
International Journal of Computer Science and Telecommunications [Volume 3, Issue 7, July 2012] 73

Journal Homepage: www.ijcst.org

Bimal Kumar Goja
1
 and Prof. Devanad Padha

2

1,2Department of Computer Science and IT, University of Jammu, Jammu, J&K-180006, India
1Vimalgoja@yahoo.co.in, 2dpadha@rediff.com

Abstract– Globally rapid technological developments , fast

economic growth, effective storage and effective retrieval of

digital forensic meta data is emerging very fast field in modern

world and use of this modern technology have necessitated

the new emerging trends in digital forensic computing systems.

Digital forensics has joined the mainstream in 2003 the

American Society of Crime Laboratory Directors–Laboratory

Accreditation Board (ASCLD–LAB) recognized digital evidence

as a full-fledged forensic discipline. Here the operating

systems, high capacity storage hard disks, file systems which

are generally operating system dependent and complexity

RAID technology will meet the new challenges for the

effective storage and effective retrieval of digital forensics

meta data (DFMD) files and it is a prerequisite of current

and future computer systems. In this paper we analyzed the

performance of Meta data files, SVM model interface, different

operating systems, comprehensive analysis of files across

different platforms and other various dimensions of RAID

technology for crucial storage.

Index Terms– Digital Forensics Meta Data, Operating

Systems Meta Data Files, Storage Virtualization Model, ZFS

File System, Btrfs, UFS, MFS, NTFS, FAT and RAID

I. INTRODUCTION

N today’s world large storing capacity devices, information

security is playing a vital role in digital forensic computing

[1], [2]. Here storing and retrieval of digital forensics Meta

data files with different versions of operating systems under

its layered OS architect model gives effective retrieval,

storage and high performance to paramount with ever-

increasing challenges of modern technology. Some main

limitations is that of data storage with different versions of

operating systems and storage systems which communicate

with outside world through a narrow block-based interface

operating system layers [2], [3].File system handling the file

allocation table, volumes and the mapping between clusters

which are the basic unit of logical storage on a disk at the

operating system level [3], [4]. It is also handling the

physical location of data in terms of cylinders, tracks and

sectors which are the form of addressing used by the drive's

hardware controller. The FAT contains an entry for every file

stored on the volume that contains the address of the file's

starting cluster. Each cluster contains a pointer to the next

cluster in the file, or an end-of-file indicator at (0xFFFF),

which indicates that this cluster is the end of the file. The

first incarnation of FAT was known as FAT12, which

supported a maximum partition size of 8MB.Next FAT16,

which increased the maximum partition size to 2GB and the

bigger capacity hard disk where put in use and are supported

by the new wide variety of operating systems emerged,

including Windows 95/98/Mac, OS/2, Linux, NTFS, UNIX

and some other versions of UNIX.FAT32 shares all of the

other limitations of FAT16.FAT32 incorporated for dual-boot

environments, although while other operating systems such

as Windows NT can't directly read a FAT32 partition, they

can read it across the network. It's no problem, therefore, to

share information stored on a FAT32 partition with other

computers on a network that are running older versions of

Windows.

The proposed model support is extended to include the

Windows, NTFS, UFS, VFS, Ext2 / Ext3, MFS, Btrfs and

ZFS very effectively to Forensic Meta data (FMD) files for

effective storage and retrieval. FAT file system and other file

systems are completely having different file systems. Volume

is a logical division of data, comprising of a number of files.

A single hard disk can have multiple volumes and unlike

partitions where volumes can span multiple disks. In our

study and experiments It was found that NTFS, Btrfs and

ZFS is probably the most advanced file system available for

computers featuring superior performance, excellent storage,

effective retrieval, security, crash protection and the ability to

handle large volumes of data .The performance of a hard disk

is very important parameter as to storage and the overall

speed of the system, a slow hard disk having the potential to

hinder a fast processors [5], [6].

Here proposed OS model components are effective in

handling the hard disk and determining a number of factors.

Chief among them is the RAID hard disk technology and

rotational speed of the platters. Disk RPM is also a critical

component of hard drive performance because it directly

impacts the latency and the disk transfer rate. The faster the

I

RAID Dependent Performance on Storage & Retrieval of

Digital Forensics Meta Data Files with Different File

Systems

ISSN 2047-3338

Bimal Kumar Goja and Prof. Devanad Padha 74

disk spins, the more data passes under the magnetic heads

that read the data and the slower the RPM, the higher the

mechanical latencies. Hard drives only spin at one constant

speed, and for some time most fast EIDE hard disks span at

5,400 rpm, while a fast SCSI drive are capable of 7,200 rpm.

