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Abstract—This paper proposes for safety-petri nets an 

algorithm for reducing on the fly a Maximality-based Labeled 

Transition Systems via partial order technique, in which made 

possible the consideration of the branches, therefore the reduction 

is important. The reduction graph (Maximality-based Step 

Graph) is a complete graph preserving the general properties 

(deadlock states and liveness). 

 

Index Terms—Formal Method, Petri Nets, Partial Order 

Semantics, Maximality Semantics and Maximality-Based Labeled 

Transitions Systems 

 

I. INTRODUCTION 

HE state space  generation is the first step of verification 

methods for concurrent systems. This paper contributes to 

the resolution of the state space combinatorial explosion 

problem. More particularly, our interest concerns the state 

space explosion due to the representation of parallelism by the 

interleaving execution of concurrent actions, which generates 

several execution sequences starting from the same state and 

finishing in another one, where the order of execution is 

arbitrary. Partial order techniques seek to eliminate 

superfluous interleaving while being based on the 

independency relations directly calculated from the formal 

specification of the system to analyze, e.g. in Petri net of     

Fig. 1 (a), we have the independency relations  as ι={(a,b)}.  

In general two strategies may be distinguished: the first one 

is based on the elimination of interleaving and the second one 

is based on the covering steps. The various techniques of the 

first strategy try to obtain a sub-graph of the state space, 

containing less possible equivalent sequences [1], [2], [3]. This 

approach was generalized in [4]-[7], which revealed the 

concepts of persistent sets and sleep sets. Their principal 

weakness is the indeterminism of the obtained result, where 

several sub-graphs may be generated for the same state space 

[8] (Fig. 1 (c)). The second  approach was proposed in [9], 

[10], [11], in which, we regroup independent events in only  
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one step (Fig. 1 (d)). The built graph is referred as Covering 

Step Graph (CSG) [10], which is a complete graph. Deadlock 

and liveness properties are preserved; however, several 

versions were proposed to preserve observational equivalence 

[10], and failure semantics [12]. 

In the both strategies, the calculated independency relation 

is structural. Consequently, we can build and on the fly states 

graph without superfluous interleaving, thus, this superfluous 

was detected previously.  

 

 
 

Unfortunately, the partial order approaches cannot exploit 

all the independency relations. Therefore, there are cases 

where it is impossible to take independent transitions in the 

same step (or to eliminate some equivalent sequences) to the 

risk to lose deadlock preservation. Among these cases, one can 

quote differed conflict (see Fig. 2) where its strong presence 

decreases the reduction ratio. Indeed, branches are not 

considered any more in the possible reductions. 

In this paper, we propose for safety-Petri nets a reduction 

method modulo partial order technique which use the 

Maximality-based Labeled Transitions Systems model 

(MLTS) [13], [14] as states graph model. We prove that it 

possible to answer the limit quoted above. Note that the MLTS 

model has been used in work relating to the specification and 

the verification of concurrent systems [15]-[25]. 
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Figure 1. Transition Systems of the behavior expression a|||b 
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The MLTS model can be used as a semantic representation 

of systems behaviors. Hence, various specification models may 

be used (RdP [26], CCS [27], LOTOS[28],. . . ); for that, it is 

enough to define semantics in MLTS term for each one.  

Let us take for example the MLTS of Fig. 3 (a) representing 

the behavior of Fig.2.(a). In the initial state, no action is in 

execution. Transition t1 (resp t2) represents the beginning of 

execution (identified by event x (resp y)) of the action a (resp 

b). In state 1 (resp 2), action a (resp b) is potentially in 

execution, this is represented respectively by the events x and y 

known as maximal in this state. In state 2, the occurrence of c 

is conditioned by the termination of b, which is translated by 

the presence of the event y on the level of the transition t5; 

therefore z is the only maximal event in state 4. In state 3, 

events x and y are maximal, i.e. in this state the corresponding 

actions (a and b) can be in execution. For more detail of the 

MLTS model [14]. 

In this paper, we prove that reducing state graph within 

differed conflict is possible through maximal events concept.  

e.g., Fig. 3(a) may be reduced, as a result, we obtain the MLTS 

represented by Fig. 3(b).  

