
International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 47

Djamel Benmerzoug

Faculty of NTIC, University of Constantine 2

benmerzougdj@yahoo.fr

Abstract— The present approach highlights the synergies
between application integration and interaction protocols. Since
both fields have advanced in different directions, a number of
important technical problems can be addressed by their proper
synthesis.

In our previous work [7][6][5], we proposed a methodological
approach based on Interaction Protocols for Enterprise Applica
tion Integration (EAI). This approach permits to specify MAS
(Multi-Agent System) interaction protocols, verify their behavior
and use them to integrate multiple business applications.

The result of the proposed approach is a validated interaction
protocol. Based on this protocol, we define in this paper, an agent-
based architecture for the EAI. It includes all the concepts nec-
essary to support communication and coordination mechanisms
such as inter-agent and agent-Web services communication.

Index Terms– Multi-Agent System, Interaction Protocol,
Enterprise Application Integration

I. INTRODUCTION

HE penetration of Internet and the World Wide Web in

accordance with new technological advances urged

companies to seize the opportunities offered by electronic

commerce and electronic business. Especial promising are the

opportunities for cooperation among several geographically

distributed orga- nizations based on open networks and

innovative information and communication technologies.

Indeed, several companies have showed many interests to the

integration of these tech- niques.

Interaction Protocols (IP), provide a middle ground between

rigid automation and flexible manual execution. Using proto-

cols as a mechanism to structure communications, agents can

be less sophisticated. Protocol designers analyze and design

protocols for desirable properties. Agents publicly declare the

protocols in which they can participate making it easier to find

agents with whom to interoperate.

The importance of interaction is increasing as more and

more monolithic systems are broken down into smaller ser-

vices. The importance of interaction has been stressed by many

authors [23][7][12]. Moreover, interaction is also considered

a key issue in various industry standard[22].

In previous work [6][7], we described the use of IP to

define and manage collaborative processes in B2B (Business

to Business) relationships where the autonomy of participants

is preserved. We showed the practicability of our approach by

embedding it in a Web services language for specifying pro-

tocols, which conducive to reuse, refinement and aggregation

of our business protocols.

We also elaborated translation rules from interaction pro-

tocols notations used in our approach into Colored Petri

Nets (CPN). These rules are implemented in IP2CPN1 [7]: the

tool we developed to automatically generate Petri nets from

protocols specifications. Resulting Petri nets can be analyzed

with dedicated tools to detect errors as early as possible.

In this paper, we describe how the Multi-agent System

(MAS) use the verified and the validated IP to establish the

EAI. The proposed architecture based on the notion of agent. It

includes all the concepts necessary to ensure all the phases of

the EAI life-cycle. Our suggestion consists in the addition of

a specific agent between the MAS application and its IP parts

conceived as Web services. In fact, we defined two types of

agent, namely, the Enterprise Agent representing an individual

enterprise and the Integrator Agent.

The remainder of the paper is organized as follows: Section

2 discusses some related work. Section 3 overviews our previ-

ous work : The use of IP to define and manage collaborative

processes in B2B relationships. Section 4 and 5 give details

about the proposed agent-based architecture. In section 6, we

study the different aspects related to the communication in

our architecture. Section 7 gives some implementation aspects.

Finally, concluding remarks are given in section 8.

II. RELATED WO RK

EAI is an active research domain. The community is still

debating the issues of enterprises collaboration at the business

process level. In fact, several areas of research are relevant to

our work. We discuss some of them briefly and highlight the

differences.

a) Web services composition.: BPEL4WS [17] is a

language designed to specify the static composition of Web

services. However, it mixes interaction activities and business

logic making it unsuitable for reuse [13]. In contrast to

our approach, BPEL4WS elements are only used to specify

messages exchanges between the different business partners.

Afterwards, this specification is used by agents to enact the

integration of business processes at run time.

The Symphony project [10] has developed an algorithm

for analyzing a composite service specification for data and

control dependences and partitioning it into a set of smaller

components. These components are then distributed to differ-

ent locations and, when deployed, cooperatively deliver the

same semantics as the original workflow. Symphony does

not provide any support for failures arising from workflow

1 IP2CPN: Interaction Protocols To Colored Petri Nets

T

Agent Approach in Support of Enterprise Application

Integration

ISSN 2047-3338

Djamel Benmerzoug 48

mismatches since it assumes that the distributed processes will

be derived from a single complete BPEL process.

