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Abstract– Modular multiplication is a key operation in public 

key cryptosystems like RSA. Among modular multiplication 

methods, Montgomery modular multiplication is an efficient 

algorithm suitable for hardware implementation. In this paper, a 

Modified Montgomery Modular Multiplication design is 

proposed with carry save adder architecture and parallel 

simplified quotient computation for the next iteration. The 

proposed design has a high clock frequency and high 

throughput. The proposed design and RSA are implemented on 

Virtex 2 and Virtex 5 FPGAs. 
 

Index Terms– Carry Save Adders, Cryptography, Modular 

Multiplication and RSA Exponentiation 
 

I. INTRODUCTION 

SA is a popular public key cryptosystem for encryption 

and digital signatures [1]. Encryption, decryption and 

digital signatures in RSA are function of modular 

exponentiation which is achieved by repeated modular 

multiplications. In 1985, P.L. Montgomery [2] proposed an 

efficient method for modular multiplication. It is suitable 

when several computations are done modulo one n (modulus). 

RSA cryptosystem requires repeated modular multiplications 

using the same modulus. For security reasons, the size of 

operands in RSA cryptosystem is 1024 bits or more. As a 

result the critical operation in Montgomery modular 
multiplication is addition of large operands. To avoid carry 

propagation during addition, several architectures are 

proposed in literature such as systolic array modular 

multipliers [3, 4] and carry save adder architectures [6-11]. 

This paper focuses on implementations based on carry save 

addition (CSA). Many researchers have proposed 

modifications in the design of Montgomery modular 

multiplication to achieve high frequency. Mc Ivor et.al [6, 7] 

proposed two Montgomery modular multiplication 

architectures: five-to-two CSA (three levels of carry save 

logic) and four-to-two CSA with two additional registers (two 

levels of carry save logic). The two variants perform modular 
multiplication in k+1 and k+2 (k is operand length in bits) 

clock cycles respectively. Kooroush Manochehri et.al [8] has 

proposed Montgomery modular multiplication algorithm 

using pipelining and carry save adder architecture. The 

authors have compared their result with [6, 7] and have found 

that pipelining is useful for FPGA implementation. The New 

Montgomery multiplication proposed by Kooroush 

Manochehri et.al [9] has higher throughput than [6, 7] as it 

calculates quotient in parallel with the addition of operands. 

Ming-Der Shieh [10] proposed new modular exponentiation 

architecture with unified multiplication/square module in 

which the number of operands was reduced by mathematical 
manipulation. But the design in [10] could be used only for H 

algorithm (MSB first method) of modular exponentiation. The 

critical path in 4:2 CSA [6, 7] consists of computation of 

quotient and 2 levels of CSA. The quotient determination 

involves delay of 2 XOR and 1 AND. Therefore the critical 

path delay is 2 full adders + 4:1 multiplexer + 2 XORs + 1 

AND. This design has a large delay in quotient computation 

which is solved in our previous work [11]. The design in this 

paper further reduces the critical path of Montgomery design 

by computing quotient for next iteration in parallel with carry 

save addition thus, saving the delay of 2 XOR and 1 AND. 

Hence the critical path of our design reduces to 4:1 MUX+2 
Full adders.   

II. MONTGOMERY MODULAR MULTIPLICATION 

Montgomery modular multiplication (MMM) is an efficient 

method since it replaces trial division by modulus with 

additions and shift operations. These operations are easily 

performed on hardware. But the price paid in using 

Montgomery algorithm is conversion of operands in and out 
of Montgomery’s domain. Let a and b be the multiplier and 

multiplicand, n be the modulus. To compute Montgomery 

modular multiplication (MMM) of a and b modulus n the 

operands are first converted to Montgomery domain i.e., n 

residue of integer with respect to r, where r=2k mod n  and k is 

bit length of operands: 

    

A is n residue of a with respect to r 

             A=a*r (mod n) 

  Similarly    B = b*r (mod n) 

 

The n residue of integer with respect to r is obtained by 
Montgomery modular multiplication of integer and r2  
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A= MMM (a, r2 , n) = (a* r2  * r-1 ) mod n 

= a*r (mod n) 

Montgomery product of A and B is defined as 

 =MMM (A, B, n) = A*B* r -1 mod n 

 = ( a*r (mod n)) * (  b*r (mod n)) * r -1 mod n 

Product = ab r mod n 
Product is converted back to integer domain from 

Montgomery domain.  