The paper is organized as follows. Section 2 presents 

preliminaries definitions. In Section 3, we present reduction of 

MLTS modulo partial order technique. On the fly maximal 

step graph generation algorithm is presented in Section 4. In 

section 5, we present a brief descript of the implementation of 

our technique and we discuss the obtained results. The paper is 

enclosed by conclusion.  

 

 

II. PRELIMINARIES 

We briefly recall the definitions of some basic concepts 

necessary in the following sections. 

A. Petri  Nets Related Definitions  

• A Petri net is a tuple (S, T,W) where S is the set of places, T 
is the set of transitions such that S∩T=Ø, and W:((S×T) 
∪  (T×S))→N={0,1,2,...} is the weight function. 

Graphically, transitions of T are represented by rectangles, 

places of S by circles and weight function by arrows 

associated with their weights. We suppose that all nets are 

finite, i.e. |S∪ T|∈N. 

• For TSx ∪∈ , the pre-set 
●
x is defined by 

{ }0),( ≠∪∈=• xyWTSyx  and the post-set x
● 
is 

defined by { }0),( ≠∪∈=• yxWTSyx . 

• The marking of a Petri net (S,T,W) is defined as a function 
M:S→N. A marking is generally represented graphically 

by putting tokens in places. 

• Safety-Petri net is a Petri net (S,T,W) such that for any s of 
S: M(s)≤1. 

• The transition rule stipulates that a transition t is enabled by 
M iff M(s)≥W(s,t) for all s∈S. The firing of a transition t 
will produce a new marking M’ defined by M’(s)=M’(s)-

W(s,t)+W(t,s) for all s∈S. The occurrence of t is denoted 
by M[t>M’. 

• Two transitions t1 and t2 (not necessarily distinct) are 
concurrently enabled by a marking M iff M(s)≥ 

W(s,t1)+W(s,t2) for all s∈S. 
• A marked Petri net (S,T,W, M0) is a Petri net (S,T,W) with 

an initial marking M0. 

• An alphabet A is a finite set; we suppose that Α∉τ  

(τ will indicate invisible action, or silent action). 
• The labeling of a Petri net N=(S,T,W) is a function 

{ }τλ ∪Α→T: . If Α∈)(tλ then t is said to be 

observable or external; at the opposite, t is silent or 

internal. 

• Σ=(S,T,W, M0,λ) is a labeled system iff (S,T,W, M0)is a 

marked Petri net and λ is a labeling function of (S,T,W). 

• An action Α∈a of a system Σ=(S,T,W, M0,λ) is auto-

concurrent in a marking M iff M concurrently enables two 

observable transitions t1 and t2 (not necessarily distinct) 

such that λ (t1)= λ (t2)=a. 

• A sequence σ=M0t1M1t2... is an occurrence sequence iff Mi-

1[ti>Mi for 1≤i. A sequence t1t2... is a transition sequence 

starting with M iff there is an occurrence sequence 

M0t1M1t2.... If a finite sequence t1t2...tn leads from M to 

M’, we write M[t1t2...tn>M’. The set of reachable markings 

of a marked Petri net (S,T,W,M0) is defined as [M0>={M | 

∃ t1t2...tn : M0[t1t2...tn>M}. 

B. Maximality-based labeled transition systems [13], [14] 

1) Definition of MLTS 

Let M be a countable set of event names, a maximality-

based labeled transition system of support M is a tuple 

(Ω,λ,µ,ξ,ψ) with: 

1. Ω =<S,T,α,β,s0> is a transition system such that: 

o S is the set of states in which the system can be found, 

this set can be finite or infinite. 

Figure 3. MLTSs 
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o T is the set of transitions indicating state switch that 

the system can achieve, this set can be finite or 

infinite. 

o α and β are two applications of T in S such that for all 

transition t we have: α (t) is the origin of the 

transition and β (t) its goal.  

o S0 is the initial state of the transition system Ω. 

2. (Ω,λ) is a transition system labeled by the function λ on an 

alphabet Act called support of (Ω, λ). In the other word 

λ :T→Act. 