Other approaches try to combine Web services with multi-

agent systems to ensure composition and interoperability. For

example [8] summarize the relationship between agents and

Web services with the aphorism Adaptive Workflow Engines

= Web Services + Agents: namely, Web services provide the

computational resources and agents provide the coordination

framework. They propose the use of the BPEL4WS language

as a specification language for expressing the initial social

order of the multi-agent system. [8] does not provide any

design issues to ensure the correctness of their interaction

protocols.

b) Interaction protocols modelling.: Interaction proto-

cols are specific, often standard, constraints on the behaviors

of the autonomous agents in a multiagent system. Protocols

are essential to the functioning of open systems, such as those

that arise in most interesting Web applications.

The Dooley graph [21] is an alternative formalism for visu-

alizing agent inter-relationships within a conversation. Object-

oriented methods like UML [15] offer a way to reduce the gap

between users and analyst when considering message transfers,

yet they only address the dynamic behavior of individual

objects and are informal.

The state transition diagram has been extensively used for

IP specification due to its clarity. The weakness is that it

does not reflect the asynchronous character of the underlying

communication [19]. Furthermore, it is not easy to represent

integration of protocols.

To ensure the correctness of IP specification at design time,

[16] propose a translation rules for the conversation of an

interaction protocol given in AUML to Petri net. Unfortu-

nately, no automatic procedures were provided that guide the

conversation of an interaction protocol given in AUML to Petri

net representations.

c) Discussion.: As shown before, several important

strands of research of relevance to interaction protocols have

been carried out before. However, the synthesis, enhancement,

and application of these techniques on business process inte-

gration is a novel contribution of this paper.

Given the autonomy and heterogeneity of business partners,

we believe that the most natural way to treat interactions

is as communications. An interaction protocol involves the

exchange of messages with a streamlined set of tokens. Indeed,

the use of IP to define business process integration enables a

greater autonomy of companies because each company hides

its internal activities, services and decisions required to support

public processes.

In fact, our approach allows us to provide a clear separation

of the inter-enterprise collaboration management and local

business process one. This dichotomy makes full use of

existing workflow system components, to support both public

processes and private business processes.

Formalisation and verification of autonomous and heteroge-

neous collaborative business processes is a key prerequisite for

the effective business application. As asserted by [20], mini-

mal specifications based on external behavior will maximize

interoperability. The present approach shows a design issues

of how IP can be specified and verified.

Another advantage of our approach is the integration com-

pleteness property inherent from our BPEL4WS specification.

It means that the IP is itself published and accessed as a Web

service that can participate in other application integration.

Particular protocols may then be selected and composed to

support a desired business application.

III. AN OVERVIEW OF THE PROP OS ED AP P ROACH

In recent years, EAI modelling and reengineering have

been longstanding activities in many companies. Most internal

processes have been streamlined and optimized, whereas the

external processes have only recently become the focus of

business analysts and IT middleware providers. The static

integration of inter-enterprise processes as common in past

years can no longer meet the new requirements of customer

orientation, flexibility and dynamics of cooperation [2].

In [4] we have developed an agent-based method for de-

veloping cooperative enterprises information systems. This

method permits to explicitly map the business process into

software agents. In [5], we have described the use of IP to

define and manage public processes in B2B relationships.

The use of IP to define public processes enables a greater

autonomy of companies. In this way, the IP provide a high

abstraction level in the modelling of public processes.

In other hand, the B2B integration scenarios typically in-

volve distributed business processes that are autonomous to

some degree, hence the importance of IP-based modelling.

IP are a useful way for structuring communicative interaction

among business partners, by organizing messages into relevant

contexts and providing a common guide to the all parts.

