
International Journal of Computer Science and Telecommunications [Volume 3, Issue 8, August 2012] 34

Journal Homepage: www.ijcst.org

Dr. H. B. Walikar
2
, Shreedevi V. Shindhe

1
, Ravikumar H. Roogi

3
 and Ishwar Baidari

4

1,2,3,4Department of Computer Science, Karnatak University, Dharwad, India

Abstract– In this paper we are dealing with some basic class of

graphs that give a DFS tree which is a path consisting of all the

vertices of the graph. Some of the graph classes result in
 after applying some conditions and by giving

proper labelling of vertices. The DFS algorithm has to be

modified accordingly. We want to generate a by applying

DFS on the given graph . We developed the algorithm with

time complexity of .

Index Terms– DFS, Algorithm, Graph and Complexity

I. INTRODUCTION

1) Graph: A graph is an ordered pair of sets.

Elements of are called vertices or nodes, and elements of

 are called edges or lines. We refer to as the

vertex set of , with being the edge set.

2) Walks, trails and paths in graphs: If and are two

vertices in a graph , a walk is an alternating sequence

of vertices and edges starting with and ending at .
Consecutive vertices and edges are incident. For the graph [6]

in Fig. 1, an example of a walk is an walk:

In other words, we start at vertex and travel to vertex .

From , we go to and then back to again. Then we end our

journey at . Notice that consecutive vertices in a walk are

adjacent to each other. One can think of vertices as

destinations and edges as footpaths, say. We are allowed to

have repeated vertices and edges in a walk. The number of
edges in a walk is called its length. For instance, the walk

 has length .

A trail is a walk with no repeating edges. For example, the

 walk in Fig. 1 is a trail. It does not
contain any repeated edges, but it contains one repeated

vertex, i.e. . Nothing in the definition of a trail restricts a

trail from having repeated vertices. Where the start and end

vertices of a trail are the same, we say that the trail is a circuit,

otherwise known as a closed trail. Thus the walk is a

circuit. A walk with no repeating vertices is called a path.

Without any repeating vertices, a path cannot have repeating

edges; hence a path is also a trail. A path whose start and end

vertices are the same is called a cycle. For example, the walk

 in Figure is a path and a cycle.

3) Depth First Search Algorithm (DFS): Depth-first search

(DFS) is an algorithm for traversing the graph. We start the

graph traversal at an arbitrary vertex and go down a particular

branch until we reach a dead end. Then we back up and go as

deep possible. In this way we visit all vertices, and all edges.

The DFS can be used for [4].

 Testing for connectivity

 Finding a Spanning Tree

 Finding Paths

 Finding a cycle

The DFS algorithm is given below [5]:

Void DFS(int v)

{

 u=adjacent(v);

 while(u)

{

 If(u is not reached)

 DFS(u);

 u=nextadjacent(v);

 }

}

Algorithms for a Path Generated by DFS

ISSN 2047-3338

Fig. 1: Walking along a graph

http://en.wikipedia.org/wiki/Algorithm

Dr. H. B. Walikar et al. 35

On applying DFS (Depth First Search) on any graph , it

results is a tree , called DFS Tree (DFST). This DFST can
be any tree including a simple path. We get different trees

with different labelling of vertices and selecting different start

vertices. The resulting trees will be having different

diameters.

II. PROPOSED WORK

Our aim is to find the class of graphs, which can result in
DFS tree which is a path, called dfs path, after the application

of DFS, i.e. . If such a dfs tree is a path then it

will be having the highest diameter.

Some graphs will result in path by direct application of

DFS where as some need modifications in the algorithm. The

DFS algorithm starts with a start vertex. The start vertex

which leads to a dfs path and is the end vertex of the path,

then it is called path generating vertex. Not all graphs with

result in . Some of the graphs will never give a

dfs path . Example: star graph, windmill graph

. From Fig. 3 we can see that the first four graphs i.e.,

, , and we can get a path. For the next four

wind mills i.e., , , and we can not get paths.
In this paper we are dealing with some basic class of graphs

and their behaviour on applying DFS. Some of the graph

classes result in after applying some

conditions and by giving proper labelling of vertices and

modifying the DFS algorithm accordingly. We want to

generate a path by applying DFS on the given graph .

This problem appears as finding the Hamiltonian Path of a

graph. But it is not the exact case. We are interested in dfs tree

which is a rather than Hamiltonian paths or longest path
between two vertices. To elaborate the concept let us consider

the following example.