3. ψ : S→2M  is a function which associates to each state the 

finite set of maximal event names present in this state. 

4. µ :T→ is a function which associates to each transition the 

finite set of event names corresponding to actions that have 

already begun their execution and the end of their 

executions enables this transition. 

5. ξ:T → M is a function which associates to each transition the 

event name identifying its occurrence. 

Such that ψ (s0)=Ø and for all transition t, µ (t) 
⊆  ψ (α (t)), ξ 

(t)
 
∉  ψ (α (t))- µ(t) and ψ (β (t))= (ψ (α (t))- µ (t))

 
∪ { ξ (t)}.  

 

2) α−equivalent relation  

The purpose of this relation, it’s to put in correspondence 

MLTSs describing the same behavior of which the only 

difference resides in the choice of event names. For example, 

both MLTSs of Fig. 4 describes the same behavior (the 

parallel execution of actions a and b), we can obtain the 

MLTS of Fig. 4(a) from that of Fig. 4(b) by substituting event 

names e by x and event name z by y.  

Définition 2.1 “α-equivalent“: Let =α be the smallest relation 

over MLTSs such as mlts1 =α mlts2  if and only if : 

� mlts1 ≡~ mlts2 (Isomorphism). or 

� mlts1
ii xiIi M a∑∈

≅ Ti, mlts2
jj xjJj M a∑ ∈

≅ Tj, and 

� ψ (S)= ψ (T), and there is a bijection f  : I→J such as, for 

any i∈I, M = M f(i), ai=a
 
f(i), and 

� )(ifi xx =  and Ti=αTf(i), 

� )(ψ)( iif Tx ∉ and Ti[ )( ifx / ix ]=αTf(i). 

 

 

 

 

 

 

 

 

 

 

 

 

A reduction consists to eliminate the redundant via certain 

relations by preserving properties to be checked. In this 

section, we will use the α-relation as a criterion of redundant 

behaviors. As illustration, the MLTS of Fig.5.(a) represents the 

behavior in which we have two sub-MLTSs S1 and S2 of 

Fig.5.(a) are α−equivalent. Indeed, it exists two functions of 

substitution σ1={x/x,y/y,z/z} and σ2={x/v,y/u,z/e}  such as 
S1σ1≅  S2σ2. To remove such a redundancy, we must, initially, 
apply the substitution function σ1∪ σ2 to the MLTS of Fig. 

5(a), group the start stats of S1and S2, and then, we remove 

S1σ1 or S2σ2. As a result we obtain the MLTS of Fig. 5(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Safety-Petri Nets and Maximality Semantics 

In [21], we have maximality semantics for Petri nets, the α-

equivalent over Petri nets is not solved (for safety-Petri nets is 

trivial) until now, unfortunately this equivalent is important to 

build a MSG. Therefore, the building of MSG is restricted to 

Safty-Petri nets. In the following, we propose a restriction of 

[21] for safety-Petri nets. 

Let (S,T,W) be a safety-Petri net with a marking M: 

1. The set of maximal event names in M is the set of all event 

names identifying bound tokens in the marking M. 

Formally, the function ψ will be used to calculate this set, 

it can be defined as ψ (M)=
 imsiSs xs,...,1=∈ ∪∪  such that 

M(s)=(FT,BT) with BT={(t,x)}. 

2. Let N⊂M be a non-empty finite set of event names, 
makefree(N,M) is defined recursively by: 

o makefree({x1,x2,…,xn},M)=makefree({x2,…,xn}, 

makefree({x1},M)). 

o makefree({x},M)=M’ such that for all s∈S, if 
M(s)=(FT,BT) then: 

� If there is (t,x)=BT then M’(s) = (FT+1, 

Ø) (Conversion of BT bound tokens 

identified by the event name x to free 

tokens). 

� Otherwise, M’(s)=M(s). 

3. Let t be a transition of T; t is said to be enabled by the 

marking M iff ||M(s)| ≥W(s,t) for all s∈S. The set of all 
transitions enabled by the marking M will be noted 

enabled(M). 

∅ 
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Figure 5. Reduction modulo α-equivalent 
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4. The marking M is said to be minimal for the firing of the 

transition t iff |M(s)|=W(s,t) for all s∈S. 
5. Let M1 and M2 be two markings of the Petri net (S,T,W). 

