International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 8

ISSN 2047-3338

Finding the motif from DNA Sequences using Grid
Computing System

Trang Hong Son®, Tran Van Lang® and Le Van Vinh®

'Hoa Sen University, Vietnam Ministry of Education and Training
?Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology
*HCM City University of Technical Education, Vietnam Ministry of Education and Training

Ytrangson2211@yahoo.com, “tvlang@vast-hcm.ac.vn, *vinhlv@fit.hcmute.edu.vn

Abstract—The motif finding problem is one of high complex
problems, as well as needs much time. Therefore, the accuracy
and time consuming are two important goals in this problem.
Many algorithms were proposed for solving the problem.
However, execution time is still a challenge needing more
research. In this paper, we proposed a parallel solution based on
improving the Uniform Projection algorithm. Moreover, we
implemented the program on the Grid computing environment to
get better performance.

Index Terms—Biology Sequence, Finding Motif and Grid
Computing

. INTRODUCTION

HE number of DNA and protein sequences is increasingly

being uncovered. In this sequence, the number of

nucleotides or amino acids is usually very large. Thus, we
need to know which the subsequences that are the same or
nearly the same in the biological sequences. This is a problem
with high complexity and spending a lot of processor time.
The subsequence is known as a motif. Motif finding problem
is often used for finding transcription factor binding sites
which are helpful to decipher the regulation of gene
expression.

The problem is high complexity because we could not get a
set of template motifs, as well as not know its position in the
sequences. There were many algorithms proposed in the past.
Each algorithm has its own advantages and disadvantages. In
general, the motif finding algorithms are based on two general
approaches: using the Sample Driven Approach — SDA
method (Consensus [1], Gibbs sampling [2], MEME [3]) to
check on a set of given sequences; and using the Pattern
Driven Approach — PDA method (Teiresias algorithm [4],
MITRA [5]) to draw the motif in the space that contains the
result set.

Among the existing algorithms, the Brute Force is the
simplest algorithm. The algorithm’s idea is using an
exhaustive search that always finds the best results. However,
the execution time required too much. It is not suitable for
long sequences or the large number of sequences. In addition,
there are some following finding motif algorithms:

Journal Homepage: www.ijcst.org

The Consensus algorithms, proposed by Hertz [1], based on
the Brute Force method, but it removes the cases which are
predicted as not well one. As a result, the search time is
greatly reduced. The weakness of the algorithm is that when it
removes search space too early, some good results could be
missed, leading to local interference.

The Gibbs Sampling [2] and MEME algorithm [3] based on
probabilistic models. Those approaches start with a certain
probability distribution. After some iteration, they use the
criterions of probability so that the probability model
converged to a better state. The algorithms are said to have
less "interference" than the Consensus algorithm. Especially,
the speed of algorithms is faster and it could search the more
complex motif than the Consensus algorithm. The downside of
this algorithm is the dependence on the starting model. If the
initial model is not good, the algorithm may be converge
slowly and return unexpected results.

The Teiresias algorithm’s idea [4] is completely different
from the three algorithms mentioned above. In the algorithm,
the motif is considered as a vocabulary. The small size words
are found firstly. Then, they are combined to be larger and
larger motif until we have the expected motif. This method
was proved to be very effective and could find the complex
motif. But, because it is special approach, the method is
difficult to improve and less common than other algorithms.

Another PDA-based approach, MITRA [5] checks on the
entire space of possible motifs, and store the data in a tree
structure. Furthermore, the algorithm uses artificial
intelligence approach in the searching process. In each of
iteration, the search space’s size decreases, so searching time
is reduced significantly. In addition, this algorithm can easily
to be parallelized for faster search.

Recently, some novel algorithms were proposed, such as
gPMS7 [6], PMS6 [7] also aiming to decrease the
computational cost. Other algorithms use parallel techniques
to get better performance, for examples, Christopher or Liu’s
algorithm [8], [9]. The parallel techniques often used in kind
of algorithms are MPI (Message Passing Interface) and GPU
(Graphics Processing Unit).

