
International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 42

Journal Homepage: www.ijcst.org

Rupali Verma
1
, Maitreyee Dutta

2
 and Renu Vig

3

1PEC University of Technology, Chandigarh, India
2National Institute of Technical Teachers Training and Research, Chandigarh, India

3University Institute of Engineering and Technology, Panjab University, Chandigarh, India
1rupali@pec.ac.in

Abstract– Modular multiplication is a key operation in public

key cryptosystems like RSA. Among modular multiplication

methods, Montgomery modular multiplication is an efficient

algorithm suitable for hardware implementation. In this paper, a

Modified Montgomery Modular Multiplication design is

proposed with carry save adder architecture and parallel

simplified quotient computation for the next iteration. The

proposed design has a high clock frequency and high

throughput. The proposed design and RSA are implemented on

Virtex 2 and Virtex 5 FPGAs.

Index Terms– Carry Save Adders, Cryptography, Modular

Multiplication and RSA Exponentiation

I. INTRODUCTION

SA is a popular public key cryptosystem for encryption

and digital signatures [1]. Encryption, decryption and

digital signatures in RSA are function of modular

exponentiation which is achieved by repeated modular

multiplications. In 1985, P.L. Montgomery [2] proposed an

efficient method for modular multiplication. It is suitable

when several computations are done modulo one n (modulus).

RSA cryptosystem requires repeated modular multiplications

using the same modulus. For security reasons, the size of

operands in RSA cryptosystem is 1024 bits or more. As a

result the critical operation in Montgomery modular
multiplication is addition of large operands. To avoid carry

propagation during addition, several architectures are

proposed in literature such as systolic array modular

multipliers [3, 4] and carry save adder architectures [6-11].

This paper focuses on implementations based on carry save

addition (CSA). Many researchers have proposed

modifications in the design of Montgomery modular

multiplication to achieve high frequency. Mc Ivor et.al [6, 7]

proposed two Montgomery modular multiplication

architectures: five-to-two CSA (three levels of carry save

logic) and four-to-two CSA with two additional registers (two

levels of carry save logic). The two variants perform modular
multiplication in k+1 and k+2 (k is operand length in bits)

clock cycles respectively. Kooroush Manochehri et.al [8] has

proposed Montgomery modular multiplication algorithm

using pipelining and carry save adder architecture. The

authors have compared their result with [6, 7] and have found

that pipelining is useful for FPGA implementation. The New

Montgomery multiplication proposed by Kooroush

Manochehri et.al [9] has higher throughput than [6, 7] as it

calculates quotient in parallel with the addition of operands.

Ming-Der Shieh [10] proposed new modular exponentiation

architecture with unified multiplication/square module in

which the number of operands was reduced by mathematical
manipulation. But the design in [10] could be used only for H

algorithm (MSB first method) of modular exponentiation. The

critical path in 4:2 CSA [6, 7] consists of computation of

quotient and 2 levels of CSA. The quotient determination

involves delay of 2 XOR and 1 AND. Therefore the critical

path delay is 2 full adders + 4:1 multiplexer + 2 XORs + 1

AND. This design has a large delay in quotient computation

which is solved in our previous work [11]. The design in this

paper further reduces the critical path of Montgomery design

by computing quotient for next iteration in parallel with carry

save addition thus, saving the delay of 2 XOR and 1 AND.

Hence the critical path of our design reduces to 4:1 MUX+2
Full adders.

II. MONTGOMERY MODULAR MULTIPLICATION

Montgomery modular multiplication (MMM) is an efficient

method since it replaces trial division by modulus with

additions and shift operations. These operations are easily

performed on hardware. But the price paid in using

Montgomery algorithm is conversion of operands in and out
of Montgomery’s domain. Let a and b be the multiplier and

multiplicand, n be the modulus. To compute Montgomery

modular multiplication (MMM) of a and b modulus n the

operands are first converted to Montgomery domain i.e., n

residue of integer with respect to r, where r=2k mod n and k is

bit length of operands:

A is n residue of a with respect to r

 A=a*r (mod n)

 Similarly B = b*r (mod n)

The n residue of integer with respect to r is obtained by
Montgomery modular multiplication of integer and r2

R

FPGA Implementation of Modified Montgomery for RSA

Cryptosystem

ISSN 2047-3338

Rupali Verma et al. 43

A= MMM (a, r2 , n) = (a* r2 * r-1) mod n

= a*r (mod n)

Montgomery product of A and B is defined as

 =MMM (A, B, n) = A*B* r -1 mod n

 = (a*r (mod n)) * (b*r (mod n)) * r -1 mod n

Product = ab r mod n
Product is converted back to integer domain from

Montgomery domain.