Seagate pushed spin speed to a staggering 10,033 rpm with

the launch of its Ultra SCSI drive and also the first

manufacturer to release an EIDE hard disk with a spin rate of

7,200 rpm. Mechanical latencies, measured in milliseconds,

include both seek time and rotational latency. "Seek Time" is

measured defines the amount of time it takes a hard drive's

read/write head to find the physical location of a piece of data

on the disk."Latency" is the average time for the sector being

accessed to rotate into position under a head, after a

completed seek. It is easily calculated from the spindle speed,

being the time for half a rotation. A drive's "average access

time" is the interval between the time a request for data is

made by the system and the time the data is available from

the drive. Access time includes the actual seek time,

rotational latency, and command processing overhead time.

The "disk transfer rate" (sometimes called media rate) is

the speed at which data is transferred to and from the disk

media (actual disk platter) and is a function of the recording

frequency. It is generally described in megabytes per second

(MBps). Modern hard disks have an increasing range of disk

transfer rates from the inner diameter to the outer diameter of

the disk under new operating systems layered interface. This

is called a "zoned" recording technique. The key of the model

is media recording parameters relating to density per platter

are Tracks per Inch (TPI) and Bits per Inch (BPI). A track is

a circular ring around the disk. TPI is the number of these

tracks that can fit in a given area (inch). BPI defines how

many bits can be written onto one inch of a track on a disk

surface.

The "host transfer rate" is the speed at which the host

computer can transfer data across the IDE/EIDE or SCSI

interface to the CPU with operating system layered interface.

It is more generally referred to as the data transfer rate, or

DTR. RPM (revolutions per minute.) average Seek Time and

is the average time it takes for the read/write head to move to

a specific location. To compute the average seek time, divide

the time it takes to complete a large number of random seeks

by the number of seeks performed Seek Time.Latency is the

time between initiating a request for data and the beginning

of the actual data transfer. For example, the average latency

of a hard disk drive is easily calculated from the spindle

speed, as the time for half a rotation. In communications,

network latency is the delay introduced when a packet is

momentarily stored, analysed and then forwarded. Access

Time is the time interval between the instant that a piece of

information is requested from a memory or peripheral device

and the instant the information is supplied by the device.

Access time includes the actual seek time, rotational latency,

and command processing overhead time in MBps (Megabytes

per second) a performance measure used for mass storage

devices. Hard disk drives which have EIDE drives generally

have a higher TPI than SCSI drives. It is further founded that

high level storage capacity hard disks and effective

retrieval of forensics meta data files (FMD) can be resolved

by implementation of RAID technology hard disks.

RAID for Redundant Array of Independent Disks

(originally Redundant Array of Inexpensive Disks), is a

technology that provides increased storage and reliability

through redundancy [7], [8]. This is achieved by combining

multiple disk drive components into a logical unit, where

data is distributed across the drives in one of several ways

called RAID levels and the layered interface OS model

“storage virtualization model “ is capable to handle the

files to store bigger data , recognize and retrieve effectively

on RAID disks. Eerily work was first done by David A.

Patterson, Garth A. Gibson, and Randy Katz at the

University of California, Berkeley in 1987 as Redundant

Arrays of Inexpensive Disks. RAID is now used as an

umbrella for high computing; bigger capacity and different

file format schemes that can be divide and replicate data

among multiple physical disk drives under the SVM

interface. The RAW format is an image format, which

contains data that is minimally processed from the image

sensor of camera and scanners. When we click a picture

using our camera the image is saved in RAW file format.

When we attach the camera to our computer, it is easily

accessed by converting this RAW file to another digital

forensic Meta data file format which is done by operating

system interface. However we need some applications to

open RAW file on our computer easily , like windows

operating system uses Coral Paint Shop Photo ProX3 and

TSK kit for NTFS and Linux. The operating system layered

interface uses application which is open source and capable

of handling RAW files, AFF, Encase and changing them to

jpg, bmp, gif, pdf, tiff and many other file formats [7].

Encase (.E01) storage format for compressed meta data

files which is compressed format developed by Expert

witness / guidance software used for compressed , split files

across multiple volumes (file.E01 , file.E02 , etc.).Easiest

format to work with fast and very widely handled by all tools,

supporting many file systems (FAT, NTFS and ext2) which

can not have files lesser than 4 Gb.