This paper presents our results in parallelization of the
algorithm proposed by Raphael: Uniform Projection [10], the

Trang Hong Son et al. 9

algorithm is a combination of Radom Projection algorithm
[11] and Expectation Maximization method. In addition, the
program was implemented on the Grid computing system in
order to achieve better performance.

The rest of paper was organized as follows. The section 2
was introduced briefly to finding motif problem. The
approaches to solve the problem effectively and quickly on a
grid computing environment presented in section 3. The
section 4 presents some experimental results, and the Section
5 for conclusions and future work.

Il. MOTIF FINDING PROBLEM

A. The Motif

A sequence motif is a nucleotide sequence or an amino acid
that contains (or can contain) a certain biological functions.

The finding motif problem can be defined as follows: Given
a set of DNA or protein sequences, find the subsequences
which are the same, or nearly the same (have a mutation in a
few nucleotides) occurring in all sequences (being implanted
in each of the individual sequence).

For example, there are five following sequences. The case
that there is not mutation in motif:
1. cctgatagacgctatctggctatccacgtacgtaggtcctctgtgega
atctatgcgtttccaaccat
2. agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaa
acgctcagaaccagaagtgc
3. aaacgtacgtgcaccctctttcttcgtggctctggeccaacgagggetg
atgtataagacgaaaatttt
4. agcctccgatgtaagtcatagctgtaactattacctgccacccctatt
acatcttacgtacgtataca
5. ctgttatacaacgcgtcatggcggggtatgecgttttggtcgtegtacg
ctcgatcgttaacgtacgtc

We found the motif in five sequences is: acgtacgt,

In case with two mutations, consider five DNA sequences
as follows:

1. cctgatagacgctatctggctatccaGgtacTtaggtcctectgtgega
atctatgcgtttccaaccat

2. agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaa
acgctcagaaccagaagtgc

3. aaacgtTAgtgcaccctctttcttegtggetectggecaacgagggcetyg
atgtataagacgaaaatttt

4. agcctccgatgtaagtcatagctgtaactattacctgccacccctatt
acatcttacgtCcAtataca

5. ctgttatacaacgcgtcatggcggggtatgecgttttggtcgtegtacg
ctcgatcgttaCegtacgGe

We found similar motifs as nucleotide sequences shown in

bold in the above.
The motif finding problem has some following difficulties:
- Do not know the pattern of motif.
- Do not know where motif appears in the sequence.
- The motif may differ from the sequences.

B. The alignment, profile matrix and consensus

Let a set S with t DNA sequences s;, S,, ..., . In each
sequence, randomly choose | nucleotide subsequences.
Aligning the subsequences, we obtain a matrix, called
“alignment matrix”. The alignment matrix includes t x |
elements. With the above example, we have:

...... aGgtacTt.........
...CcAtacgt.......

....... acgtTAgt........
...acgtCcAt...... ...
....... CcgtacgG........
The following alignment matrix includes 5 x 8 elements:

aGgtacTt
CcAtacgt
acgtTAgt
acgtCcAt
CcgtacgG
From the alignment matrix, we can derive the number of
occurrences of each nucleotide (or amino acid) in each
column. And the profile matrix will be created. Given
alignment matrix (t x 1), we obtain 4 x | profile matrix. For
example, the above alignment matrix, the profile matrix is:

A 30103110
C 24001400
G 01400031
T 00051014
With profile matrix, we can obtain a sequence, each

nucleotide in this sequence is chosen so that it matched the
highest number in the column of corresponding profile matrix.
This sequence is called Consensus. The Consensus score is
calculated by the following formula, where Pe is profile
matrix:

!

[¢}
Score=Q max Pe,
1ei£4 Y
J=l
For example, the Consensus of above profile matrix is
ACGTACGT,

In summary, with the subsequences were selected randomly
from five sequences in above template, the alignment, profile
matrix and Consensus as follows Table 1.