= MMM (Product, 1, n)

= a b r * 1 * r-1 mod n

= ab mod n.

In RSA cryptosystem modular exponentiation is achieved

by repeated modular multiplications with the same modulus.

Hence the cost of conversion of input operands a and b from

integer domain to Montgomery domain and then the result

back to integer domain is very negligible in cryptosystems

like RSA.

Algorithm 1: MMM (A, B, n)

// Montgomery’s modular multiplication algorithm

// Inputs: n (modulus k bits), A (multiplier in Montgomery’s

 domain, k bits)
// B (multiplicand in Montgomery’s domain, k bits)

// A, B < n

//Output S=A × B × r -1 mod n

1. S=0;

2. for i=0 to k-1

3. {q=(S+A[i]×B) mod 2;

4. S= (S+ A[i] × B +q × n)/2; }

5. if (S ≥ n)

6. S=S-n;

7. return S;

Algorithm 1 is a radix 2 version of Montgomery’s

multiplication algorithm [10]. The critical path in

Montgomery’s design is addition of long operands which

results in large carry propagation delay. Algorithm 2 is 4:2

CSA [6, 7] where carry propagation is avoided by use of carry

save adders.

Algorithm 2: Four-to-two CSA Montgomery Multiplication

(A1, A2, B1, B2, n)

D1,D2 = CSR(B1+B2 +n+0)

S1[0]=0; S2[0]=0;

 for i in 0 to k-1 loop

 qi =(S1[i]0 +S2[i]0) + (Ai*(B10 +B20)) mod 2;

 if (Ai=0 and qi =0) then

 S1[i+1], S2[i+1]

 = CSR (S1[i] + S2[i] + 0 + 0) div 2;

 elsif (Ai=1 and qi =0) then
 S1[i+1], S2[i+1]

 = CSR (S1[i] + S2[i] + B1 + B2) div 2;

 elsif (Ai=0 and qi =1) then

S1[i+1], S2[i+1]

 = CSR (S1[i] + S2[i] + n + 0) div 2;

 else

S1[i+1], S2[i+1]

 = CSR (S1[i] + S2[i] + D1+ D2) div 2;

 end if;

 end loop;

return S1[k],S2[k];

The critical path in 4:2 CSA Montgomery consists of

computation of quotient and 2 levels of carry save addition.
The critical path delay of algorithm 2 is 2 full adders + 4:1

multiplexer + 2 XORs + 1 AND. Our previous work [11]

reduces the delay in 4:2 CSA by simplifying quotient

computation. It is done by increasing the bit length of

multiplicand and multiplier by one bit and computing quotient

for next iteration in 1 XOR delay. In this paper we propose a

Modified Montgomery Modular Multiplication design which

is a hybrid of the two designs: four to two CSA proposed by

McIvor [7] and design in [4]. Two bits of multiplicand are

increased in [4] to make quotient for next iteration

independent of partial product in the current iteration. The

work in this paper reduces the critical path of 4:2 CSA
Montgomery by computing quotient for next iteration in

parallel to carry save addition. The quotient computation is

simplified by mathematical manipulation which is discussed

in next section.