Formally an IP is defined as follow:

Definition : An Interaction Protocol is a quadruplet:

IP = <ID, R, M, fM >, where:

• I D is the identifier of the interaction protocol

• R = r1 , r2 , . . . , rn (n > 1) is a set of Roles

(private business process or Web Services)

• M is a set of non-empty primitive (or/and) complex

messages, where:

– A Primitive Message (P M) corresponds to the sim-

ple message, it is defined as follow:

P M = <Sender, Receiver, CA, Option>, where:

∗ Sender, Receiver ∈ R

∗ CA ∈ FIPA ACL Communicative Act (such as:

cfp, inform, . . .)

∗ Option: contain additional information

(Syn- chronous / Asynchronous message,

constraints on message,. . .)

– A Complex Message (CM) is built from simpler

(primitive) ones by means of operators:

CM = P M1 opP M2 . . . opP Mm , where:

∗ m > 1, op ∈ {XOR, OR, AND}, and

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 49

∗ ∀ i ∈ [1,m[, P Mi .Sender = P Mi+1 .Sender,

P Mi .Sender ∈ R.

• fM : a flow relation defined as : fM ⊆ (RxR),

where (RxR) is a Cartesian product (r1 , r2) ∈

(RxR), for r1 , r2 ∈ R

Figure 1 shows our approach for the treatment of business

process integration based on interaction protocols. In this

approach, we find two levels:

• Design level: Formalisation and verification of

interaction protocols.

• Operational level: Management of interaction protocols

at run-time.

services composition. In our context, BPEL4WS was used as a

specification language for expressing the interaction protocols

of the multi-agent system [5].

When protocols are employed in open environments, such

as the internet, they must be executed by agents that behave

more or less autonomously and whose internal designs are

not known. In such settings, therefore, there is a risk that the

participating agents may fail to comply with the protocol [18].

Without a rigorous means to verify compliance, the very idea

of protocols for interoperation is subverted.

The use of formal methods is important because ensuring

the correctness of complex protocols is seldom possible via

other design approaches. High-level Petri nets are a suitable

formal method for the design of IP because of their ability

Design Level

Operational

Interaction Protocol

AUML interaction

Diagram

BPEL4WS

Specification

4

1

3: Feedback

Verification

(CPN-AMI tool)

2

CPN Model

to express concurrency, non-determinism and system concepts

at different levels of abstraction. CPN are a popular form of

high-level Petri nets that have extensive tool support for the

design of systems, including protocols.

For this reason, we use Colored Petri Net (CPN) as target

notation. CPN allows analysis to check for properties in IP.

The semantics of the IP notations used in our approach

and its application are described on the basis of translation

Level uses

Integrator

Agent

Enterprises

Agents

rules into CPN. Consequently, lifelines, messages, constraints,

splitting/merging paths, interaction terminations, and other IP

construction elements are translated into a Petri net. After-

wards, the resulting Petri net specification can be analysed by

dedicated tools to detect errors as early as possible.

In a previous work [6], we elaborated translation rules from

interaction protocols notations used in our approach into Col-

ored Petri nets. These rules are implemented in IP2CPN: the

tool we developed to automatically generate the Petri net from

protocols specification. The resulting Petri net specification
Fig. 1. The proposed approach

A. Design level: Formalisation and Verification of Interaction

Protocols

Developing effective protocols to be executed by au-

tonomous partners is challenging. Similar to protocols in

traditional systems, IP in open and web-based settings need to

be specified rigorously so that business partners can interact

successfully.

For this reason, developed a method for IP design and

verification. This method (see figure 1) uses different models

and languages.

Our method motivates the use of IP based on

AUML/BPEL4WS for application integration modelling,

where pre- and post-conditions, rules, guards are specified in

OCL2 .

AUML (Agent UML) notation [1] [3] is a UML profile

dedicated to agents trying to simplify the transition from soft-

ware engineering to multi-agent system engineering. In other

hand, BPEL4WS [17] (Business Process Execution Language

for Web Services) is a de facto standard for describing Web

2 OCL: Object Constraint Language. (www.omg.org/cgi-bin)

can be analyzed by CPN-AMI tool [11] to detect errors as

early as possible.

B. Operational Level: Management of interaction protocols at

run-time

As we already have said before, the BPEL4WS process

specification is considered as a specifying language for ex-

pressing the interaction protocol of the multi-agents system.

