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Abstract—The motif finding problem is one of high complex 

problems, as well as needs much time. Therefore, the accuracy 

and time consuming are two important goals in this problem. 

Many algorithms were proposed for solving the problem. 

However, execution time is still a challenge needing more 

research. In this paper, we proposed a parallel solution based on 

improving the Uniform Projection algorithm. Moreover, we 

implemented the program on the Grid computing environment to 

get better performance. 

 

Index Terms—Biology Sequence, Finding Motif and Grid 

Computing 
 

I. INTRODUCTION 

HE number of DNA and protein sequences is increasingly 

being uncovered. In this sequence, the number of 
nucleotides or amino acids is usually very large. Thus, we 

need to know which the subsequences that are the same or 

nearly the same in the biological sequences. This is a problem 

with high complexity and spending a lot of processor time. 

The subsequence is known as a motif. Motif finding problem 

is often used for finding transcription factor binding sites 

which are helpful to decipher the regulation of gene 

expression. 

The problem is high complexity because we could not get a 

set of template motifs, as well as not know its position in the 

sequences. There were many algorithms proposed in the past. 

Each algorithm has its own advantages and disadvantages. In 

general, the motif finding algorithms are based on two general 

approaches: using the Sample Driven Approach – SDA 

method (Consensus [1], Gibbs sampling [2], MEME [3]) to 

check on a set of given sequences; and using the Pattern 

Driven Approach – PDA method (Teiresias algorithm [4], 
MITRA [5]) to draw the motif in the space that contains the 

result set. 

Among the existing algorithms, the Brute Force is the 

simplest algorithm. The algorithm’s idea is using an 

exhaustive search that always finds the best results. However, 

the execution time required too much. It is not suitable for 

long sequences or the large number of sequences. In addition, 

there are some following finding motif algorithms: 

The Consensus algorithms, proposed by Hertz [1], based on 

the Brute Force method, but it removes the cases which are 

predicted as not well one. As a result, the search time is 

greatly reduced. The weakness of the algorithm is that when it 

removes search space too early, some good results could be 

missed, leading to local interference. 

The Gibbs Sampling [2] and MEME algorithm [3] based on 

probabilistic models. Those approaches start with a certain 

probability distribution. After some iteration, they use the 

criterions of probability so that the probability model 

converged to a better state. The algorithms are said to have 

less "interference" than the Consensus algorithm. Especially, 
the speed of algorithms is faster and it could search the more 

complex motif than the Consensus algorithm. The downside of 

this algorithm is the dependence on the starting model. If the 

initial model is not good, the algorithm may be converge 

slowly and return unexpected results. 

The Teiresias algorithm’s idea [4] is completely different 

from the three algorithms mentioned above. In the algorithm, 

the motif is considered as a vocabulary. The small size words 

are found firstly. Then, they are combined to be larger and 

larger motif until we have the expected motif. This method 

was proved to be very effective and could find the complex 
motif. But, because it is special approach, the method is 

difficult to improve and less common than other algorithms. 

Another PDA-based approach, MITRA [5] checks on the 

entire space of possible motifs, and store the data in a tree 

structure. Furthermore, the algorithm uses artificial 

intelligence approach in the searching process. In each of 

iteration, the search space’s size decreases, so searching time 

is reduced significantly. In addition, this algorithm can easily 

to be parallelized for faster search. 

Recently, some novel algorithms were proposed, such as 

qPMS7 [6], PMS6 [7] also aiming to decrease the 
computational cost. Other algorithms use parallel techniques 

to get better performance, for examples, Christopher or Liu’s 

algorithm [8], [9]. The parallel techniques often used in kind 

of algorithms are MPI (Message Passing Interface) and GPU 

(Graphics Processing Unit). 

This paper presents our results in parallelization of the 

algorithm proposed by Raphael: Uniform Projection [10], the 
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algorithm is a combination of Radom Projection algorithm 

[11] and Expectation Maximization method. In addition, the 

program was implemented on the Grid computing system in 

order to achieve better performance. 