III. PROPOSED MONTGOMERY MODULAR

MULTIPLICATION

Algorithm 3: Proposed Montgomery Modular Multiplication
(A1, A2, B1, B2, n)

1. 1a. (S1[0], S2[0]) = (0, 0)

 1b. B1_n= 4B1, B2_n=4B2; // loading state

 parallel

 1c A1_n= 00 & A1; A2_n =00 & A2;

 parallel
 1d P1=0, P2=0;

2. 2a. D1, D2 = CSR (B1_n + B2_n + n);

 2b. q0 = 0;

 2c. Computation of A_n0 for first iteration

 // pre-computation state

3. for i in 0 to k+1 loop

 3a. { if (A_ni=0 and qi =0) then P1=0 ; P2=0;

 elsif (A_ni=1 and qi =0) then

 P1= B1_n; P2=B2_n;

 elsif (A_ni=0 and qi =1) then

 P1= 0; P2=n;
 else P1= D1; P2=D2;

 end if;

 3b S1[i+1], S2[i+1]

 = CSR (S1[i] + S2[i] + P1 + P2) div 2; }

 (steps 3a to 3b parallel to step 3c)

 3c. if (qi =0) then

 qi+1=(S1[i]1 S2[i]1 (S1[i]0·S2[i]0);
 else

 qi+1 =(S1[i]1 S2[i]1 n1 1);
 end if; // computation of quotient

 // n1 the second least significant bit of n

 (steps 3a to 3b parallel to step 3d)

 3d. { computation of A_n i +1 }

 end loop;

4. Return (S1[k+2],S2[k+2]);

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 44

B1 and B2, the carry save representation of multiplicand

becomes B1_n and B2_n in our design. The two LSB of B1_n

and B2_n are 00. Hence quotient for next iteration qi+1

becomes independent of current partial product A_ni (B1_n),

A_ni (B2_n) but depends on quotient for the current iteration.

Quotient for next iteration can be computed by

qi+1= ((S1[i]1:0 + S2[i]1:0 +qi *n1:0) / 2) mod 2; (1)

 it can also be written as

qi+1=((S1[i]1+S2[i]1+qi*n1) +

 carry(S1[i]0+S2[i]0+qi*n0)) mod2; (2)

But in 4:2 CSA when A_ni=1 and qi=1 then computation of
quotient for next iteration becomes

qi+1=((S1[i]1:0+ S2[i]1:0 +P11:0+ P21:0)/2) mod 2; (3)

and is only possible after determination of P1 and P2. So the

work in this paper tries to simplify this quotient computation

and remove the dependency on P1 and P2.

There are two cases

1) qi=0

When qi=0 then for both values of A_ni, qi+1 become

independent of P11:0, P21:0. So the computation of qi+1

becomes

 qi+1=(S1[i]1+S2[i]1)+carry(S1[i]0+S2[i]0); (4)

which can also be written as

 qi+1=(S1[i]1 S2[i]1) (S1[i]0 · S2[i]0); (5)

2) qi=1

 When A_ni=0 then

 qi+1 = ((S1[i]1 + S2[i]1 + P21) +

 carry (S1[i]0 + S2[i]0 + P20)) mod 2; (6)

 qi+1 = ((S1[i]1 + S2[i]1 + n1) +

 carry (S1[i]0 + S2[i]0 + n0)) mod 2; (7)

The carry by adding zero bit of S1, S2 and n will be 1.

Therefore above eq. can also be written as

 qi+1= (S1[i]1 S2[i]1 n1 1); (8)

When A_ni=1 then the operands for addition to step 3b in

algorithm 3 are D1 and D2. The two least significant bits

(LSB) of D1 are 00. Also, the two LSB of D2 depend on two

LSB of n as two LSB of B1_n and B2_n are 00.

So quotient q i+1 becomes

 qi+1 = ((S1[i]1 + S2[i]1+ P11 + P21) + carry (S1[i]0 +

S2[i]0+ P10 +P20)) mod 2; (9)

 As P11=0, P10=0, P21= n1 , P20=n0

Therefore in this case eq (8) is used to calculate quotient.

The proposed Montgomery Modular Multiplication reduces

the critical path of design by computing quotient for next

iteration in parallel with carry save addition. The quotient

computation requires a maximum delay of 2:1 MUX + 2 XOR

+ 1 AND delay. Due to parallel computation it does not add to

path delay. Hence the critical path delay of our proposed

design is 4:1 MUX + 2 Full adders.