M1€M2 iff ∀ s∈S, if M1(s) = (FT1,BT1) and 

M2(s)=(FT2,BT2) then FT1 ≤FT2 and BT1≤BT2. 

6. Let M1 and M2 be two markings of the Petri net (S,T,W) such 

that M1€M2. The difference M2-M1 is a marking M3 (M2-

M1=M3) such that for all s∈S, if M1(s)=(FT1,BT1) and 

M2(s)=(FT2,BT2) then M3(s)= (FT3,BT3) with FT3=FT2-FT1 

and if (t,x)
 
∈BT1 and  (t,x) ∈BT2  then (t,x) ∉BT3. 

7. Min(M,t)={M’|M’≤M} and M’is minimal for the firing of t. 

8. Let M be a set. The function get:2M -{Ø}→M is a function 

which satisfies get(E)
 
∈E for any E∈2M -{Ø}. 

9. Given a marking M, a transition t and an event name x∉  ψ 
(M), occur(t,x,M)=M’ such that for all s∈S, if 
M(s)=(FT,BT) then M’(s)=(FT,BT’) with 

BT’=BT∪ {W(t,s),t,x)} if W(t,s)≠0 and BT’=BT 

otherwise. Hence, M’ is the resultant marking from the 

addition of tokens bound to t to the marking M. 

Let Σ=(S,T,W, M0,λ) be a labeled system. The marking 

graph Mg labeled by λ associated to Σ is a graph in which the 

states are defined by all reachable markings from the initial 

marking M0 and the transitions between states are labeled 

according to the derivation rule of Definition2.2. 

 

Definition 2.2 Let M be a reachable marking of the marked 

Petri net (S,T,W,M0,λ), t∈enabled(M) then for all 

M’’∈Min(M,t), E= ψ (M’’) and M’’’=makefree(E,M-M’’); the 

following derivation is possible: 'MM
xE t

→  (also denoted by 

(M,Etx,M’)) such that 

1. E is the set of maximal event names associated with 

actions in which the end is required for the launch of 

the action related to the firing of t. 

2. x = get(M- ψ (M’’’)) and 

3. M’ = occur(t,x,M’’’). 

 

1. Proposition 2.1 Let Σ=(S,T,W, M0,λ) be a labeled 

system and Mg its marking graph built according to 

Definition2.2, then the structure Σmlts=(Mg,λ,µ,ξ,ψ) is 

a maximality-based labeled transition system with:  

4. Mg=<Sg,Tg,α,β,M0>  is the marking graph associated 

to Σ such that 

o Sg is the set of states defined by the set of 

reachable markings from the initial marking 

M0. 

o Tg={(M,Etx,M’)} such that M,M’∈Sg and (M, 
Etx,M’) is a valid derivation. 

o For (M,Etx,M’)∈Tg we have α ((M,Etx,M’))=M 
and β ((M, Etx,M’))=M’. 

5. ψ : Sg→2M is defined as of MLTS. 

6. For d=(M, Etx,M’) 
∈Tg we put λ (d)= λ (t), µ(d)=E and 

ξ (d)=x. 

III. REDUCTION OF MLTS MODULO ORDER PARTIAL  

In [23], we propose reduction technique of MLTS modulo 

order partial semantics, it is a generic solution (independent to 

any specification model), in which 1) we build, under certain 

conditions, a step allowing directly reaching the final state 

which would have been reached by each interlaced sequence 

2) we eliminate the superfluous interleaving, in the other word, 

we use together the two strategies. The Fig.6 shows the 

obtained benefit in the case of the derivation of three parallel 

actions a, b and c in the presence of differed conflict. The 

graph of Fig.6.(b) is the step graph of the MLTS of Fig.6.(a) in 

which all interleaving runs were converted into two steps (p1 

and p2); the first step expresses the beginning of execution of c 

and the other expresses the parallel execution of a and b. The 

built step graph covers the initial MLTS via the 

Mazurckiewicz’s traces equivalence [29]. It will prove that our 

approach preserves deadlock states and liveness property. On 

the fly generation of MSG is possible. 