In this the rest of this paper we briefly describe how the MAS

use the verified and the validated BPEL4WS specification to

establish the EAI. Our suggestion consists in the addition of

a specific agent between the MAS application and its IP parts

conceived as Web services.

IV. AN AGENT-BASED ARCHITECTURE FOR ENTERPRISE

APP LI CATI O N IN TEG R ATI O N

The proposed architecture based on the notion of agent. It

includes all the concepts necessary to ensure all the phases

of the Enterprise Application Integration life-cycle. As shown

in Fig. 2, our suggestion consists in the addition of a spe-

cific agent between the MAS application and its IP parts

conceived as Web services. In fact, we defined two types of

agent, namely, the Enterprise Agent representing an individual

enterprise and the Integrator Agent.

http://www.omg.org/cgi-bin

Djamel Benmerzoug 50

Integrator Agent

Interaction

Manager

IP as BPEL4WS

Specification

Communication

Module

Web

Services

request

Knowledge base

(Inetraction traces,

Web services

composition …)

Interaction

Builder

Interaction

Controler

Publish/

request

UDDI

Global

Knowledge

Planification

& Coordination

result

Services Manager

Communication Bus

r
result

Individual

Knowledge

Execution Module

Agent

1

Agent

2

……………..

Agent

n

Fig. 3. The structure of the Enterprise Agent

……………..

Enterprise 1 Enterprise 2 Enterprise n

Fig. 2. The proposed architecture

The main roles of the Integrator agent are the creation,

monitoring, and control of IP life cycle. Its architecture fea-

tures two modules: an interaction manager and a service one.

The interaction manager contains operational knowledge (e.g.,

Interactions states). It also provides operations for monitoring

interaction (i.e., creating and deleting instances). The service

manager provides methods for receiving service requests,

tracing service executions, and communicating with service

requesters in accordance with IP definition (e.g., sending a no-

tification informing the requester that deadline for cancelling

an operation is passed).

A. Description of the Integrator Agent

As shown in Fig. 2, the Integrator agent is composed of

four main modules.

• The knowledge module includes a database and a set of

actions. The role of this module is to store information

that is necessary for the success of the interaction. Such

information is traces of interaction used during the phases

of the current states and coordination tasks running. This

information is useful for future use of the protocol.

• The Interaction Manager module allows the processing

of messages depending on the specification of the inter-

action protocols (the BPEL4WS specification) and the

knowledge parts.

• The services management module provides the services

necessary for locating and invoking services.

• The communication module allows the transport of mes-

sages. In our work, we use the FIPA-ACL [14] as the

language of communication between the different agents.

This module has the role to structure the messages

constructed by the agent.

B. Description of the Enterprise Agent

We consider the Enterprise Agent as an entity including a

communication module, a planning and coordination module,

and an execution module (Fig. 3).

• The Communication Module: contains all the processes

required to handle the messages: reception, filtering, and

translation of incoming messages, and formulation and

sending of the outgoing messages.

• The Planning and Co-ordination Module: is responsible

for managing the cooperation and formulating the offers

for achieving sub-goals announced by the Integrator

agent.

• The Execution Module: this module contains the infor-

mation about the internal resources of the individual

enterprise, which makes possible the performance of local

tasks that are assigned to the enterprise. It establishes

the correspondence between the sub-goal assigned to the

agent and the internal resources of the enterprise capable

of achieving this sub-goal.

• The Global Knowledge Module: contains information

related to the organisational and operational rules defined

by the enterprises.

• The Individual Knowledge Module contains information

about the agent itself: its capacities and skills, and the

current state and workload, i.e. for each skill, indicators

are assigned to determine availability, as well as the cost

of such skill.

V. ROLES AND BEHAVIORS OF AGENTS

IP must specify the semantics of the messages exchanged. It

also describes the reactions of an agent in a given message. In

our case, two main roles involved in the interaction protocols:

1) The Integrator agent supports data extraction from the

IP specification and message exchange between agents

involved in the interaction.

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 51

knowledges

IP

m 0

m 0

m 0

knowledge

bases

Interaction

Manager

Integrator
m 0

Agent m
0 1 5

Enterprises

Agents

Services Manager

Fig. 4. Agents behaviors

2 6 4 4 6

2) The role of participants’ agents is to coordinate to satisfy

all the requests of the Integrator agent. The interaction

protocol that we specified in this paper describes the

rules used by the participants’ agents for a correct

coordinate.

