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Abstract– In this paper we are dealing with some basic class of 

graphs that give a DFS tree which is a path consisting of all the 

vertices of the graph. Some of the graph classes result in 
 after applying some conditions and by giving 

proper labelling of vertices. The DFS algorithm has to be 

modified accordingly. We want to generate a  by applying 

DFS on the given graph . We developed the algorithm with 

time complexity of  . 

 

Index Terms– DFS, Algorithm, Graph and Complexity 
 

I.    INTRODUCTION 

1) Graph: A graph  is an ordered pair of sets. 

Elements of  are called vertices or nodes, and elements of 

 are called edges or lines. We refer to  as the 

vertex set of , with   being the edge set. 

2) Walks, trails and paths in graphs: If  and  are two 

vertices in a graph , a  walk is an alternating sequence 

of vertices and edges starting with  and ending at . 
Consecutive vertices and edges are incident. For the graph [6] 

in Fig. 1, an example of a walk is an  walk:  

In other words, we start at vertex  and travel to vertex . 

From , we go to  and then back to  again. Then we end our 

journey at . Notice that consecutive vertices in a walk are 

adjacent to each other. One can think of vertices as 

destinations and edges as footpaths, say. We are allowed to 

have repeated vertices and edges in a walk. The number of 
edges in a walk is called its length. For instance, the walk 

 has length . 

A trail is a walk with no repeating edges. For example, the 

 walk  in Fig. 1 is a trail. It does not 
contain any repeated edges, but it contains one repeated 

vertex, i.e. . Nothing in the definition of a trail restricts a 

trail from having repeated vertices. Where the start and end 

vertices of a trail are the same, we say that the trail is a circuit, 

otherwise known as a closed trail. Thus the walk  is a 

circuit. A walk with no repeating vertices is called a path. 

Without any repeating vertices, a path cannot have repeating 

edges; hence a path is also a trail. A path whose start and end 

vertices are the same is called a cycle. For example, the walk 

 in Figure is a path and a cycle.  

3) Depth First Search Algorithm (DFS): Depth-first search 

(DFS) is an algorithm for traversing the graph. We start the 

graph traversal at an arbitrary vertex and go down a particular 

branch until we reach a dead end.  Then we back up and go as 

deep possible.  In this way we visit all vertices, and all edges. 

The DFS can be used for [4]. 

 Testing for connectivity  

 Finding a Spanning Tree  

 Finding Paths  

 Finding a cycle  

The DFS algorithm is given below [5]: 

 

 

Void DFS(int v) 

{ 

 u=adjacent(v); 

 while(u) 

{ 

  If(u is not reached) 

   DFS(u); 

  u=nextadjacent(v); 

 } 

} 

Algorithms for a Path  Generated by DFS 
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Fig. 1: Walking along a graph 
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On applying DFS (Depth First Search) on any graph , it 

results is a tree , called DFS Tree (DFST). This DFST can 
be any tree including a simple path.  We get different trees 

with different labelling of vertices and selecting different start 

vertices. The resulting trees will be having different 

diameters.  

II.    PROPOSED WORK 

Our aim is to find the class of graphs, which can result in 
DFS tree which is a path, called dfs path, after the application 

of DFS, i.e. . If such a dfs tree is a path then it 

will be having the highest diameter.   

Some graphs will result in path by direct application of 

DFS where as some need modifications in the algorithm. The 

DFS algorithm starts with a start vertex. The start vertex 

which leads to a dfs path  and is the end vertex of the path, 

then it is called path generating vertex. Not all graphs with 

result in . Some of the graphs will never give a 

dfs path . Example: star graph, windmill graph  

. From Fig. 3 we can see that the first four graphs i.e., 

, ,  and  we can get a path. For the next four 

wind mills i.e., , ,  and  we can not get paths. 
In this paper we are dealing with some basic class of graphs 

and their behaviour on applying DFS. Some of the graph 

classes result in  after applying some 

conditions and by giving proper labelling of vertices and 

modifying the DFS algorithm accordingly. We want to 

generate a path  by applying DFS on the given graph . 

This problem appears as finding the Hamiltonian Path of a 

graph. But it is not the exact case. We are interested in dfs tree 

which is a  rather than Hamiltonian paths or longest path 
between two vertices. To elaborate the concept let us consider 

the following example. 

Example:  For the graph given in Fig. 4(a), when we apply 

DFS with vertex  as the start vertex then we get the path 

. In this case the start vertex is one of the end 

(a) Graph  

Fig. 2:  with  as start vertex 

(b)  

Fig. 3: Windmill graphs 

 

 

  

        (a) 

 

 

  

(b) 

Fig. 4: An Example 

1           2            3            4           5 

Fig. 7: path graph   

Fig. 5: The cycle  
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Fig. 6: Complete Graph  
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vertex of the resultant dfs path. If we consider  as the start 

vertex then the path obtained will be  . Here even 

though  is the start vertex its not the end vertex of the 

resultant path, but still we got a path starting with vertex . If 

we consider  as tart vertex the dfs path obtained will be 

. Now let us change the labelling of the same 

graph as in Fig. 4(b), and start with vertex . Here the order 

of visiting vertices will be  but it’s not a path, 

hence  is not a path generating vertex in this instance.  This 

example clearly shows that different labelling of vertices has 

different effects on the resulting dfs tree. 