= MMM (Product, 1, n)  

= a b r * 1 * r-1   mod n 

= ab mod n. 

 

In RSA cryptosystem modular exponentiation is achieved 

by repeated modular multiplications with the same modulus. 

Hence the cost of conversion of input operands a and b from 

integer domain to Montgomery domain and then the result 

back to integer domain is very negligible in cryptosystems 

like RSA. 
   

Algorithm 1:  MMM (A, B, n) 

// Montgomery’s modular multiplication algorithm 

// Inputs: n (modulus k bits), A (multiplier in Montgomery’s  

   domain, k bits)  
// B (multiplicand in Montgomery’s domain, k bits) 

//  A, B < n  

//Output S=A × B × r -1 mod n 

1. S=0; 

2. for  i=0 to k-1 

3. {q=(S+A[i]×B) mod 2;                          

4. S= (S+ A[i] × B +q × n)/2;   }       

5.  if (S ≥ n) 

6.  S=S-n;                 

7.  return S; 

 
Algorithm 1 is a radix 2 version of Montgomery’s 

multiplication algorithm [10]. The critical path in 

Montgomery’s design is addition of long operands which 

results in large carry propagation delay.  Algorithm 2 is 4:2 

CSA [6, 7] where carry propagation is avoided by use of carry 

save adders. 

 

Algorithm 2: Four-to-two CSA Montgomery Multiplication 

(A1, A2, B1, B2, n) 

D1,D2 = CSR(B1+B2 +n+0) 

S1[0]=0; S2[0]=0; 

   for i in 0 to k-1  loop 

   qi =(S1[i]0 +S2[i]0) + (Ai*(B10 +B20)) mod 2;   

      if (Ai=0 and qi =0 ) then 

       S1[i+1], S2[i+1]         

           = CSR (S1[i] + S2[i] +  0 + 0) div 2; 

      elsif ( Ai=1 and qi =0)  then 
       S1[i+1], S2[i+1]         

           = CSR (S1[i] + S2[i] + B1 +  B2) div 2; 

      elsif  (Ai=0 and qi =1 ) then 

S1[i+1], S2[i+1]         

    = CSR (S1[i] + S2[i] +  n + 0) div 2; 

      else 

S1[i+1], S2[i+1]         

          = CSR (S1[i] + S2[i] + D1+ D2) div 2; 

      end if; 

   end loop; 

return S1[k],S2[k]; 

 

The critical path in 4:2 CSA Montgomery consists of 

computation of quotient and 2 levels of carry save addition. 
The critical path delay of algorithm 2 is 2 full adders + 4:1 

multiplexer + 2 XORs + 1 AND. Our previous work [11] 

reduces the delay in 4:2 CSA by simplifying quotient 

computation. It is done by increasing the bit length of 

multiplicand and multiplier by one bit and computing quotient 

for next iteration in 1 XOR delay. In this paper we propose a 

Modified Montgomery Modular Multiplication design which 

is a hybrid of the two designs: four to two CSA proposed by 

McIvor [7] and design in [4]. Two bits of multiplicand are 

increased in [4] to make quotient for next iteration 

independent of partial product in the current iteration. The 

work in this paper reduces the critical path of 4:2 CSA 
Montgomery by computing quotient for next iteration in 

parallel to carry save addition. The quotient computation is 

simplified by mathematical manipulation which is discussed 

in next section. 