The rest of paper was organized as follows. The section 2 

was introduced briefly to finding motif problem. The 
approaches to solve the problem effectively and quickly on a 

grid computing environment presented in section 3. The 

section 4 presents some experimental results, and the Section 

5 for conclusions and future work. 

II.   MOTIF FINDING PROBLEM 

A. The Motif 

A sequence motif is a nucleotide sequence or an amino acid 
that contains (or can contain) a certain biological functions. 

The finding motif problem can be defined as follows: Given 

a set of DNA or protein sequences, find the subsequences 

which are the same, or nearly the same (have a mutation in a 

few nucleotides) occurring in all sequences (being implanted 

in each of the individual sequence). 

For example, there are five following sequences. The case 
that there is not mutation in motif: 

1. cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcga

atctatgcgtttccaaccat 

2. agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaa

acgctcagaaccagaagtgc 

3. aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctg

atgtataagacgaaaatttt 

4. agcctccgatgtaagtcatagctgtaactattacctgccacccctatt

acatcttacgtacgtataca 

5. ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacg

ctcgatcgttaacgtacgtc 

We found the motif in five sequences is: acgtacgt.  

In case with two mutations, consider five DNA sequences 

as follows: 

1. cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcga

atctatgcgtttccaaccat 

2. agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaa

acgctcagaaccagaagtgc 

3. aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctg

atgtataagacgaaaatttt 

4. agcctccgatgtaagtcatagctgtaactattacctgccacccctatt

acatcttacgtCcAtataca 

5. ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacg

ctcgatcgttaCcgtacgGc 

We found similar motifs as nucleotide sequences shown in 

bold in the above. 

The motif finding problem has some following difficulties: 

- Do not know the pattern of motif. 

- Do not know where motif appears in the sequence. 

- The motif may differ from the sequences. 

B. The alignment, profile matrix and consensus 

Let a set S with t DNA sequences s1, s2, …, st. In each 

sequence, randomly choose l nucleotide subsequences. 

Aligning the subsequences, we obtain a matrix, called 

“alignment matrix”. The alignment matrix includes t x l 
elements. With the above example, we have: 

......aGgtacTt......... 

...CcAtacgt............ 

.......acgtTAgt........ 

...acgtCcAt............ 

.......CcgtacgG........ 

The following alignment matrix includes 5 x 8 elements: 

  aGgtacTt 

  CcAtacgt 

  acgtTAgt 

  acgtCcAt 

  CcgtacgG 

From the alignment matrix, we can derive the number of 
occurrences of each nucleotide (or amino acid) in each 

column. And the profile matrix will be created. Given 

alignment matrix (t x l), we obtain 4 x l profile matrix. For 

example, the above alignment matrix, the profile matrix is: 

  A   3 0 1 0 3 1 1 0 

  C  2 4 0 0 1 4 0 0 

  G  0 1 4 0 0 0 3 1 

  T  0 0 0 5 1 0 1 4 

With profile matrix, we can obtain a sequence, each 
nucleotide in this sequence is chosen so that it matched the 

highest number in the column of corresponding profile matrix. 

This sequence is called Consensus. The Consensus score is 

calculated by the following formula, where Pe is profile 

matrix: 

Score = max
1 £ i  £ 4

Peij
j=1

l

å  

For example, the Consensus of above profile matrix is 
ACGTACGT. 

In summary, with the subsequences were selected randomly 

from five sequences in above template, the alignment, profile 

matrix and Consensus as follows Table 1. 