III. GRAPH CLASSES THAT GIVE DFS PATH  BY 
APPLYING DFS WITHOUT ANY LABELLING OR 

CONDITIONS 

1) Cycles: When  is a cycle ( ), then applying the DFS 

simply gives a . Of course the cycles result in  just by 

removing an edge also. But here we are studying with respect 

to DFS. In cycles every vertex is a path generating vertex. 
Example is shown in Fig. 5. When we apply DFS on this 

cycle with  as start vertex then we get the path . 

2) Complete Graphs: By applying DFS on any complete 

graph we get a path , denoted  . For 

example refer Fig. 6. We can take any vertex as start vertex. 

Every vertex leads to a path  . As in cycles for compete 
graph also every vertex is a path generating vertex. From    

Fig. 6 we note that after applying DFS with 4 as start vertex 

the path generated is .  

3) Paths: By applying DFS on any path graph  we get a 

dfs path  itself as result. It is denoted  . For 

example refer Fig. 7. We can take any vertex as start vertex. 

Every vertex leads to a path   and hence every vertex is a 
path generating vertex. 

4) Tetrahedral Graph: The Tetrahedral Graph is one of the 

platonic solids. On applying DFS algorithm the Tetrahedral 

Graph results into a dfs path .  Here also every vertex is 

path generating vertex. It can be seen in Fig. 8. 

IV. GRAPH CLASSES THAT YIELD DFS PATH  BY 
PROPER LABELLING 

1) Petersen Graph: In this section we will study about how 

the labels can be provide for the vertices of the graph so that 

the vertices are visited in a specific order. For some class of 

the graphs we can obtain by labelling vertices 

and modifying the DFS algorithm accordingly.  

For example let us consider Petersen graph. Let us label the 
vertices in two ways as outer and inner vertices. We have to 

maintain an integer array to specify the outer vertices and 

inner vertices. From figure we observe that the vertices 

 are outer vertices and remaining are inner vertices. 

Let our array name be . 

The outer vertices are marked as  and inner vertices as .  

The labelling of vertices is shown in square brackets. 

With this labelling we can modify DFS algorithm to get dfs 

path. Method is very simple after labelling. We just have to 

start with a vertex, if the start vertex is labelled as outer i.e., , 
then first visit all outer vertices, then visit all the inner 

vertices by following the adjacency, and vice versa. For 

instance in this Petersen graph, we can select the vertex  as 

the start vertex. Then visit all vertices which are outer, then 

the sequence will be . After vertex 4 there are no 

more outer vertices to visit. Therefore visit the first inner 

vertex i.e.,  and continuously visit all inner vertices to get the 

path . 
This method is expressed in the form of algorithm as 

follows. 

 

ALGORITHM 1: 

1. For all the vertices of the graph label them as inner and 

outer vertices. 

2. Let any vertex be a start vertex. 

3. If the start vertex is inner then visit all the inner 

vertices first. Later visit all the outer vertices and vice 

versa, by modifying the DFS algorithm. 

4. Store the path in an array. 

 

2) Generalised Petersen Graphs: Now let us consider 

Generalised Petersen Graphs . In case of Generalised 

Petersen Graphs the previous method works well if  is odd. 

The labelling method remains the same. If   is even the 

inside vertices will form two cycles and this has to be dealt in 

different way.  

The following example shows the difference of  being 

even and odd. Let us consider . Here if the start vertex 

Fig. 9:  Petersen Graph 
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Fig. 8 : Tetrahedral Graph 
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is an inner vertex then the inner vertices are visited first, but 

not the all inner vertices can be visited. Then all the outer 

vertices visited and then the remaining inner vertices. Since 

we are using recursive DFS it can be traced easily. On the 

other hand if the start vertex is the outer vertex then all the 
outer vertices are visited first then some of the inner vertices 

and lastly by visiting back the start vertex other inner vertices 

are visited. Form the graph  we see that if the vertex 1 

is taken as start vertex then the order of visiting vertices is 

. No other inner vertex is adjacent to  so 

the control goes back to vertex  as . Now 

from , the next vertex visited are . Now all the 

vertices are visited and the path obtained is 

. It can be observed that the start 

vertex is not the end vertex of the path as in case if  was odd. 

We see that if the start vertex is an inner vertex then it 

becomes the end vertex and hence the path generating vertex 

too. 

Consider the graph , here we can start with any start 

vertex say . Then visiting all outer vertices and later the 

inner vertices we get the path 

. We see that the start vertex 
is the end vertex of the path obtained; hence it’s a path 

generating vertex. 