IV. IMPLEMENTATION RESULTS AND

COMPARISONS

The proposed Montgomery design and RSA Modular

Exponentiation (Encryption) are coded in VHDL and

synthesized in XILINX ISE 8.1i (Virtex 2) and XILINX ISE

12.4 (Virtex 5, device XC5VLX50 package FF1153 speed -

3). The synthesis results of proposed Montgomery design for

operand size 512, 1024 and 2048 bits are in Table 1 and Table

2. Area is in terms of number of slices in Table 1; slice
registers, look up tables in Table 2.

Frequency is in MHz. Area and frequency (minimum

period) are generated in synthesis report. Throughput is

calculated as bit length multiplied by the frequency and

divided by number of clock cycles. The proposed

Montgomery design takes k+4 clock cycles where k is bit

length of operands. RSA modular exponentiation (encryption)

is implemented using proposed Modified Montgomery

design. RSA modular exponentiation is done using both LSB

(least significant bit) and MSB (most significant bit) binary

method. Synthesis result for RSA MSB (H) and LSB (L) for

512 and 1024 bits are given in table 3 and 4. For
implementation the bits of exponent e are taken 17 bits. RSA

encryption can be done faster by choosing values for e=3, 17,

or 65537 (216+1). Binary representation of 65537 is

10000000000000001. Taking this value and calculating the

number of cycles of MMM in Modular exponentiation gives:

MSB design - 17 squarings +2 multiplications =19

Montgomery cycles in MSB = 19 × (K+4)

LSB design – 17 squarings +2 multiplications

(Squarings and multiplications can be done in parallel) =
17

Montgomery cycles in LSB=17 × (K+4)

A_ni=0

A_ni=1

P1=0

P2=0

P1=B1_n

P2=B2_n

A_ni=0

A_ni=1

P1=0

P2=n

P1=D1

P2=D2

Rupali Verma et al. 45

Throughput in Table 3 and Table 4 is calculated using 19 ×
(K+4) MMM cycles for MSB and 17 × (K+4) MMM cycles

for LSB.

The proposed Montgomery design has a higher frequency and

throughput as compared to [7]2 and [8-11]. Throughput/Area

(T/A) has been taken as a measure of efficiency. Our design

has three times T/A as compared to design in [7]2. Also T/A

value for RSA exponentiation (LSB) using our design is

almost double that of RSA implemented with [7]2.

Table 1: FPGA IMPLEMENTATION RESULTS OF MONTGOMERY MODULAR MULTIPLIERS

 (Virtex 2)

Table 2: FPGA IMPLEMENTATION RESULTS OF MODIFIED MONTGOMERY MODULAR MULTIPLICATION

(Virtex 5)

Table 3: FPGA IMPLEMENTATION RESULTS OF RSA MODULAR EXPONENTIATION

(Encryption) (Virtex 2)

Bit

Length
FPGA

Technology
Area

(Slices)
Frequency

(MHz)

Throughput
Rate

(Mbps)

Throughput/A
rea

(Mbps/Slices)

[7]1

512 XC2V1500 5170 126.71
126.46

.024

1024 XC2V3000 10332 101.71 101.61 .009

2048 XC2V6000 20986 90.09 90.05 .004

[7]2

(algo
2)

512 XC2V1500 5782 122.03 121.55 .021

1024 XC2V3000 11520 111.32 111.1 .009

2048 XC2V6000 23108 90.73 90.64 .003

[8]

512 XC2V1500 1678 89.3 29.71 .017

1024 XC2V3000 3334 88.9 29.60 .008

2048 XC2V6000 6782 87.1 29.02 .004

[9]
512 XC2V1500 3125 72.1 71.82 .022

1024 XC2V3000 6243 79.2 79.05 .012

[11]
512 XC2V1500 3480 156.82 155.9 .044

1024 XC2V3000 6953 136.45 136.05 .019

2048 XC2V4000 14015 135.58 135.38 .009

Our

512 XC2V1500 3547 235.81 233.98 .065

1024 XC2V3000 6814 188.69 187.95 .027

2048 XC2V4000 13753 185.33 184.96 .013

Our

Bits

FPGA
Technology

Slice
Registers

Slice LUTs
Freq

(MHz)

Throughput
(Mbps)