III. PROPOSED MONTGOMERY MODULAR 

MULTIPLICATION 

Algorithm 3: Proposed Montgomery Modular Multiplication 
(A1, A2, B1, B2, n)  

1.  1a. (S1[0], S2[0]) = (0, 0) 

     1b. B1_n= 4B1,   B2_n=4B2;     // loading state 

                       parallel 

      1c   A1_n= 00 & A1; A2_n =00 & A2;    

                       parallel 
     1d      P1=0, P2=0; 

2.   2a.   D1, D2 = CSR (B1_n + B2_n + n);     

      2b.   q0 = 0;   

      2c.   Computation of A_n0   for first   iteration     

                       //   pre-computation state 

3.  for i in 0 to k+1  loop 

    3a. { if  (A_ni=0 and qi =0)  then  P1=0 ;  P2=0; 

           elsif  (A_ni=1 and qi =0) then 

              P1= B1_n;   P2=B2_n; 

          elsif  (A_ni=0 and qi =1) then 

            P1= 0;   P2=n; 
    else P1= D1;   P2=D2; 

    end if; 

     3b      S1[i+1], S2[i+1]         

      = CSR (S1[i] + S2[i] +  P1 + P2) div 2; } 

         ( steps 3a to 3b parallel to step 3c) 

     3c.    if (qi =0) then 

             qi+1=(S1[i]1 S2[i]1  (S1[i]0·S2[i]0); 
              else 

             qi+1 =(S1[i]1  S2[i]1  n1  1);     
              end if;   // computation of quotient 

     // n1 the second least significant bit of n 

       ( steps 3a to 3b parallel to step 3d) 

     3d.   { computation of A_n i +1     } 

          end loop; 

4. Return (S1[k+2],S2[k+2] ); 
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B1 and B2, the carry save representation of multiplicand 

becomes B1_n and B2_n in our design. The two LSB of B1_n 

and B2_n are 00. Hence quotient for next iteration qi+1 

becomes independent of current partial product A_ni (B1_n), 

A_ni (B2_n) but depends on quotient for the current iteration.  

Quotient for next iteration can be computed by   

qi+1= ( ( S1[i]1:0 + S2[i]1:0 +qi *n1:0 ) / 2) mod 2;                    (1) 

                                                                                                

    it can also be written as  

qi+1=( (S1[i]1+S2[i]1+qi*n1)  + 

         carry(S1[i]0+S2[i]0+qi*n0)) mod2;                               (2)                                                                      

 

But in 4:2 CSA when A_ni=1 and qi=1 then computation of 
quotient for next iteration becomes 

   

qi+1=( ( S1[i]1:0+ S2[i]1:0 +P11:0+ P21:0)/2) mod 2;                (3) 

 

and is only possible after determination of P1 and P2. So the 

work in this paper tries to simplify this quotient computation 

and remove the dependency on P1 and P2. 

 

There are two cases 

1) qi=0 

When qi=0 then for both values of A_ni, qi+1 become 

independent of P11:0, P21:0. So the computation of qi+1 

becomes  

 qi+1=(S1[i]1+S2[i]1)+carry(S1[i]0+S2[i]0);                           (4)                                                              

which can also be written as 

  qi+1=(S1[i]1  S2[i]1)  (S1[i]0 · S2[i]0);                            (5)                                                                     

 

 

 

 

2) qi=1 

 

 

 

 

 

 

 
   When A_ni=0 then  

 qi+1 = ( ( S1[i]1 + S2[i]1 + P21 ) +  

              carry ( S1[i]0 + S2[i]0 + P20 ) ) mod 2;                 (6)                              

 qi+1 = ( ( S1[i]1 + S2[i]1 + n1 ) + 

              carry ( S1[i]0 + S2[i]0 + n0 ) ) mod 2;                   (7)                                                   

The carry by adding zero bit of S1, S2 and n will be 1. 