AFF storage format which is compressed open source

format which can store images as a single file > 2 GB or as

multiple files (.afd format). It further supports encryption and

digital signatures, it is extensible also [4], [7]. Here the

capital letter words are generic computer words. The DOS,

NTFS, Linux, UNIX, Ext2/Ext3 and SUN UNIX operating

systems are provided which provide a vast number of

filesystems to the user community [8]. In general, one of the

major IO challenges faced today is huge storage, scalability,

embedded images, high performance ,file journals system,

bitmap, scalability, snapshots, compression , RAID support,

copy-on-write and many other issues [7], [8]. File systems

have to scale in their ability to address these issues and

efficiently manage large IO storage subsystems, as well as in

their ability to effectively detect, manage, and repair errors

and faults in the IO channel. Two of the newer filesystem

technologies that aim at addressing today’s IO challenges are

http://en.wikipedia.org/wiki/Storage_virtualization
http://en.wikipedia.org/wiki/David_A._Patterson_(scientist)
http://en.wikipedia.org/wiki/David_A._Patterson_(scientist)
http://en.wikipedia.org/wiki/Garth_A._Gibson

International Journal of Computer Science and Telecommunications [Volume 3, Issue 7, July 2012] 75

SUN’s ZFS file system and the Linux filesystem Btrfs.The

goal of this paper is 1st, to introduce the design architecture,

and features of Btrfs and ZFS,respectively. 2nd, to compare

the two filesystems architecture and RAID to elaborate on

some of the key performance by design concepts and

experiments with files that are embedded in the IO model

frameworks. 3rd to conduct an actual file experiment analysis

which is comparing the performance behavior of Btrfs and

ZFS under varying RAID conditions, utilizing an identical

hardware setup for all the file system.

II. EXPERIMENTAL SETUP

The experimental setup is worked out by incorporating OS

layered model interface (Storage Virtualization Model) for

storing and retrieving meta data files stored across different

operating systems and vital RAID Hard Disk technology in

use. The experimental evidences are shown in Fig. 1 and

through some tables.

Fig. 1. Experimental Setup

A. RAID Experiments

The Meta data files stored across different capacity of

RAID hard disk and different operating systems under

Layered OS model. While doing this experiment different

results were found.

RAID 0 (block-level striping without parity or mirroring)

has no (or zero) redundancy. It provides improved

performance and additional storage but no fault tolerance.

Any disk failure destroys the array, and the likelihood of

failure increases with more disks in the array (at a minimum,

catastrophic data loss is almost twice as likely compared to

single drives without RAID). A single disk failure destroys

the entire array because when data is written to a RAID 0

volume, the data is broken into fragments called blocks. The

number of blocks is dictated by the stripe size, which is a

configuration parameter of the array. The blocks are written

to their respective disks simultaneously on the same sector.

This allows smaller sections of the entire chunk of data to be

read off the drive in parallel, increasing bandwidth. RAID 0

does not implement error checking, so any error is

uncorrectable. Storage capacity in a RAID level 0 array with

four disks with each capacity of 1000 GB and the total

capacity comes out to array 4000 GB. It is calculated as

below:

C = n*d, C = available capacity, n = number of disks,

d = disk capacity

In RAID 1 (mirroring without parity or striping), data is

written identically to multiple disks (a "mirrored set"). While

any number of disks may be used, many implementations

deal with only 2. The array continues to operate as long as at

least one drive is functioning. It was found that with a

appropriate operating system support there can be increased

read performance and only a minimal write performance

reduction and this can be avoided by implementing RAID 1

with a separate controller for each disk in order to perform

simultaneous reads and writes which is called multiplexing

(or duplexing when there are only 2 disks).

Storage capacity in a RAID level 1 array with four disks

with each capacity of 1000 GB and the total capacity comes

out to array 2000 GB. It is calculated as below:

C = n*d/2

In RAID 2 (bit-level striping with dedicated Hamming-

code parity), all disk spindle rotation is synchronized, and

data is striped such that each sequential bit is on a different

disk. Hamming-code parity is calculated across

corresponding bits on disks and stored on at least one parity

disk.

Storage capacity in a RAID level 2 array with four disks

with each capacity of 1000 GB and the total capacity comes

out to array 2000 GB. It is calculated as below:

C = n*d/2

In RAID 3 (byte-level striping with dedicated parity), all

disk spindle rotation is synchronized, and data is striped so

each sequential byte is on a different disk. Parity is calculated

across corresponding bytes on disks and stored on a dedicated

parity disk.