The behavior of agents, as shown in Figure 4, can then be

3

UDDI

WS1 WSn

summarized as follows:

1) The Integrator agent (the initiator of the IP) announces

the beginning of the integration process and the allo-

cation of tasks. For each task to be performed, the

Integrator agent announces a specification that includes a

description, and a list of requirements and constraints for

this task. This information is encapsulated in a message,

which represents the initiator message (m0 in Fig. 4).

2) When participants’ agents are identified, the allocation

phase of sub goals for participating agents begins. Each

participant (Agent) performs the part that has been

assigned. The composition of individual results leads to

the realization of the overall goal.

3) The Integrator agent ensures the coordination between

the different enterprises agents in accordance with the

rules of interaction defined in the BPEL4WS specifica-

tion. In the context of this work we will not discuss

the aspect of local coordination, which may be different

from one company to another.

To ensure the successful completion of the interaction, the

Integrator agent must know how many responses should be ex-

pect from the participating agents. The analysis of interaction

rules defined in the BPEL4WS specification and the semantics

of the ACL allow when if others messages may be received

or not.

VI. COMMUNICATION MODES

This integration process must keep as much as possible

the autonomy of architecture core based on agents. Indeed,

The agents are coordinated with the Integrator agent and the

exchange of messages to enact the EAI. In this architecture,

the following communications pathways exist:

• agent to agent communication occurs via FIPAs Agent

Communication Language (ACL) and is facilitate by a

FIPA compliant Agent Management System.

Fig. 5. Agent-Web Services Communication

• agent to Web service communication is accomplished via

SOAP messages.

• agent to BPEL4WS dataspace communication utilizes

appropriate protocols/interfaces provided by the datas-

pace. The dataspace is used to store BPEL4WS process

variables, which maintain the state of the IP.

A. Inter-Agent Communication

FIPA [14] supplies a standard syntax for messages. These

messages are based on the theory of the act of speech, which is

the result of the linguistic analysis of human communication.

The basis of this theory is to produce an action from the

language. In the FIPA-ACL, no specific language for the

description of the contents of messages is imposed. Several

languages can be used for the description of the contents of

the exchanged messages such as KIF (Knowledge Interchange

Format), Semantic Language (SL), Prologue and XML (eXten-

sible Mark-up Language). XML will be used for the descrip-

tion, the specification and the interpretation of the contents of

messages exchanged. So, the messages exchanged among the

agents are described in FIPA-ACL/XML. The use of XML

for the contents of communications among agents permits

the display of messages in a Web browser and facilitates the

integration with existing Web-based applications.

B. Agent - Web service Communication

This type of communication is ensured by the Services

Manager module of the Integrator agent. This module provides

the necessary services for locating and invoking services. Its

behavior is presented as follows (see Fig. 5):

1) When the Integrator agent detects a need for which it

does not have the capacity , it uses the functionality of

Djamel Benmerzoug 52

the Service Manager module to find Web services that

could satisfy his need.

2) The Service Manager module requests the UDDI registry

3) The Service Manager module obtains from the registry

a list of descriptions of Web services that matching the

search criteria.

4) The Service Manager module starts the invocation of

services found to obtain their attributes.

5) The Integrator agent requests the service manager mod-

ule to invoke the Web service selected.

6) The Service Manager module sends a parallel invocation

message to the selected service and cancel messages to

other services not concerned.

VII. SOME IMP LEM EN TATIO N ASP ECTS

The platform chosen for the implementation is Java Agent

public class Integrator extends Agent {

protected void setup() {

addBehaviour(new SimpleBehaviour(this)

{

// Traitement ...

}

}

public class EntrepriseAgent extends

Agent {

class recevoir extends

SimpleBehaviour {

//Traitement ...