The following definitions introduce the step concept (known 

as maximal step): 

 

2. Events sequence :< _ > is a function inductively 

defined by: 

o < ε >=def ε 

o <M ax.p >=def x. < p > 

 

3. Support of a transitions sequence :  ||  || is a function is 

defined as follows: 

o || ε || =def ε 

o ||u.w|| =def {u} ∪ ||w|| 

 

4. Extension of Mazurckiewicz’s trace to MLTS :         

Let mlts =< S, s0, T, ψ, µ, ξ > be a MLTS. U.Max.N 

by.V and U.Nby.Max.V are two paths of mlts. Let ≈ be 

the relation defined on T
*
× T

*
 by < U.Max.Nby.V >≈< 

U.Nby.Max.V > if x∉N and y∉M, by construction, ≈ 
is reflexive and symmetric. The trace equivalence ≡ 

can be defined by the transitive closing of the relation 

≈. Equivalence classes of ≡ are called traces. [< w >] 

the trace generated by w. 

 

5. Maximal path : Let mlts=< S, s0, T, ψ, µ, ξ > be a 

MLTS and w ∈ T ∗, w is a maximal path 

',', ssSss
w

⇒∈∃ :  ||<w>|| ⊆  ψ(s') and  ( →/'s ) 

Tt ∈∃∨ ( : wt is not a maximal path) 

 

6. Minimal path :  Let Cs be a maximal paths set 

associated to the state s. Min(Cs)= 

{c\ ><⊂><∈∃/ ccCc s ':' }. 

7. Maximal paths equivalence: Two maximal paths w and 

w’ are equivalent, noted w ≈c w0, if and only if: 

'ss
w

⇒ implies that '
'

ss
w

⇒ .  

It is particular case of the relation of Mazurckiewicz’s 

trace equivalence in which all events are independent. 
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8. Maximal step: Let mlts=< S, s0, T, ψ, µ, ξ >, and 

w∈T*, ||w|| defines a step if and only if 

: ><∈∀⇒∈∈∃ wessTwSss
w

:'*,,',
, 

)'(se ψ∈
.
 

 

9. Extension of the accessibility relation to the maximal 

transitions steps : Let →p be an extension of → to the 

maximal steps, and w be a maximal path  'ss
w

⇒ . 

The associated step is p
w→ . 

 

10. Maximality-based Step Graph: Let mlts =(Ω,λ,µ,ξ,ψ) 

such that Ω=<S,T,α,β,s0> be MLTS, 

msg=(Ω’,λ’,µ’,ξ’,ψ)  such that  Ω’=<S’, Ξ ,α,β,s0> is 
a MSG of mlts if and only if: 

1. ,':'' SsSs ∈∈∀  

2. ∈∀ 't  Ξ  : t' is a step, where ||t'|| constitute a 
maximal  

path in mlts. 

3. ',' ssSs xM a→∈∀ T∈ ,  

{ }]'[].[:''*,'

''',,'''

'

*

><=><⇒Ξ∈∃⇒

⇒∈∀∈∀

wwassw

ssTwSs

xM

w

p

w

 

Such that : 

– ζ' :
T2 →2 M: 

�   ζ'(ε) =def ε,  

� ζ'({t}∪ E) =def ζ(t) ∪ ζ'(E). 

– µ' : 
T2 → 2 M: 

� 
 
µ'(ε) =def ε, 

� µ'({t}∪ E) =def  µ(t) ∪ µ'(E) 

Where for any step 'ss p
E→ , the following conditions 

are satisfied:  ψ(s') = (ψ(s) \ µ'(E))∪ ζ'(E)  and  ζ'(E) 

⊆/ ψ(s) - µ'(E) et µ'(E) ⊆ψ(s') 

Proposition 3.1: Let 1ss
w

⇒  and 2

'

ss
w

⇒  , if  S1 and S2 are α-

equivalents then w ≈w’. 

 

Proposition 3.2: The maximal steps graph preserves deadlock 

states and liveness property. 

Proposition 3.3: Let 1ss
w

⇒  and 2

'

ss
w

⇒  such that S1 and S2 

are α-equivalents, if u∈Min(Cs)  such that w=u.v, the branch 
w preserves deadlock states and liveness property. 