Table 1: Example for alignment, profile matrix and Consensus

G C

Aligment

Profile

HQOQp

Dloo v wQ QP
Qo> o rluu ¥aQ
HloooooHdHHEAaAHAa4d
DRk oR w300
Qrworarand
Hidrr oo 34343

Qlorr &> ol 0 Q0
Qloo ™ r|laa o

Consensus

From above definitions and concepts, the motif finding
problem can be stated as follows:

Given a set of t DNA or protein sequences, find a set of t
sequences have the length | (called I-mer), such that each I-
mer appear in a sequence, and Consensus of these sequences
have score is highest.

IIl. THE SOLUTION METHODS

Our research aims to parallelize Uniform Projection
method. The algorithm is combined of Random Projection and
Expectation maximization algorithm.

A. The Expectation Maximization algorithm

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 10

This algorithm is based on probabilistic model. It helps to
find the set of motif better than the original set only through
some iterations. The main idea of algorithm as follows:

With a set S of t positions, S = {s;, S, ..., S} is the input, by
using probabilistic model, after a few iterations, it will take
this position set into better state. Here, the paper uses s; as the
location of the subsequence in a sequence.

This algorithm has advantages is that it converges fast and
returns a set of motif location much better than the initial set.
However, it much depends on the initial set. This means that
the algorithm may be converge slowly, and return unexpected
results if initial set S is not good.

B. The Random Projection algorithm

As the mention above, Expectation Maximization (EM)
algorithm converges fast, and can find motif effectively, but it
depends a lot on the input set S. The Random Projection can
find a good initial set for the EM algorithm. The combination
of these two algorithms will improve the efficiency in motif
finding.

The algorithm assumes that I-mer could be a motif, if they
must be the same in at least k positions. The algorithm tries to
take out all I-mer which are the same at least k positions, and
hashes them into a bucket. The bucket is a set S of I-mer’s
positions in the sequences. The set S is used in the EM
algorithm. This algorithm could create a lot of good initial set
S for the EM algorithm. But, the creation of the entire space of
all projections can lead to excess. In addition, because the
computational time of a projection is very long, the
algorithm’s execution time increases significantly with a large
number of projections.

C. The Uniform Projection algorithm

The Random Projection algorithm is used to sample the
space of all projections. Each good projection passing the
threshold will produce an enriched bucket that is refined to
create the motif. However, the random sampling in the space
of all projections is not effective way. Compared with
Random Projection algorithm, the Uniform Projection
algorithm reduced from 20% to 50% of the projections, but it
does not affect the success rate of motif finding problem.

In this algorithm, instead of random sampling, it selects
projections for sampling. The projections P;, P,, ..., Py are
made many times, as follows:

- First, building the projections Py, P,, ...,

1-mer.

- Adding the projection Pyz+1, Pym1+2, .

P, ..., Pmz covering all the 2-mer.

- Continue until all j-mer are covered.

- In this process, a new projection Py ., is added when it is

distinguished from the Py, P,, ..., Pu.

Parameter j is not selected priority. Instead, the algorithm
selects m projections so that when m increases, all the j-mers
are covered.

Pwz1 covering all

Pum2 SO that P,

C. Parallelization of the Uniform Projection algorithm

With the problems needing big data, the computational cost
is usually very large. One of the effective approaches is
parallelization of the algorithm and implement on parallel or
distributed systems. The motif finding problem is one of kind
of those problems. The Uniform Projection algorithm was
described by the flowchart at Fig. 1.

As shown in the flowchart, there are two main works are
done in the algorithm:

- Create a set of projections. (Step 1)

- Refined the set S to be used in the EM algorithm. (Step

2)

BEEIH

DMNA/Protein /

|
e

The phases
are parallelized

Set S includes start
positions of the motif

EM algorrthm

Set &' includes start
positions of the motif

Projection algorrthm

select elements based on

the threshold
The set of motifs /
End]

Figure 1. Flowchart of sequence algorithm to find motif

Through testing in the first step, the algorithm does not
depend on the number of input data, and the process of finding
the projection is done relatively quickly. However, in step 2,
the time to refine the set S takes a long time. Meanwhile, with
a projection P;, there are countless set S must be refined. Thus,
the computational time of the problem depends entirely on the
refining process.