 

Table 1: Example for alignment, profile matrix and Consensus 

Aligment 

A G g T a C T T 

C c A T a c G T 

A c g T T A G T 

A c g T C c A T 

C c g T a c g G 

Profile 

A 3 0 1 0 3 1 1 0 

C 2 4 0 0 1 4 0 0 

G 0 1 4 0 0 0 3 1 

T 0 0 0 5 1 0 1 4 

Consensus A C G T A C G T 

 

From above definitions and concepts, the motif finding 

problem can be stated as follows: 

Given a set of t DNA or protein sequences, find a set of t 

sequences have the length l (called l-mer), such that each l-
mer appear in a sequence, and Consensus of these sequences 

have score is highest. 

III.   THE SOLUTION METHODS 

Our research aims to parallelize Uniform Projection 

method. The algorithm is combined of Random Projection and 

Expectation maximization algorithm. 

A. The Expectation Maximization algorithm 
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This algorithm is based on probabilistic model. It helps to 

find the set of motif better than the original set only through 

some iterations. The main idea of algorithm as follows: 

With a set S of t positions, S = {s1, s2, ..., st} is the input, by 

using probabilistic model, after a few iterations, it will take 

this position set into better state. Here, the paper uses si as the 
location of the subsequence in a sequence.  

This algorithm has advantages is that it converges fast and 

returns a set of motif location much better than the initial set. 

However, it much depends on the initial set. This means that 

the algorithm may be converge slowly, and return unexpected 

results if initial set S is not good. 

B. The Random Projection algorithm 

As the mention above, Expectation Maximization (EM) 
algorithm converges fast, and can find motif effectively, but it 

depends a lot on the input set S. The Random Projection can 

find a good initial set for the EM algorithm. The combination 

of these two algorithms will improve the efficiency in motif 

finding. 

The algorithm assumes that l-mer could be a motif, if they 
must be the same in at least k positions. The algorithm tries to 

take out all l-mer which are the same at least k positions, and 

hashes them into a bucket. The bucket is a set S of l-mer’s  

positions in the sequences. The set S is used in the EM 

algorithm. This algorithm could create a lot of good initial set 

S for the EM algorithm. But, the creation of the entire space of 

all projections can lead to excess. In addition, because the 

computational time of a projection is very long, the 

algorithm’s execution time increases significantly with a large 

number of projections. 

C. The Uniform Projection algorithm 

The Random Projection algorithm is used to sample the 

space of all projections. Each good projection passing the 

threshold will produce an enriched bucket that is refined to 

create the motif. However, the random sampling in the space 

of all projections is not effective way. Compared with 

Random Projection algorithm, the Uniform Projection 

algorithm reduced from 20% to 50% of the projections, but it 

does not affect the success rate of motif finding problem. 

In this algorithm, instead of random sampling, it selects 

projections for sampling. The projections P1, P2, ..., PN are 

made many times, as follows: 

- First, building the projections P1, P2, ..., PM1 covering all 

1-mer. 

- Adding the projection PM1+1, PM1 + 2, ..., PM2 so that P1, 

P2, ..., PM2 covering all the 2-mer. 

- Continue until all j-mer are covered. 

- In this process, a new projection PM +1 is added when it is 

distinguished from the P1, P2, ..., PM. 

Parameter j is not selected priority. Instead, the algorithm 
selects m projections so that when m increases, all the j-mers 

are covered. 

C. Parallelization of the Uniform Projection algorithm 

With the problems needing big data, the computational cost 

is usually very large. One of the effective approaches is 

parallelization of the algorithm and implement on parallel or 

distributed systems. The motif finding problem is one of kind 

of those problems. The Uniform Projection algorithm was 

described by the flowchart at Fig. 1. 
As shown in the flowchart, there are two main works are 

done in the algorithm: 

- Create a set of projections. (Step 1) 

- Refined the set S to be used in the EM algorithm. (Step 

2) 

 

 
 

Figure 1. Flowchart of sequence algorithm to find motif 

 

Through testing in the first step, the algorithm does not 

depend on the number of input data, and the process of finding 

the projection is done relatively quickly. However, in step 2, 

the time to refine the set S takes a long time. Meanwhile, with 

a projection Pi, there are countless set S must be refined. Thus, 
the computational time of the problem depends entirely on the 

refining process. 