IV. ON THE FLY MAXIMAL STEP GRAPH GENERATION FOR 

SAFETY-PETRI NETS 

The Algorithm 4.1 is a basic on the fly maximal step graph 

generation for safety-Petri nets which is similar to standard 

algorithm for computing a reachable marking graph. 

The reduction resides in: 

• We build a step by the Proposition 4.1 in which we 
check for each developed transition, if it can form 

part of a maximal step or it is itself a step.     

• And Elimination of the superfluous interleaving, which 
released when we detect two states α-equivalent (see 

Definition 4.1), so we have diamond in which all 

branches are Mazurckiewicz’s trace equivalent (see 

Proposition3.1). By Proposition3.3 we can eliminate 

all the superfluous interleaving and take only the 

branch w=u.v such that u∈Min(Cs)  and s is the 
head of diamond.  

In the algorithm, we represent the state si by the marking Mi. 

Proposition 4.1: Let msg be a MSG in generation in state s’, 

and let 'ss p
p→  step of msg: for any transition generated 

from this state "' ss
t

→ , we have: 

Figure 6. A MLTS and their MSG 
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• Either pt is step, we replace 'ss p
p→ by

 

"ss p
pt→  . if pt∈Min(Cs)  

• "' ss p
t→ is a step of msg. 

 

Definition 4.1: Let Σ=(S,T,W, M0,λ) be a labeled system. 

The α-equivalence relation is recursively defined over 

configurations as follows: 

• M(s) =α M’(s) iff 
− FT(s)=FT’(s), and 

− (t,x)= (t,x’)  such that (t,x) ∈BT(s) and (t,x’) 
∈BT’(s). 

• M =α M’ iff ∀ s∈S, M(s) =α M’(s). 
 

 

 

As example, given the safety-Petri net of Fig. 7, we have 

nine iterations: 

 

 

1. By initialization S’={M0}, we take from line 3 

S={M0}. By Definition2.2, we have Fig. 8, with 

S’=X={M1,M2,M3} and any states α-equivalent.  

With  

• M0=[(1,Ø),(1, Ø),(0, Ø),(1, Ø),(0, Ø),(0, 

Ø),(0, Ø)]. 

• M1=[(1,Ø),(1, Ø),(0, Ø),(0, Ø),(0, Ø),(0, 

Ø),(1, (a,x1))]. 

• M2=[(1,Ø),(0, Ø),(0, Ø),(1, Ø),(0, (b,x2)),(0, 

Ø),(0, Ø)]. 

• M3=[(0,Ø),(1, Ø),(1, (c,x3)),(1, Ø),(0, Ø),(0, 

Ø),(0, Ø)]. 

We have any modification by the application 

of Proposition4.1. 

 

 

2. In the second iteration, we select and remove M1 

from S’ to S, so S={M0,M1}. By Definition2.2, 

we have fig.9.(a), with X={M4,M5} and 

S’={M2,M3,M4,M5}. Any states α-equivalent. 

But, we build two steps by the use of 

Proposition4.1, so we remove definitively M1 

from the graph. We obtain as result the 

Fig.9.(b). With  

• M4=[(1,Ø),(0, Ø),(0, Ø),(0, Ø),(0, 

(b,x4)),(0, Ø),(1, (a,x1))]. 

• M5=[(0,Ø),(1, Ø),(0, (c,x5)),(0, Ø),(0, 

Ø),(0, Ø),(1, (a,x1))]. 

 

3. In the third iteration, we select and remove M2 

from S’ since S is as {M0,M2}. By Definition 

2.2, we have X={M6,M7} and from  

Proposition4.1 we remove definitively M2 and 

 we build two steps. But in this iteration, we 

have M6 α= M4, so, we remove definitively M6 

(or M4) and we substitute the graph by 

σ={x7/x8,x1/x8,x2/x9,x4/x9}. We obtain as result 
the Fig.10 with S={M0} and  S’={M3,M4,M5 

,M7}. With  

• M6 =[(1,Ø),(0, Ø),(0, Ø),(0, Ø),(0, (b,x4)),(0, 

Ø),(0, (a,x7)]. 