512 XC5VLX50 4121 4652 430.84 427.5

1024 XC5VLX50 8218 9252 422.24 420.59

2048 XC5VLX50 16411 18468 418.05 417.23

Bit

Length

H
/
L

FPGA
Technology

Area
(Slices

)

Frequency
(MHz)

Throughput
(Mbps)

Throughput
/Area

Kbps/slices

[7]1
512 L XC2V3000 11304 102.31 5.10 0.451

1024 L XC2V6000 23208 95.90 4.79 0.206

[11]
512

H XC2V3000 6073 117.247 6.13 1.009

L XC2V3000 8962 117.564 6.87 0.766

1024
H XC2V3000 12040 109.636 5.75 0.477

L XC2V4000 17818 109.914 6.44 0.361

Our

512

H XC2V3000 5777 150.655 7.86 1.36

L XC2V3000 8934 151.042 8.81 0.986

1024

H XC2V3000 11898 140.86 7.38 0.620

L XC2V4000 17770 141.205 8.27 0.465

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 46

Table 4: FPGA IMPLEMENTATION RESULTS FOR RSA MODULAR EXPONENTIATION
(Encryption) (Virtex 5)

V. CONCLUSIONS

In this paper the critical path delay of Montgomery design
is reduced by parallel and simplified quotient computation.

This is done only at the expense of two extra bits and two

extra iterations. Our design has a high frequency and high

throughput. It can be used for both LSB and MSB methods

for RSA exponentiation.

REFERENCES

[1] R. Rivest, A. Shamir, L. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Commun.
ACM, vol. 21, issue 2, pp.120-126, Feb. 1978.

[2] P. L. Montgomery, Modular multiplication without trial
division, Math. Comput., vol 44, pp. 519-521, Apr. 1985.

[3] C.D. Walter, Systolic modular multiplication, IEEE Trans.
Comput., vol. 42, no. 3, pp 376-378, Mar. 1993.

[4] S.E. Eldridge and C.D. Walter, Hardware implementation of
montgomery’s modular multiplication algorithm, IEEE Trans.
Comput., vol. 42, no. 6, pp. 693-699, Jun. 1993.

[5] C.D. Walter, Montgomery exponentiation needs no final
subtractions, Electron. Lett., vol. 32, no. 21, pp. 1831-1832,
Oct. 1999.

[6] C. McIvor, M. McLoone, and J.V. McCanny, Fast
Montgomery modular multiplication and RSA cryptographic
processor architectures, in Proc. 37th Asilomar Conf. Signals,
Syst. Comput., Nov. 2003, vol. 1, pp. 379-384.

[7] C. McIvor, M. McLoone and J. V. McCanny, Modified
Montgomery modular multiplication and RSA exponentiation
techniques, in Proc. IEE Comput. Digit. Techniques, vol.
151,no. 6, pp. 402–408, Nov. 2004.

[8] K. Manochehri and S. Pourmozafari , Fast Montgomery
modular multiplication by pipelined CSA architecture,” in

Proc.IEEE Int. Conf. Microelectron., Dec. 2004, pp.144-147.

[9] K. Manochehri and S. Pourmozafari, Modified Radix-2
Montgomery Modular Multiplication to Make It Faster and
Simpler, Proc. Int. Conference on Information Technology:
Coding and Computing, Apr. 2005, pp 598 – 602.

[10] M.D. Shieh, J.H. Chen, H.H Wu, W.C Lin, A New Modular
Exponentiation Architecture for Efficient Design of RSA
Cryptosystem, IEEE Trans. VLSI Sys. vol. 16, no. 9, pp 1151-
1161, Sep. 2008.

[11] R. Verma, M. Dutta, R. Vig, Modified Montgomery Modular
Multiplication for RSA Cryptosystem, International Journal of

Computational Intelligence and Information Security, vol. 2,
no. 9, pp 39-47, Sept. 2011.

Bit

Length
H/L

FPGA
Tech

Slice
Registers

Slice
LUTs

Freq
(Mhz)

Throughput
(Mbps)

Our

512

H XC5VLX50 6773 6773 239.09 12.48

L XC5VLX50 9865 12433 239.29 13.96

1024
H XC5VLX50 13432 13437 229.49 12.03

L XC5VLX50 19597 25777 229.67 13.45