Besides, the finding solution of the problem from the
certain projection function P; is completely independent of the
other P;. As shown in Fig. 1, after the set of projection
functions P={P;} are refined, the new set S’ corresponding to
each projection function be created. The process of calculation
to find results for each projection function does not depend on

Trang Hong Son et al.

each other. Based on the characteristic, the Uniform Projection

algorithm could be parallelized for saving computational time.

The parallel model is presented in Fig. 2.

Data sets (sets of DNA/Protein sequences) are transmitted

to each computer (Node) at the initial time, and there is not the

11
L | d | 1process | 2 processes Ratios Performance
14 | 4 6(s) 3(9) 6/3=2 2/2=1
15 | 4 9(s) 5(s) 9/5=138 1.8/2=0.9
16 | 5 15 (s) 8(s) 15/8=1.87 | 1.87/2=0.935
1715 23(s) 12 (s) 23/12=1.92 | 1.92/2=0.96
18 |6 36 (s) 19 (s) 36/19=1.89 | 1.89/2=0.945

data transmission between the Nodes at the running time.
Besides, a set of projection function P = {Py, P,..., P,} are
divided to each Node. Suppose, there are m computers (m<n),
each Node is received n/m projection functions and execute

 —
P

\ 4

Set of
projections P

A 4

\ 4

Node m

MLDI

Table 1: Results in testing in parallel and sequential mode

Set of positions: S;’

Set of positions: S,’

Set of positions: S,

Figure 2. Parallel model of algorithm

them independently. After all tasks are finished, results are
transmitted to the Server. At this computer, final results will
be computed from the output data of the Nodes.

IV. EXPERIMENTAL RESULTS

The program was deployed on I0IT-HCM grid system at
Institute of Applied Mechanics and Informatics (IAMI),
Vietnam Academy of Science and Technology (Fig. 3) [12].
The data was downloaded from the Data Bank NCBI
(National Center for Biotechnology Information).

181z

HCMC Institute of Information Technology

| ogout
fﬂ Bioinformatics Grid Portal ke, G e 1

Figure 3. Grid Portal at IAMI

A. First data

The program was tested with the synthetic data:
@synthetic_05_500.fasta. Number of sequences t = 5, with

length n= 500 nucleotides, the projection size k=7. (I, d) pairs
were used: (14, 4), (15, 4), (16, 5), (17, 5), (18, 6).

The time in parallel mode (2 processes) was reduced nearly by
half compared with in sequential mode (1 process). Results
were shown in Table 1 and Fig. 4.

30 /
. /

20 /
s s

i
_—

5 —

Execution
time
(second)

=] process

——— 2 processes
10

(14,4) (15,4) (16,5) (17,5) (18,6)

(1, d) pairs

Figure 4. Testing with 1 and 2 processes

B. Second data

The program was tested with the yeast data:
@yeast_03_500.fasta. Number of sequences t = 3, with
length n= 500 nucleotides, the projection size k=7, motif
length 1=20, number of mutation d=4. The number of
processes was used: 2, 3, 6, 9, 12, 15, 30, 45, 60, 90. (Table 2).
Some figures of the program (Fig. 4 and Fig. 5) are showed in
the Appendix section.

International Journal of Computer Science and Telecommunications [Volume 4, Issue 1, January 2013] 12

Number of | Execution time Number of Execution time
process (second) process (second)
2 143 15 75
3 104 30 80
6 71 45 81
9 72 60 81
12 73 90 84

Table 2: Results in testing with the yeast data

V. CONCLUSIONS

The motif finding is one of the problems that need very
large execution time. Using the high-performance
environment to reduce computational time is an inevitable
solution. In our research works, the Uniform Projection
algorithm was parallelized and implemented on the Grid
computing system. It showed that while the accuracy of
algorithm was not changed, the execution time was reduced
significantly. In the future, we aims to continue improve and
apply the motif finding problem to solve other related
problems in bioinformatics.