Example: For the graph given in Fig. 4(a), when we apply

DFS with vertex as the start vertex then we get the path

. In this case the start vertex is one of the end

(a) Graph

Fig. 2: with as start vertex

(b)

Fig. 3: Windmill graphs

 (a)

(b)

Fig. 4: An Example

1 2 3 4 5

Fig. 7: path graph

Fig. 5: The cycle

1 2

3

4 5

6

1
2

3 4

Fig. 6: Complete Graph

International Journal of Computer Science and Telecommunications [Volume 3, Issue 8, August 2012] 36

vertex of the resultant dfs path. If we consider as the start

vertex then the path obtained will be . Here even

though is the start vertex its not the end vertex of the

resultant path, but still we got a path starting with vertex . If

we consider as tart vertex the dfs path obtained will be

. Now let us change the labelling of the same

graph as in Fig. 4(b), and start with vertex . Here the order

of visiting vertices will be but it’s not a path,

hence is not a path generating vertex in this instance. This

example clearly shows that different labelling of vertices has

different effects on the resulting dfs tree.

III. GRAPH CLASSES THAT GIVE DFS PATH BY
APPLYING DFS WITHOUT ANY LABELLING OR

CONDITIONS

1) Cycles: When is a cycle (), then applying the DFS

simply gives a . Of course the cycles result in just by

removing an edge also. But here we are studying with respect

to DFS. In cycles every vertex is a path generating vertex.
Example is shown in Fig. 5. When we apply DFS on this

cycle with as start vertex then we get the path .

2) Complete Graphs: By applying DFS on any complete

graph we get a path , denoted . For

example refer Fig. 6. We can take any vertex as start vertex.

Every vertex leads to a path . As in cycles for compete
graph also every vertex is a path generating vertex. From

Fig. 6 we note that after applying DFS with 4 as start vertex

the path generated is .

3) Paths: By applying DFS on any path graph we get a

dfs path itself as result. It is denoted . For

example refer Fig. 7. We can take any vertex as start vertex.

Every vertex leads to a path and hence every vertex is a
path generating vertex.

4) Tetrahedral Graph: The Tetrahedral Graph is one of the

platonic solids. On applying DFS algorithm the Tetrahedral

Graph results into a dfs path . Here also every vertex is

path generating vertex. It can be seen in Fig. 8.

IV. GRAPH CLASSES THAT YIELD DFS PATH BY
PROPER LABELLING

1) Petersen Graph: In this section we will study about how

the labels can be provide for the vertices of the graph so that

the vertices are visited in a specific order. For some class of

the graphs we can obtain by labelling vertices

and modifying the DFS algorithm accordingly.

For example let us consider Petersen graph. Let us label the
vertices in two ways as outer and inner vertices. We have to

maintain an integer array to specify the outer vertices and

inner vertices. From figure we observe that the vertices

 are outer vertices and remaining are inner vertices.

Let our array name be .

The outer vertices are marked as and inner vertices as .

The labelling of vertices is shown in square brackets.

With this labelling we can modify DFS algorithm to get dfs

path. Method is very simple after labelling. We just have to

start with a vertex, if the start vertex is labelled as outer i.e., ,
then first visit all outer vertices, then visit all the inner

vertices by following the adjacency, and vice versa. For

instance in this Petersen graph, we can select the vertex as

the start vertex. Then visit all vertices which are outer, then

the sequence will be . After vertex 4 there are no

more outer vertices to visit. Therefore visit the first inner

vertex i.e., and continuously visit all inner vertices to get the

path .
This method is expressed in the form of algorithm as

follows.

ALGORITHM 1:

1. For all the vertices of the graph label them as inner and

outer vertices.

2. Let any vertex be a start vertex.

3. If the start vertex is inner then visit all the inner

vertices first. Later visit all the outer vertices and vice

versa, by modifying the DFS algorithm.

4. Store the path in an array.

2) Generalised Petersen Graphs: Now let us consider

Generalised Petersen Graphs . In case of Generalised

Petersen Graphs the previous method works well if is odd.

The labelling method remains the same. If is even the

inside vertices will form two cycles and this has to be dealt in

different way.

The following example shows the difference of being

even and odd. Let us consider . Here if the start vertex

Fig. 9: Petersen Graph

1 [1]

2 [1]

3[1]
4 [1]

5 [1]

6 [0]

7 [0]

8 [0]
9 [0]

10 [0]

1

2

3

4

Fig. 8 : Tetrahedral Graph

Dr. H. B. Walikar et al. 37

is an inner vertex then the inner vertices are visited first, but

not the all inner vertices can be visited. Then all the outer

vertices visited and then the remaining inner vertices. Since

we are using recursive DFS it can be traced easily. On the

other hand if the start vertex is the outer vertex then all the
outer vertices are visited first then some of the inner vertices

and lastly by visiting back the start vertex other inner vertices

are visited. Form the graph we see that if the vertex 1

is taken as start vertex then the order of visiting vertices is

. No other inner vertex is adjacent to so

the control goes back to vertex as . Now

from , the next vertex visited are . Now all the

vertices are visited and the path obtained is

. It can be observed that the start

vertex is not the end vertex of the path as in case if was odd.