Besides, the finding solution of the problem from the 

certain projection function Pi is completely independent of the 

other Pi. As shown in Fig. 1, after the set of projection 

functions P={Pi} are refined, the new set S’ corresponding to 
each projection function be created. The process of calculation 

to find results for each projection function does not depend on 
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each other. Based on the characteristic, the Uniform Projection 

algorithm could be parallelized for saving computational time. 

The parallel model is presented in Fig. 2. 

Data sets (sets of DNA/Protein sequences) are transmitted 

to each computer (Node) at the initial time, and there is not the 

data transmission between the Nodes at the running time. 

Besides, a set of projection function P = {P1, P2,..., Pn} are 

divided to each Node. Suppose, there are m computers (m<n), 

each Node is received n/m projection functions and execute  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

them independently. After all tasks are finished, results are 

transmitted to the Server. At this computer, final results will 

be computed from the output data of the Nodes. 

IV.   EXPERIMENTAL RESULTS 

The program was deployed on IOIT-HCM grid system at 

Institute of Applied Mechanics and Informatics (IAMI), 

Vietnam Academy of Science and Technology (Fig. 3) [12]. 
The data was downloaded from the Data Bank NCBI 

(National Center for Biotechnology Information).  

 

 
 

Figure 3. Grid Portal at IAMI 

A. First data 

The program was tested with the synthetic data: 

@synthetic_05_500.fasta. Number of sequences t = 5, with  

L d 1 process  2 processes Ratios Performance 

14 4 6 (s) 3 (s) 6/3 = 2 2/2 = 1 

15 4 9 (s) 5 (s) 9/5 = 1.8 1.8/2 = 0.9 

16 5 15 (s) 8 (s) 15/8 = 1.87 1.87/2 = 0.935 

17 5 23 (s) 12 (s) 23/12 = 1.92 1.92/2 = 0.96 

18 6 36 (s) 19 (s) 36/19 = 1.89 1.89/2 = 0.945 
 

Table 1: Results in testing in parallel and sequential mode 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

length n= 500 nucleotides, the projection size k=7. (l, d) pairs 

were used: (14, 4), (15, 4), (16, 5), (17, 5), (18, 6). 

The time in parallel mode (2 processes) was reduced nearly by 

half compared with in sequential mode (1 process). Results 

were shown in Table 1 and Fig. 4. 

 

 
Figure 4. Testing with 1 and 2 processes 

 

B. Second data 

The program was tested with the yeast data: 

@yeast_03_500.fasta. Number of sequences t = 3, with 

length n= 500 nucleotides, the projection size k=7, motif 

length l=20, number of mutation d=4. The number of 

processes was used: 2, 3, 6, 9, 12, 15, 30, 45, 60, 90. (Table 2). 
Some figures of the program (Fig. 4 and Fig. 5) are showed in 

the Appendix section. 

Figure  2. Parallel model of algorithm 
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Number of 

process 

Execution time 

(second) 

Number of 

process 

Execution time 

(second) 

2 143 15 75 

3 104 30 80 

6 71 45 81 

9 72 60 81 

12 73 90 84 

 

Table 2: Results in testing with the yeast data 

 

V.    CONCLUSIONS 

The motif finding is one of the problems that need very 
large execution time. Using the high-performance 

environment to reduce computational time is an inevitable 

solution. In our research works, the Uniform Projection 

algorithm was parallelized and implemented on the Grid 

computing system. It showed that while the accuracy of 

algorithm was not changed, the execution time was reduced 

significantly. In the future, we aims to continue improve and 

apply the motif finding problem to solve other related 

problems in bioinformatics. 
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APPENDIX 

The results in the testing with second data: 

 

 
 

Figure 4: Using 1 process 
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Figure 5: Using 7 process (Run on 2 clusters) 

 