REFERENCES

[1] Hertz GZ, Hartzell GW, Stormo GD: Identification of consensus
patterns in unaligned DNA sequences known to be functionally
related. Comput Appl Biosci, 1990, 6:81-92

[2] Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF,
Wootton JC: Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment. Science, 1993,
262:208-214.

[3] Bailey TL, Elkan C: Unsupervised learning of multiple motifs in
biopolymers using expectation maximization. Machine
Learning, 1995, 21:51-80.

[4] I. Rigoutsos and A. Floratos, Combinatorial Pattern Discovery
in Biological Sequences: The TEIRESIAS Algorithm.
Bioinformatics, vol.14, no.1, pp.55-67, 1998.

[5] E. Eskin and P.A. Pevzner. Finding Composite Regulatory
Patterns in DNA Sequences. Bioinformatics, vol.18, no.l,
pp.354-363, 2002.

[6] Hieu Dinh, Sanguthevar Rajasekaran, and Jaime Davila.
gPMST7: A fast algorithm for finding (I, d) — motifs in DNA and
protein sequences. PLoS One, 2012.

[7] Shibdas Bandyopadhyay, Sartaj Sahni, and Sanguthevar
Rajasekaran. PMS6: A fast algorithm for motif discovery. IEEE
2012.

[8] Christopher T. M., Jonathan G., Julian H. D., et al. Parallelizing
Tompa’s exact algorithm for finding short motifs in DNA.
PDPTA’ 11, USA, 2011.

[9] Yongchao Liu, Bertil S., Doulas L. M. An ultrafast scalable
many-core motif discovery algorithm for multiple GPUs. IEEE
IPDPS 2011.

[10] Benjamin Raphael, Lung-Tien Liu, George Varghese. A
Uniform Projection Method for Motif Discovery in DNA
Sequences. IEEE Transactions on Bioinformatics and
Computational Biology, Nov, 2004

[11] Jemery Buhler, Martin Tompa, Finding Motifs Using Random
Projections, Journal of computational biology, Volume 9,
Number, 2002.

[12] Tran Van Lang, Grid computing: building computing system
and deploying applications (in Vietnamese), Vietnam Education
Publishing House, 2008, 196p.

APPENDIX

The results in the testing with second data:

Thong tin cau hinh ban dau:

D P P P T Y

Ten File Trinh Iu = @yeast_50_208.faata

So Trinh Tu - 50

Chieu dai tren moi trinh tu= 802

Chisu dai cua Motif =15

S dot bien =4 N b

Chieu dai phep chieu =7 umber of process
Mue nouong =25

P

Sc bo xu 1y 1

5o ket qua = Toan bo

R L L T T ey S PP ST oY
F

ITong so tien trinh: 1

[Day 1a vien trinh 0 (mercury.icit-hem.ac.vn)
[Starting MF_FINDZR

Starting to generate trials

4 projection to cover all tuplea 1l

14 projection to cover all tuples 2

5& projection to cover all tuples 3

157 projecticn to cover all tuples 4

487 projecticn to cover all tupleas 5
1724 projection to cover all tuples &
[Take 2442 projection to cover all tuples

Truyen du lieu den cac may con:

Du lieu da truven xong. Dang cho nhan ket qua...
Fer qua thu 1:

Vi tri 18 tren trinh tu 1: CRRGGRITARGRARA
Vi tri 537 tren trish tu 2: AARGARTARAGRCAT
Vi tri 571 tren trioh tu 3 RARTARRTRARRARA
Vi tri 432 tren trinh tu 4&: LGATARCALAGCARL
Vi tri 237 tren trish tu 5: AAMGARCGRAGTARR
Vi tri 271 tren trimh tu 6: LICGARRRRAGRCAG
Vi tri 308 tren trinmh tu 7: LCGGGRRARRGRARE
Vi tri 236 tren trinh tu 8: AARRARARRRGRART
Vi tri 505 tren trinh tu 3: LIGGCRTARAGRARE
Vi tri 272 tren trinh tu 10: RARAGRAARRGTARA
Vi tri 126 tren trinh tu 11: RACTARRGRAGRTAR
Vi tri 758 tren trinh tu 12: RARRARMARRARARN
Vi tri 583 tren trinh tu 13: AATGACRARRTAATA
V1 tri 476 tren trinh tu 1d: TIRAGRARARRGRAMA
V1 tri &75 tren trinh tu 15: CATGCAACAAGRARL
Vi tri 711 tren trich tu 18: RARRARAARATAARA
[?i trl 172 tren trinh tu 17: AARRARARLARLARA
[7i el 192 teen teinh tu 183 AGAGATAACAGRARL
Vi tri 4l tren trinh tu 19: ATGECRARRACAARA
Vi tri 144 tren trimh tu 20: AGAEARTARGEATAR
Vi tri 236 trén trinh tu 21 ACAGGAAARTGAART
Vi tri 243 tren trioh tu 22: A

Vi tri 771 tren trimh tu 23:

Vi tri 747 tren trinh tu 24z

Vi tri 507
Vi tri 126
Vi tri 759
Vi tri 583

tren trioh tu 25:
tren trinh tu 26:
tren trirh tu 27:
tren trinh tu 28:

LACTARRGRAGRTRE
ARARRARRRRRRRARD

RATGACKRRATRAATR

Vi tri &7 tren trinh tu 29: TTARGRARRRGRARN
Vi tri 675 tren trinh tu 30: CATGCRACARGRARR
Vi tri 271 tren trinh tu 31: ATICCARRRAAGRCRG
Vi tri 302 tren trinh tu 32: ACGEGRARARGRARAL
V1 tri 236 tren trinh tu 353: AARRARAAARGRAART
V1 trl 505 tren trinh tu 3d: ATGCECATARAGRARL
Vi tri 272 tren trich tu 35: RARRGRARRAGTARA
[?i tri 711 tren trinh tu 36: AARRARAARATAARL
[7i el 172 tren LELBR Tu 37: ARRRARRARRRALARL
Vi tri 192 tren trinh tu 38: AGREATAACAGRARA
Vi tri 41 tren trinh tu 39: ATGECAARRACAARL
Vi tri 144 tren trinh tu 40: AGRGARTARGGATAA
Vi tri 236 tren trinh tu al: ACAGGRRRRIGRART
Vi tri 243 tren trimh tu 42: RARGOGRARAGRGRA
Vi tri 771 tren trinh tu 43:; AARGUGAARAGAGRA

Vi tri 747
Vi tri 507

tren trinh tu 44: GARTCRARRAGRGRE
tren trinh tu 45: RARG \BGRTGR

Vi tri 16 tren trich tu 46: CAAG GRARK
Vi tri 537 tren trinh tu 47: RARGARTARRGRCAT
Vi tri 571 tren trinh tu 48: RARTARATRRARARN
Vi tri 432 tren trinh tu 49: AGATARCARRGCARA
Vi tri 237 tren trinh tu 50 AARCARCGARGIARL Time
[Conzensusz: MAREARIARRCRARR o~
o
4-"’-‘
/'/'-‘

[TOTAL Mr_FINDER.... 2275.002ec IA’

Figure 4: Using 1 process

Trang Hong Son et al.

Thong tin cau hinh ban dau:

A N T T T ey

Ten File Trinh Tu = Qyeast_S0_808.faata

[Sc Trinh Tu =- 50

Chieu dai tren moi trinh tuw= 202

Chieu dai cua Motif =15

So dot bien =4

Chieu dai phep chieu 7 _— MNumber of process

25 ——

7 o —

5o ket gqua Toan bg—"
.,«-rr-‘;ip" awan

i

ong so tiem trinh __— Cluster mercury
—

v A

o la tien trinh 0 [(mercury.icit-hem.ac.