• M7 =[(0,Ø),(0, Ø),(0, (c,x6)),(1, Ø),(0, 

(b,x9)),(0, Ø),(0, Ø)]. 

 

Algorithm4.1 " basic on the fly maximal step graph generation " 

Require: R be a safety-Petri net ; 

Ensure: msg=(Ω,λ,µ,ξ,ψ)  such that  Ω=<S, Ξ ,α,β,s0>  ; 
Variables : 

S’ : list of  no treated states initialized by s0; 

S : list of  treated states; 

X:list of states; 

T : list of transitions ; 

Début 

1 While   S’ no empty Do 

2 Select and remove an element s of  S’ ; 

3 Insert  s in  S ; 

4  T’←enabled (s)= 








→∪ i

t

ss
j

}; { }isX ∪←  

5 For each ss p
p→" Do 

6 For each  tj de T  Do Build step w.r.t Proposition 4.1; 

7 For each si state of X α-equivalent with s”of S Do 

implement the Proposition.3.3 

8 Insert all  new states si of X modulo α-equivalent in  S’ ;     

9 Endwhile 

FinAlgo. 

P7 

P6 

P5 

P3 

P2 

P4 

P1 

Figure 7. Differed conflict. 

b 

a 

d c 

Figure 8. msg after first iteration 

M2:{x2} 

M0:∅ 

∅ax1 ∅cx3 

M1:{x1} M3:{x3} 

∅bx2 



International Journal of Computer Science and Telecommunications [Volume 3, Issue 9, September 2012]                           23 

 

 

4. We select and remove M3 from S’. S={M0, M3}. By 

Definition2.2, we have X={M8,M9}. We remark 

that ∅cz  is a minimal path so by Proposition4.1 we 

have ∅cz as step. In the other hand, we have 

M7 α= M9 and we substitute the graph by 

σ={x3/x10,x9/x11}. So, we obtain as result the 
Fig.11 with S={M0, M3}and  S’={M4,M5 ,M7 ,M8}. 

With  

• M8=[(0,Ø),(0, Ø),(0, (c,z)),(0, Ø),(0, Ø),(0, 

(d,e)),(0, Ø)]. 

• M3=[(0,Ø),(0, Ø),(1, (c,z)),(1, Ø),(0, 

(b,x)),(0, Ø),(0, Ø)]. 

5. We select and remove M4 from S’. By Definition2.2, 

we have X={M10} and any states α-equivalent. By 

the application of Proposition4.1 we remove 

definitively M4 with building a step as Fig.12 with 

S={M0, M3}and  S’={M5,M7 ,M8,M10}. 

 

 
6. We select and remove M7 from S’. By Definition2.2, 

we have X={M11} and from  Proposition4.1 we 

remove definitively M7 and building a step as 

Fig.13. In this iteration, we have M10 α= M11 and 

we substitute the graph by σ={x9/x15,x13/x16, x14/x15, 
x5/x16}. So, we obtain as result the Fig.13 with 

S={M0, M3}and  S’={M5,M8,M10}.  

 

 
7. We select and remove M5 from S’. By Definition2.2, 

we have X={M12} and from Proposition4.1 we 

remove definitively M5 , in this cases, we have 

M10 α= M12 and we substitute the graph by 

σ={x15/y,x11/y,x8/x,x17/x,x10/z,x16/z}. So, we 

remove definitively M10 or M12., we obtain as 

result the Fig. 14 with S={M0, M3}and  

S’={M8,M10}. 

8. We select and remove M8 from S’. We have any 

transition enabled with S={M0,M3,M8}and  

S’={M10}. 

9. We select and remove M10 from S’. We have any 

transition enabled with S={M0,M3,M8,M10}and  

S’=Ø. So, this iteration is the last iteration with the 

Fig.14 is as MSG of Petri net of Fig. 7. 