We see that if the start vertex is an inner vertex then it

becomes the end vertex and hence the path generating vertex

too.

Consider the graph , here we can start with any start

vertex say . Then visiting all outer vertices and later the

inner vertices we get the path

. We see that the start vertex
is the end vertex of the path obtained; hence it’s a path

generating vertex.

The algorithm combining for both odd and even vertices is

given as follows. The algorithm takes time if adjacency
matrix is used.

The steps are given as follows:

1. a. If the vertex is an outer vertex, find the outer

 vertex adjacent to .

 b. Increment the path length.

 c. Call DFS recursively by passing as the

 parameter, as long as is not .

2. a. If the vertex is an inner vertex, find the inner

 vertex adjacent to .

 b. Increment the path length.

 c. Call DFS recursively by passing as the

 parameter, as long as is not .

3. Repeat the steps or till path equals .

The algorithm is given as follows:

ALGORITHM 2:

// o[]: array for labelling vertices as inner and //outer //

vertices. If a vertex v is outer vertex the //o[v]=1 else //

o[v]=0.

// outadjacent(v): finds the outer vertex adjacent //to v.

// inadjacent(v): finds the inner vertex adjacent //to v.

void DFS(int v)
{

 if(o[v]==1)

 {

 u=outadjacent(v);

 if(u!=0)

 {

 path++;

 DFS(u);

 }

 else
 {

 u=inadjacent(v);

 if(u!=0 && path<n-1)

 {

 path++;

 DFS(u);

 }

 }

 }

else

{

 if(o[v]==0)
 {

 u=inadjacent(v);

 if(u!=0)

 {

 path++;

 DFS(u);

 }

 else

 {

 u=outadjacent(v);

[1]

[1]

[0]

[1] [1]

[1]

[1]

[0]

[0]

[0]
[0]

[0]

[1]

[0]

[0]

[0]

[0]
[0]

[0]

[0]

[1]

[1]

[1] [1]

[1]

[1]

Fig. 10: and

International Journal of Computer Science and Telecommunications [Volume 3, Issue 8, August 2012] 38

 if(u!=0 && path<n-1)

 {

 path++;

 DFS(u);

 }

 }

 }

 }

}

3) Platonic Solids: The five platonic solids are tetrahedral

graph, cubical graph, octahedral graph, dodecahedral graph

and icosahedral graph. Among these, the tetrahedral graph

gives a path by simple DFS as seen in Fig. 8. Cubical graph

and octahedral graph give a path by using the algorithm given
for Petersen graph. The next two platonic solids i.e.,

dodecahedral graph and icosahedral graph can not give a path

by using algorithm 1 or algorithm 2. We have to modify

algorithm 2 as given in algorithm 3. The complexity remains

the same.

The modified code is marked grey.

ALGORITHM 3:

// o[]: array for labelling vertices as inner and //outer //

vertices. If a vertex v is outer vertex the //o[v]=1 else //

o[v]=0.
// outadjacent(v): finds the outer vertex adjacent //to v.

// inadjacent(v): finds the inner vertex adjacent //to v.

void DFS(int v)

{

 if(o[v]==1)

 {

 u=outadjacent(v);

 if(u!=0 && path<n-1)

 {

 path++;
 DFS(u);

 if(v==source && path>0 && path<n-1)

 {

 u=inadjacent(v);

 DFS(u);

 }

 }

 else

 {

 u=inadjacent(v);

 if(u!=0 && path<n-1)

 {
 path++;

 DFS(u);

 }

 }

 }

 else

 {

 if(o[v]==0)

 {

 u=inadjacent(v);

 if(u!=0 && path<n-1)
 {

 path++;

 DFS(u);
Fig. 11: The platonic graphs

[1]

[0]

[0]
[0]

[1]

[1]

[1]

[1] [1]

[1]

[0]

[0]

[0]

[0]

[1]

[1]

[1] [1]

[1]

[0]

[0]

[0]

[0]

[0] [0]

[0]

[0]
[0]

[1]
[1]

[1] [1]

[1]

[1]

[1] [1]

[1] [1]

[1]

[0]

[0]

[0]

[0]

[0]

[0]

Dr. H. B. Walikar et al. 39

 if(v==source && path>0 && path<n-1)

 {

 u=outadjacent(v);

 DFS(u);

 }

 }
 else

 {

 u=outadjacent(v);

 if(u!=0 && path<n-1)

 {

 path++;

 DFS(u);

 }

 }

 }

 }

}

4) Wheel Graphs: In the mathematical discipline of graph

theory, a wheel graph is a graph with vertices, formed

by connecting a single vertex (which is known as the hub) to

all vertices of an -cycle. The edges of a wheel which

include the hub are called spokes.

