The multi-agent provides 

high level communication languages that preserve the entire 

richness of the communications. Thus, the FIPA-ACL is used 

in our approach to formulate messages exchanged between 

the different agents constituting the system. The content of 

these messages  is  described  with  XML.  The  use  of  the 

JADE platform has allowed us to implement the Integrator 

Agent and the Enterprise Agents and thus, to simulate the 

interaction between these entities. 
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