Storage capacity in a RAID level 3 array with four disks

with each capacity of 1000 GB and the total capacity comes

out to array 3000 GB. It is calculated as below:

C = (n-1)*d

RAID 4 (block-level striping with dedicated parity) is

identical to RAID 5, but confines all parity data to a single

disk, which can create a performance bottleneck. In this

setup, files can be distributed between multiple disks. Each

Bimal Kumar Goja and Prof. Devanad Padha 76

disk operates independently which allows I/O requests to be

performed in parallel, though data transfer speeds can suffer

due to the type of parity. The error detection is achieved

through dedicated parity and is stored in a separate, single

disk unit.

RAID 5 (block-level striping with distributed parity)

distributes parity along with the data and requires all drives

but one to be present to operate; the array is not destroyed by

a single drive failure. Upon drive failure, any subsequent

reads can be calculated from the distributed parity such that

the drive failure is masked from the end user. However, a

single drive failure results in reduced performance of the

entire array until the failed drive has been replaced and the

associated data rebuilt.

Storage capacity in a RAID level 5 array with four disks

with each capacity of 1000 GB and the total capacity comes

out to array 3000 GB. It is calculated as below:

C = (n-1)*d

RAID 6 (block-level striping with double distributed

parity) provides fault tolerance of two drive failures; the array

continues to operate with up to two failed drives. This makes

larger RAID groups more practical, especially for high-

availability systems. This becomes increasingly important as

large-capacity drives lengthen the time needed to recover

from the failure of a single drive. Single-parity RAID levels

are as vulnerable to data loss as a RAID 0 array until the

failed drive is replaced and its data rebuilt; the larger the

drive, the longer the rebuild takes. Double parity gives time

to rebuild the array without the data being at risk if a single

additional drive fails before the rebuild is complete.

Storage capacity in a RAID level 6 array with five disks

with each capacity of 1000 GB and the total capacity comes

out to array 3000 GB. It is calculated as below:

C = (n-2)*d

Table 1: Experimental Setup

RAID Level Min. no.

of disks

Size of each

drive (GB)

Total available

space (GB)

RAID 0 1

2

150

150

150

300

RAID 1 2 150 150

RAID 10 or

0+1
4 150 300

RAID 5 3 150 300

RAID 6 4 150 450

RAID 50 6 150 600

RAID 60 8 150 600

B. File experiment results

In this phase of experiment we stored the files with

different Filesystem Technologies and it is found that each

file system has its own behavior in handling the files. File

system handling the File Allocation Table and the mapping

between clusters which are the basic unit of logical storage

on a disk at the operating system level and the physical

location of data in terms of cylinders, tracks and sectors

which are the form of addressing used by the drive's

hardware controller.It was found that NTFS , Btrfs and ZFS

is probably the most advanced file system available for

computers featuring superior performance, excellent storage,

effective retrieval, security, crash protection, ability to handle

large volumes of data and some other vital features of file

handling (Table 2).

Table 2: Experimental Setup

FILE

System

Max. file

name length

Allowable

characters

Max. file

size

Max.

volume size

File

Security

DOS 8 bytes A-Z, 0-9, 2 GiB
1 GiB

At least

No

FAT12

Code units

with length

[9] 255

Except null with

[9], [10] length

any Unicode

32 MiB

32 MiB

No

FAT16

Code units

with length

[9] 255

Except null with

[9], [10] length

any Unicode

2 GiB

2 GiB or 4

GiB

No

FAT32

Code units

with length

[9] 255

Except null with

[9], [10] length

any ASCII

4 GiB

8 TiB

No

MFS 255 bytes
Any byte except

null , :
226 MiB 226 MiB Yes

HFS 31 bytes
Any byte except

null , :
2 GiB 2 TiB Yes

HPFS 255 bytes
Any byte except

null , :
2 GiB 2 TiB Yes

NTFS
255

characters

Any Unicode

except null,

\,/,:,?,*,<,> , “,|,`

16 EiB 16 EiB No

UFS 255 bytes
Any byte except

null
226 TiB 226 TiB Yes

Ext 2 255 bytes
Any byte except

null , /
2 TiB 32 TiB Yes

ZFS 255 bytes
Any Unicode

except null , /
16 GiB 16 GiB Yes

C. ZFS Results

While handling files with ZFS we found the most

important components which are the data integrity and

security.It is imperative that information on disk do not suffer

from bit rot, silent corruption, or even malicious or accidental

tampering. If a power failure occurs during a write operation,

the data is not corrupted, and the file system does not resulted

in any loss of the block pointers. To accelerate the recovery

process, file system incorporate automatically a journaling or

logging feature and volume management solution. In case

some corruption occurs the data is recovered from the mirror

disk and were the the power loss also occurs data is

automatically recovered. ZFS also tackles copy-onwrite

modifications and constantly checksumming every in-use

block in the file system.