4 tien
Day la tien trinh 2 (earth.icit-hcm.ac.vn) _—— Cluster moon
Day la tien trinh 3 (earth.icit-hcm.ac.vn) —
Day la tien trinh 4 [moon.icit-hcom.ac.vn)
5
a

Day la tien trinh {=un.ioit=-hcm.ac.vm}
Day la tien trinh (moon. ioit-hom.ac.vn)

Starting MF_FINDER

|Starting to generate trials

4 projection to cover all toples 1

14 projectiocn te cover all tuples 2

56 projection to cover all tuples 3

157 projectien te cover 2ll tuples 4

87 projeccion to cover all tuples 5
1724 projection to cover all tuples &
Take 2442 projection to cover all tuples

Truyen du lieu den cac may cons

Truyen 348 Projection den tien trinh 1 {sun.icit-hom.ac.vn)
Truyen 342 Projection den tien trinh 2 (earth.icit-hcm.ac.wn)
Truyen 348 Projection den tien trinh 3 (earth.icit-hcm.ac.wn)
Truyen 342 Frojection den tien trinh 4 (meon.iocit=hom.ac.vm)
[Truyen 342 Projecticn den tien trinh § (sun.icit-hom.ac.vn)
Truyen 354 Projection den tien trimh & (moon.icit-hom.ac.vm)

iDu lieu da truyen xong. Dang cho nhan ket qua...
et qua thu 1:

Vi tri 15 CAAGGATTAAGAARA
vi tri 537 AARGARTARAGACAT
Vi trL 571 AAATARATAARAARR
Vi tri 432 AGATARCRAAGCARA
vi vri 237 AARGARCGAAGTARA
vi tri 271 ATCGARARRAGACAG
vi tri 308 ACGEGRARRAGRARR
vi tri 236 22

vi tri sos ATGGCATARAGRARR
Vi tri 272 AARAGAARAAGTARA
Vi tri 126 RACTRRRGRAGATRR
Vi tri 758 AARRRRRARARRARDL
Vi tri 583 RATGACRARATAATR
Vi tri 676 TTARG]

Vi tri &75 CATCCRACARGRARR
vi cri 711 ARARAARARATAAAR
vi tri 172 ARARAAAARERAARRL
vi tri 122 AGAGATAMCAGAARA
Vi tri 41 ATGECAARARACAARA
Vi tri 144 AGAGARTARGGATAR
Vi tri 236 ACAGGRARATGARAT
Vi tri 243 AARGCGARRAGAGAR
vi tri 771 AAAGCGARRAGAGAR
Vi tri 747 GAARTCRARRAGAGRR
vi tri 507 AARGCARGRAGATGR
vi tri 126 RACTAAAGRAGATAR
Vi tri 758 RARRRRRARARARRR
Vi tri 593 RATGRCRARATRATR
Vi tri 676 ARGRARAAGRARE
Vi tri £75 CATGCRACAMGRARA
vi tri 271 ATCGARRARAGRCAG
vi tri z0e ACGEGARARAGRARL
Vi tri 236 2 2
Vi tri 505 ATGGCATARAGRARR
Vi cei 272 AFRARGAIAAICTARR
vi tei 711 AAMAARAAAATAARA
vi tri 172

Vi tri 122 AGAGATARCAGAARA
Vi tri 4l ATGGECRARRACARRR
Vi tri 144 AGAGARTARGGATAR
Vi tri 236 ACAGGAARATGARAT
Vi tri 243 AARGCGARRAGAGAR
Vi tri 771 RARGCGRAARAGAGAR
vi tri 747 GARTCRARRAGRGRR
vi tri 507 RARGCARGRAGATGR
Vi tri 16 CARGGLTTAAGRARR
Vi tri 537 AARGRATARAGRCAT
Vi tri 571 ARRTARRTRARRARR
vi tri 432 AGATARCARAGCARR
vi cri 237 ARRGARCGRAGTARR
consensus: ARACARRARRGRRAR _- Time
[TOTAL MF_FINDER.... 545.002ec |

Figure 5: Using 7 process (Run on 2 clusters)