 

M5:{x8,x5} 

M0:∅ 

∅c10 

M3:{x10} 

M7:{x10,x11} M8:{x10,x12} 

∅bx11 ∅dx12 

M4:{x8,x9} 

{∅ax8, ∅cx5} 

{∅ax8, ∅bx9,} 

Figure 12. msg after fifth iteration 

M10:{x8,x9,x13} 

∅c13 {∅ax8, ∅bx9, ∅c13 } 

Figure 11. msg after fourth iteration 

{∅bx9, ∅cx6} 

M5:{x8,x5} 

M0:∅ 

∅cx10 

M3:{x10} 

M7:{x11,x10} M8:{x10,x12 } 

∅bx11 ∅dx12 

M4:{x8,x9} 

{∅ax8, ∅cx5} 
{∅ax8, ∅bx9} 

(a) 

Figure 9. msg after second iteration. 

M2:{x2} 

M0:∅ 

∅ax1 ∅cx3 

M1:{x1} M3:{x3} 

∅bx2 

M4:{x1,x4} M5:{x1,x5} 

∅bx4 ∅cx5 

M2:{x2} 

M0:∅ 

{∅ax1, ∅bx4} ∅cx3 

M3:{x3} 

∅bx2 {∅ax1, ∅cx5} 

(b) 

M4:{x1,x4} M5:{x1,x5} 

M2:{x2} 

M0:∅ 

{∅ax8, ∅bx9} ∅cx3 

M4:{x8,x9} M3:{x3} 

∅bx2 

M5:{x8,x5} 

{∅ax8, ∅cx5} 

M7:{x9,x6} M6:{x2,x7} 

∅Cx6 ∅ax7 

Figure 10. msg after third iteration 

{∅bx9, ∅cx6} 
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V. DEVELOPMENT AND DISCUSSION 

A. Development 

We have implemented the Algorithm 4.1 as the system of 

Fig. 15, in which we have two modules: 

1. The Graphic-editor module (for Safety-Petri nets and 

for MSG) is developed with use MDA approach; 

hence, we propose two meta-model, the first for 

safety-Petri nets and the second for MSG.  

2. The Generator of MSG take as input a safety-Petri net 

description as a XML file and we give as result a 

MSG as XML file. 

B. Discussion and limitations 

In [23], we have developed a tool in which we can build a 

MSG from LOTOS description and we present also two 

studied systems with an aim of confirming the fact that it is 

very difficult to know as a preliminary which is the partial 

order approach most effective in term of graph built size, this 

study consists in comparing the ratio of reduction by our 

technique with the step graphs “CSG”, the persistent sets 

“Pset” and persistent step graphs “PSG”. In the present 

contribution, we have the same conclusion. 

We note here as limitations, using MLTS as semantic 

model, the reduction with the presence of differed conflict is 

possible and moreover is important through a maximal even 

concept. But, this concept lowers this technique on time 

comparing with CSG technique. Since, reducing a MLTS with 

n transitions to MSG we most generate the n transitions 

possible of the MLTS and replace on the fly any sequence of 

transitions by a step associated, such that represents a minimal 

path which is determined by an independency relation 

dynamically calculated from this sequence, which do the 

necessity of generate all transitions of the MLTS, e.g., to 

generate the MSG of Fig. 7 we have generated 7 transitions 

but in the reduced graph we have only 3 steps. 

To avoid the generation of all transitions of MLTS with 

taken the important ratio of reduction, we combine the using of 

the calculus structural (from Petri net specification) and 

dynamic of independency relation (from MLTS semantic 

model).  

 

 
   

VI. CONCLUSION  

This paper is a contribution to the state space combinatorial 

explosion problem for Safety-Petri nets. We proposed 

reduction of MLTS through partial order semantics (by 

elimination/steps). The MLTS is indeed a model which made 

possible the consideration of the branches, therefore the 

reduction is important. The reduced graph is a complete graph 

preserving the general properties (deadlock states and 

liveness). 

The building of MSG is based on α-equivalent, so we must 

define the α-equivalent over Petri net in order to generate a 

MSG for Petri nets. In the other hand, it should be interesting 

the present contribution in term of specific properties 

preserving like observational equivalence and failure 

semantics. It is also interesting to study the equivalence 

relations over MSGs, and the extension of those to take into 

account time, like it was already made for MLTSs [21], [22], 

[25]. 
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