For these graphs the algorithm 1-3 can be used to form the

path. The labeling for hub is [0] and labeling for all spokes is

[1] or vice versa. Here the start vertex and hub both can be

source generating vertices.

The wheel graphs give path without modifying DFS

algorithm and without any labeling only if the start vertex is
taken as the hub.

V. CONCLUSIONS

One of the basic applications of DFS is to find the paths.

Here we are finding a path consisting of all the vertices of the

given graph. The given algorithm takes time if
adjacency matrix is used. Other data structures may be used to

reduce the complexity further.

Only few classes of graphs have been tested here. We can

consider some more class of graphs for further analysis.

REFERENCES

[1] A. V. Goldberg and C. Silverstein. Implementations of

Dijkstra's Algorithm Based on Multi-Level Buckets. In P. M.

Pardalos, D.W. Hearn, and W.W. Hages, editors, Lecture

Notes in Economics and Mathematical System 450 (Refereed

Proceedings), pages 292-327. Springer Verlag, 1997.

[2] Anany Levitin, Introduction to the design and analysis of

Algorithms, 2nd Ed, 2008.

[3] Boris V. Cherkassky , Andrew V. Goldberg , Craig Silverstein,

Buckets, Heaps, Lists, and Monotone Priority Queues, SIAM

Journal on Computing, v.28 n.4, p.1326-1346, Aug. 1999.

[4] Coremen. T. H, Leiserson, C. E. Rivest R. L, and C Stein,

Introduction to Algorithms, 2nd Ed. MIT press, Cambridge,

MA, 2001.

[5] Data Structures, Algorithms, and Applications in C++, Sartaj

Sahni. McGraw-Hill Education, 1998.

[6] Distance in graphs - Fred Buckley, Frank Harary, Addison-

Wesley Pub. Co., ©1990 .

[7] E. W. Dijkstra. A Note on Two Problems in Connexion with

Graphs. Numer. Math., 1:269-271, 1959.

[8] Harary. F, Graph Theory, Addison Wesley.

[9] R.W. Floyd. Algorithm 97: Shortest path. Comm. ACM, 5:345,

1962.

[10] Tarjan, R. E. (1972), "Depth-first search and linear graph

algorithms", SIAM Journal on Computing 1 (2): 146–160.

Fig. 12: Wheel Graphs

http://en.wikipedia.org/wiki/Mathematical
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_theory
http://mathworld.wolfram.com/Hub.html
http://en.wikipedia.org/wiki/Cycle_graph
http://mathworld.wolfram.com/Hub.html
http://dl.acm.org/citation.cfm?id=312209&CFID=82701399&CFTOKEN=54615198
http://dl.acm.org/citation.cfm?id=312209&CFID=82701399&CFTOKEN=54615198
http://dl.acm.org/citation.cfm?id=312209&CFID=82701399&CFTOKEN=54615198
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Sartaj+Sahni%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Sartaj+Sahni%22
http://www.google.co.in/url?sa=t&rct=j&q=distance%20in%20graphs-fred%20buckley%20&source=web&cd=2&ved=0CGQQFjAB&url=http%3A%2F%2Fbooks.google.com%2Fbooks%2Fabout%2FDistance_in_graphs.html%3Fid%3DQu_uAAAAMAAJ&ei=fprVT9O4FYO3rAfh0cD8Dw&usg=AFQjCNEDRWM0yU_9jlE3v4Tk3LhWJ5mPOA
http://www.google.co.in/url?sa=t&rct=j&q=distance%20in%20graphs-fred%20buckley%20&source=web&cd=2&ved=0CGQQFjAB&url=http%3A%2F%2Fbooks.google.com%2Fbooks%2Fabout%2FDistance_in_graphs.html%3Fid%3DQu_uAAAAMAAJ&ei=fprVT9O4FYO3rAfh0cD8Dw&usg=AFQjCNEDRWM0yU_9jlE3v4Tk3LhWJ5mPOA
http://en.wikipedia.org/wiki/Robert_Tarjan
http://en.wikipedia.org/wiki/SIAM_Journal_on_Computing