}

public recevoir(Agent a)

{

super(a);

import java.util.*;

import jade.core.*;

import jade.core.behaviour.*;

import jade.lang.acl.ACLMessage.*;

class Communication extends CyclicBehaviour

{

public Communication (Agent a)

{super(a);}

Vector goals = new Vector();

public void action() {

// wait for message

ACLMessage received =

myAgent.receive();

if(ACLMessage == null) {block();}

else {

// message interpretation

Development framework (JADE) [9]. JADE is a software de-

velopment framework, fully implemented in Java, which aims

at the development of multi-agent systems and applications

that comply with FIPA standard. To achieve such a goal, JADE

offers the following list of features to the agent programmer:

• Distributed agent platform. The agent platform can be

}

protected void setup() {

recevoir mybehaviour = new

recevoir(this);
addBehaviour(mybehaviour);

}}

…………………………

// Start PlanRetrieval Behaviour

addBehaviour(new

PlanRetrieval(this,goals));

} } }

distributed on several hosts, each one of them executes

one Java Virtual Machine.

• FIPA-Compliant agent platform, which includes the

Agent Management System, the Directory Facilitator and

the Agent Communication Channel.

• Efficient transport of ACL messages between agents.

A. Using JADE to Develop the Proposed Architecture

Creating a JADE agent is as simple as defining a class

extending the Jade.core.Agent class and implementing the

setup() method. The setup() method is intended to include

agent initializations. The actual job an agent has to do is

presented as JADE behaviors. The Fig. 6 represents the imple-

mentation of the Integrator and the Enterprise agent classes.

These classes are extensions of the basic Agent class defined

in JADE.

The communication module presented in our architecture is

derived from JADE class CyclicBehaviour and will therefore

run continuously. If no messages have arrived, the behavior

will block and restart after a new message has arrived. If a

message has arrived, the perception interface has to interpret

this message into a set of goals, starts the execution module

and resumes waiting for incoming messages. The communi-

cation module behavior code is shown in Fig. 6.

The Interaction Manager Module is derived from the class

SimpleBehaviour. This module takes as input a BPEL4WS

specification and builds the appropriate interaction protocol.

In this context, an interaction protocol is implemented as

an FSMBehaviour behavior. The FSMBehaviour class is a

CompositeBehaviour that executes its children (sub behaviour

that are going to be used by FSMBehaviours) according to a

Finite State Machine defined by the user. In fact, each sub-

behaviour is dedicated to an interaction that represents the set

of messages exchanged to satisfy a given set of requirements.

- a - - b -

Fig. 6. a) Agent Class Extension, b) Partial specification of the Communi-

cation module

VIII. CO N CLUSI O N

In this paper, we have proposed an agent-based architecture

for enterprise application integration. The multi-agent provides

high level communication languages that preserve the entire

richness of the communications. Thus, the FIPA-ACL is used

in our approach to formulate messages exchanged between

the different agents constituting the system. The content of

these messages is described with XML. The use of the

JADE platform has allowed us to implement the Integrator

Agent and the Enterprise Agents and thus, to simulate the

interaction between these entities.

REF EREN CES

[1] B. Bauer, F. Bergenti, P. Massonet, and J. Odell. Agents and the UML: A

Unified Notation for Agents and Multi-agent Systems. In Agent-Oriented
Software Engineering II, Second International Workshop, AOSE’01,

volume 2222 of LNCS, pages 148–150. Springer, 2001.

[2] J. Barjis. Collaborative, Participative and Interactive Enterprise Model-
ing. In ICEIS’09, volume 24 of Lecture Notes in Business Information

Processing, pages 651–662. Springer, 2009.

[3] Bernhard Bauer and James Odell. UML 2.0 and agents: how to
build agent-based systems with the new UML standard. Eng. Appl.

of AI,
18(2):141–157, 2005.

[4] Djamel Benmerzoug, Mahmoud Boufaida, and Zizette Boufaida. From
the Analysis of Cooperation Within Organizational Environments to the

Design of Cooperative Information Systems: An Agent-Based Approach.
In OTM Workshops, volume 3292 of LNCS, pages 495–506,

Larnaca, Chypre, October 2004. Springer.