The algorithm combining for both odd and even vertices is 

given as follows. The algorithm takes  time if adjacency 
matrix is used. 

 

The steps are given as follows: 

1. a. If the vertex  is an outer vertex, find the outer     

        vertex  adjacent to . 

    b. Increment the path length. 

    c. Call DFS recursively by passing  as the     

        parameter, as long as  is not . 

2. a. If the vertex  is an inner vertex, find the inner   

        vertex  adjacent to . 

    b. Increment the path length. 

    c. Call DFS recursively by passing  as the   

         parameter, as long as  is not . 

3.  Repeat the steps  or  till path equals .  

 
The algorithm is given as follows: 

 

ALGORITHM 2: 

// o[]: array for labelling vertices as inner and    //outer // 

vertices. If a vertex v is outer vertex the //o[v]=1 else // 

o[v]=0. 

// outadjacent(v): finds the outer vertex adjacent //to v. 

// inadjacent(v): finds the inner vertex adjacent //to v.  

 

void DFS( int v ) 
{ 

     if(o[v]==1) 

     { 

          u=outadjacent(v); 

          if(u!=0) 

          { 

               path++; 

               DFS(u); 

 

          } 

          else 
          { 

               u=inadjacent(v); 

               if(u!=0 && path<n-1) 

               { 

                    path++; 

                    DFS(u); 

               } 

          } 

 } 

else 

{ 

     if(o[v]==0) 
          {    

               u=inadjacent(v); 

               if(u!=0) 

               { 

                    path++; 

                    DFS(u); 

               } 

               else 

               { 

                    u=outadjacent(v); 
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Fig. 10:  and  
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                    if(u!=0 && path<n-1) 

                    { 

                         path++; 

                         DFS(u); 

                    } 

               } 

          } 

     } 

} 

 

 

3) Platonic Solids: The five platonic solids are tetrahedral 

graph, cubical graph, octahedral graph, dodecahedral graph 

and icosahedral graph. Among these, the tetrahedral graph 

gives a path by simple DFS as seen in Fig. 8. Cubical graph 

and octahedral graph give a path by using the algorithm given 
for Petersen graph. The next two platonic solids i.e., 

dodecahedral graph and icosahedral graph can not give a path 

by using algorithm 1 or algorithm 2. We have to modify 

algorithm 2 as given in algorithm 3. The complexity remains 

the same. 

The modified code is marked grey.  

 

ALGORITHM 3: 

 

// o[]: array for labelling vertices as inner and    //outer // 

vertices. If a vertex v is outer vertex the //o[v]=1 else // 

o[v]=0. 
// outadjacent(v): finds the outer vertex adjacent //to v. 

// inadjacent(v): finds the inner vertex adjacent //to v.  

 

void DFS( int v ) 

{ 

     if(o[v]==1) 

     { 

          u=outadjacent(v); 

          if(u!=0 && path<n-1) 

          { 

               path++; 
               DFS(u); 

               if(v==source && path>0 && path<n-1) 

               { 

                    u=inadjacent(v); 

                    DFS(u); 

               } 

          } 

          else 

          { 

               u=inadjacent(v); 

               if(u!=0 && path<n-1) 

               { 
                    path++; 

                    DFS(u); 

                } 

          } 

     } 

     else 

     { 

          if(o[v]==0) 

          { 

               u=inadjacent(v); 

               if(u!=0 && path<n-1) 
               { 

                    path++; 

                    DFS(u); 
Fig. 11: The platonic graphs 
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                    if(v==source && path>0 && path<n-1) 

                    { 

                         u=outadjacent(v); 

                         DFS(u); 

                    } 

               } 
               else 

               { 

                    u=outadjacent(v); 

                    if(u!=0 && path<n-1) 

                    { 

                         path++; 

                         DFS(u); 

                    } 

               } 

          } 

     } 

} 

 

4)  Wheel Graphs: In the mathematical discipline of graph 

theory, a wheel graph  is a graph with  vertices, formed 

by connecting a single vertex (which is known as the hub) to 

all vertices of an -cycle. The edges of a wheel which 

include the hub are called spokes. 

For these graphs the algorithm 1-3 can be used to form the 

path. The labeling for hub is [0] and labeling for all spokes is 

[1] or vice versa. Here the start vertex and hub both can be 

source generating vertices. 

The wheel graphs give path without modifying DFS 

algorithm and without any labeling only if the start vertex is 
taken as the hub. 

 

 
V.    CONCLUSIONS 

One of the basic applications of DFS is to find the paths. 

Here we are finding a path consisting of all the vertices of the 

given graph. The given algorithm takes  time if 
adjacency matrix is used. Other data structures may be used to 

reduce the complexity further. 

Only few classes of graphs have been tested here. We can 

consider some more class of graphs for further analysis. 
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