Therefore above eq. can also be written as 

   qi+1= ( S1[i]1   S2[i]1    n1   1);                               (8)    
                      

When A_ni=1 then the operands for addition to step 3b in 

algorithm 3 are D1 and D2. The two least significant bits 

(LSB) of D1 are 00.  Also, the two LSB of D2 depend on two 

LSB of n as two LSB of B1_n and B2_n are 00.  

So quotient q i+1 becomes  

 qi+1 = ( ( S1[i]1 + S2[i]1+  P11 + P21 ) +  carry (S1[i]0 + 

S2[i]0+ P10 +P20 ) ) mod 2;                                               (9)    

  As P11=0, P10=0, P21= n1 , P20=n0 

Therefore in this case eq (8) is used to calculate quotient. 

 

The proposed Montgomery Modular Multiplication reduces 

the critical path of design by computing quotient for next 

iteration in parallel with carry save addition. The quotient 

computation requires a maximum delay of 2:1 MUX + 2 XOR 

+ 1 AND delay. Due to parallel computation it does not add to 

path delay. Hence the critical path delay of our proposed 

design is 4:1 MUX + 2 Full adders. 

 

IV. IMPLEMENTATION RESULTS AND 

COMPARISONS 

The proposed Montgomery design and RSA Modular 

Exponentiation (Encryption) are coded in VHDL and 

synthesized in XILINX ISE 8.1i ( Virtex 2) and XILINX ISE 

12.4 (Virtex 5,  device XC5VLX50 package FF1153 speed -

3). The synthesis results of proposed Montgomery design for 

operand size 512, 1024 and 2048 bits are in Table 1 and Table 

2. Area is in terms of number of slices in Table 1; slice 
registers, look up tables in Table 2. 

Frequency is in MHz. Area and frequency (minimum 

period) are generated in synthesis report. Throughput is 

calculated as bit length multiplied by the frequency and 

divided by number of clock cycles. The proposed 

Montgomery design takes k+4 clock cycles where k is bit 

length of operands. RSA modular exponentiation (encryption) 

is implemented using proposed Modified Montgomery 

design. RSA modular exponentiation is done using both LSB 

(least significant bit) and MSB (most significant bit) binary 

method. Synthesis result for RSA MSB (H) and LSB (L) for 

512 and 1024 bits are given in table 3 and 4.  For 
implementation the bits of exponent e are taken 17 bits. RSA   

encryption can be done faster by choosing values for e=3, 17, 

or 65537 (216+1). Binary representation of 65537 is 

10000000000000001.  Taking this value and calculating the 

number of cycles of MMM in Modular exponentiation gives: 

MSB design - 17 squarings  +2 multiplications  =19 

Montgomery cycles in MSB = 19 × (K+4)           

LSB design – 17 squarings +2 multiplications  

(Squarings and multiplications can be done in    parallel) = 
17 

Montgomery cycles in LSB=17 × (K+4) 

A_ni=0 

 

A_ni=1 

P1=0  

P2=0 

 

P1=B1_n 

P2=B2_n 

A_ni=0 

 

A_ni=1 

 

P1=0  

P2=n 

 

P1=D1  

P2=D2 
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Throughput in Table 3 and Table 4 is calculated using 19 × 
(K+4) MMM cycles for MSB and 17 × (K+4) MMM cycles 

for LSB.  

The proposed Montgomery design has a higher frequency and 

throughput as compared to [7]2 and [8-11].  Throughput/Area 

(T/A) has been taken as a measure of efficiency. Our design 

has three times T/A as compared to design in [7]2. Also T/A 

value for RSA exponentiation (LSB) using our design is 

almost double that of RSA implemented with [7]2. 