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 53

[5] Djamel Benmerzoug, Mahmoud Boufaida, and Fabrice Kordon. A
Specification and Validation Approach for Business Process Integration

based on Web Services and Agents. In Proceedings of the 5th Interna-
tional Workshop on Modelling, Simulation, Verification and Validation

of Enterprise Information Systems, MSVVEIS-2007, In conjunction with
ICEIS 2007, pages 163–168. NSTIIC press, 2007.

[6] Djamel Benmerzoug, Fabrice Kordon, and Mahmoud Boufaida. A Petri-
Net based Formalisation of Interaction Protocols applied to

Business Process Integration. In Advances in Enterprise
Engineering I, 4th International Workshop on Enterprise &

Organizational Modeling and Simulation (EOMAS’08), volume 10 of
LNBIP, pages 78–92, Montpel- lier, France, June 2008. Springer.

[7] Djamel Benmerzoug, Fabrice Kordon, and Mahmoud Boufaida. For-
malisation and Verification of Interaction Protocols for Business Process

Integration: a Petri net Approach. International Journal of
Simulation and Process Modelling, 4(3–4):195–204, 2008.

[8] P.A. Buhler and J.M. Vidal. Towards adaptive workflow enactment using
multiagent systems. International Journal On Information Technology

and Management, 6:61–87, 2005.
[9] C. Huang C. Trappey, A. Trappey and C. Ku. The design of a JADE-

based autonomous workflow management system for collaborative SoC
design. Expert Syst. Appl., 36(2):2659–2669, 2009.

[10] Chandra S. Mann V. Chafle, G. and M. Nanda. Decentralized orchestra-
tion of composite web services. In The Alternate Track on Web Services

at the 13th International World Wide Web Conference, pages 134–143,
2004.

[11] CPN-AMI:. http://move.lip6.fr/software/cpnami/.

[12] Gero Decker and Mathias Weske. Interaction-centric modeling of
process choreographies. Journal of Information Systems, 36(2):292–312,

2011.
[13] Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba:

A methodology for modeling and evolving cross-organizational

business processes. ACM Trans. Softw. Eng. Methodol., 19(2):1–
45, October

2009.
[14] FIPA. Foundation for Intelligent Physical Agents: Communicative Act

Library Specification, 1997.
[15] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified

Modelling Language for Object-Oriented Development, Document Set
Version 1.0. Rational Software Corporation, Santa Clara, 2002.

[16] H. Mazouzi, A. Fallah-Seghrouchni, and S. Haddad. Open Protocol De-
sign for Complex Interactions in Multi-Agent Systems. In AAMAS’02:

Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, pages 517–526, New

York, NY, USA,
2002. ACM.

[17] SAP Siebel Systems IBM, Microsoft. Business process execution

language for web services version 1.1. Technical report, 2003.
[18] M. Venkatraman and P.S Munindar. Verifying compliance with

com- mitment protocols. Int. Journal of Autonomous Agents and Multi-
Agent Systems, 2(3):217 – 236, 1999.

[19] F. Martial. Coordinating Plans of Autonomous Agents, volume 610.
Springer Heidelberg, 1992.

[20] Mike P. Papazoglou, Klaus Pohl, Michael Parkin, and Andreas Metzger,

editors. Service Research Challenges and Solutions for the Future
Internet - S-Cube - Towards Engineering, Managing and Adapting

Service-Based Systems, volume 6500 of Lecture Notes in
Computer Science. Springer, 2010.

[21] H. V. Parunak. Visualizing Agent Conversations: Using Enhanced
Dooley Graphs for Agent Design and Analysis, 1996.

[22] Wil M. P. van der Aalst, Arjan J. Mooij, Christian Stahl, and

Karsten Wolf. Service interaction: Patterns, formalization, and analysis.
In Marco Bernardo, Luca Padovani, and Gianluigi Zavattaro, editors,

Formal Methods for Web Services, 9th International School on Formal
Methods for the Design of Computer, Communication, and Software

Systems, Lecture Notes in Computer Science, pages 42–88. Springer,
2009.

[23] Johannes Maria Zaha, Marlon Dumas, Arthur H. M. ter Hofstede,
Alistair P. Barros, and Gero Decker. Service interaction modeling:

Bridging global and local views. In Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), pages 45–55.

IEEE Computer Society, 2006.

http://move.lip6.fr/software/cpnami/