 

Table 1:  FPGA IMPLEMENTATION RESULTS OF MONTGOMERY MODULAR MULTIPLIERS 

 (Virtex 2) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Table 2:  FPGA IMPLEMENTATION RESULTS OF MODIFIED MONTGOMERY MODULAR MULTIPLICATION  

(Virtex 5) 

 

 

 

 

 

 

 

 

 

 

 

Table 3: FPGA IMPLEMENTATION RESULTS OF RSA MODULAR EXPONENTIATION  

(Encryption) (Virtex 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Bit 

Length 
FPGA 

Technology 
Area 

(Slices) 
Frequency 

(MHz) 

Throughput 
Rate 

(Mbps) 
 

Throughput/A
rea 

(Mbps/Slices) 
 

[7]1 

 

512 XC2V1500 5170 126.71 
126.46 

 
.024 

1024 XC2V3000 10332 101.71 101.61 .009 

2048 XC2V6000 20986 90.09 90.05 .004 

 
[7]2 

(algo 
2) 

512 XC2V1500 5782 122.03 121.55 .021 

1024 XC2V3000 11520 111.32 111.1 .009 

2048 XC2V6000 23108 90.73 90.64 .003 

 
[8] 

512 XC2V1500 1678 89.3 29.71 .017 

1024 XC2V3000 3334 88.9 29.60 .008 

2048 XC2V6000 6782 87.1 29.02 .004 

[9] 
512 XC2V1500 3125 72.1 71.82 .022 

1024 XC2V3000 6243 79.2 79.05 .012 

[11] 
512 XC2V1500 3480 156.82 155.9 .044 

1024 XC2V3000 6953 136.45 136.05 .019 

2048 XC2V4000 14015 135.58 135.38 .009 

 
Our 

512 XC2V1500 3547 235.81 233.98 .065 

1024 XC2V3000 6814 188.69 187.95 .027 

2048 XC2V4000 13753 185.33 184.96 .013 

 

 

Our 
 

Bits 
 

FPGA 
Technology 

Slice 
Registers 

Slice LUTs 
Freq 

(MHz) 

Throughput 
(Mbps) 

 

512 XC5VLX50 4121 4652 430.84 427.5 

1024 XC5VLX50 8218 9252 422.24 420.59 

2048 XC5VLX50 16411 18468 418.05 417.23 

 
Bit 

Length 

H
/
L 

FPGA 
Technology 

Area 
(Slices

) 

Frequency 
(MHz) 

Throughput 
(Mbps) 

Throughput
/Area 

Kbps/slices 

[7]1 
512 L XC2V3000 11304 102.31 5.10 0.451 

1024 L XC2V6000 23208 95.90 4.79 0.206 

[11] 
512 

H XC2V3000 6073 117.247 6.13 1.009 

L XC2V3000 8962 117.564 6.87 0.766 

1024 
H XC2V3000 12040 109.636 5.75 0.477 

L XC2V4000 17818 109.914 6.44 0.361 

 
Our 

 

512 

H XC2V3000 5777 150.655 7.86 1.36 

L XC2V3000 8934 151.042 8.81 0.986 

 

1024 

H XC2V3000 11898 140.86 7.38 0.620 

L XC2V4000 17770 141.205 8.27 0.465 
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Table 4: FPGA IMPLEMENTATION RESULTS FOR RSA MODULAR EXPONENTIATION  
(Encryption) (Virtex 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS 

In this paper the critical path delay of Montgomery design 
is reduced by parallel and simplified quotient computation. 

This is done only at the expense of two extra bits and two 

extra iterations. Our design has a high frequency and high 

throughput. It can be used for both LSB and MSB methods 

for RSA exponentiation.  
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Bit 

Length 
H/L 

FPGA 
Tech 

Slice 
Registers 

Slice 
LUTs 

Freq 
(Mhz) 

Throughput 
(Mbps) 

 
 

Our 
 

512 

 

H XC5VLX50 6773 6773 239.09 12.48 

L XC5VLX50 9865 12433 239.29 13.96 

1024 
H XC5VLX50 13432 13437 229.49 12.03 

L XC5VLX50 19597 25777 229.67 13.45 