1) Copy-on-write transactional model

The ZFS design and represents a combination of a file

system and a volume manager together. The file system

commands require no concept of the underlying physical

disks (because of the storage pool virtualization). All of the

high-level interactions occur through the data management

unit (DMU), a component of a layered model and eliminates

International Journal of Computer Science and Telecommunications [Volume 3, Issue 7, July 2012] 77

the need for journaling or logging, as well as for an fsck or

mirror resync when a machine reboots unexpectedly.To

summarize, ZFS uses a copy-onwrite, transactional object

model. All block pointers within the file system contain a

256-bit checksum of the target block, which is verified when

the block is read. Blocks containing active data are never

overwritten in place; instead, a new block is allocated,

modified data is written to it, and then any metadata blocks

referencing it are similarly read, reallocated, and written. To

reduce the overhead of this process, multiple updates are

grouped into transaction groups, and an intent log is used

when synchronous write semantics are required.

2) End-to-End Checksumming

To avoid accidental data corruption, ZFS provides

memory-based end-to-end checksumming. Most

checksumming file systems only protect against bit rot, as

they use self-consistent blocks where the checksum is stored

with the block itself. In this case, no external checking is

done to verify validity.

3) ZFS Scalability

It is data security and integrity paramount, the ZFS file

system performs well and increases the limits imposed by

modern file systems by using a 128-bit architecture, and by

making all metadata dynamic.

4) The 128-Bit Architecture

It is found that the disk drive capacity roughly doubles

every nine months and trends continues to require a file

systems will require 64-bit addressability in coming years.

Instead of focusing on 64-bits, the ZFS designers

implemented a 128-bit file system. It is found that the ZFS

design provides more capacity than the current 64-bit file

systems.

5) Dynamic Metadata

In addition to being a 128-bit based solution, the ZFS

metadata is 100 percent dynamic. Hence, the creation of new

storage pools and file systems is extremely efficient. Only 1

to 2 percent of the write operations to disk are metadata

related, which results in large (initial) overhead savings.

There are no static inodes and it is found that data uses the

storage pools.

6) RAID-Z

ZFS implements RAID-Z, a solution that is similar to

RAID-5, but uses a variable stripe width to overcome the

RAID-5 write hole issue.With RAID-5, write operations are

performed to 2 or more independent devices, and the parity

block is written as a component of each stripe.Since these

write operations are non-atomic, a power failure between the

data and parity transactions results in the possibility of data

corruption. This issue is address with use of parity region

logging, a concept that is similar to via battery-backed

NVRAM solutions.With the NVRAM solution, the data is

written into the NVRAM, and afterwards the data and parity

writes are made to disk. Finally, the contents of the NVRAM

are released. NVRAM is expensive, and can sometimes turn

into the IO bottleneck component. RAID-Z reflects a

data/parity scheme that utilizes a dynamic stripe width based

approach. Hence, every block reflects a RAID-Z stripe,

regardless of the blocksize. This implies that every RAID-Z

write and represents a full-stripe write operation.

7) Volumes verses Pooled Storage

Disks do not provide the expected checksum, ZFS reads the

parity, and processes the necessary combinatorial

reconstruction to determine which disk returned the bad data.

It further repairs the damaged disk, and returns good data to

the application.

8) Storage Pools

Unlike a traditional UNIX file system that either resides on

a single device or uses multiple devices and a volume

manager, ZFS is implemented on top of virtual storage pools,

labeled the zpools.A pool is constructed from virtual devices

(vdevs), each of which is either a raw device, a mirror

(RAID-1), or a RAID-(10|Z) group.The storage capacity of

all the vdevs are available to all of the file systems in the

zpool.

9) ZFS Snapshots

The ZFS copy-on-write model has another powerful

advantage; when ZFS writes new data, instead of releasing

the blocks containing the old data, it retains them, creating a

snapshot version of the file system. ZFS snapshots are created

quickly, as all the data comprising the snapshot is already

stored. This approach is also space efficient, as any

unchanged data is shared among the file system and its

snapshots. Writable snapshots (clones) can also be created,

resulting in 2 independent file systems that share a set of

blocks. As changes are made to any of the clone file systems,

new data blocks are created to reflect those changes, but any

unchanged blocks continue to be shared, no matter how many

clones exist.

IV. BTRFS RESULTS

The Btrfs was designed and implemented with simple

components which are modified and optimized btree

structures as the main building blocks.

A. Dynamic inode allocation

It is found that dynamic inode allocation is given to storage

files by the filesystem.It is based on the actual workload

where additional inodes are created and allocated. Btrfs

inodes are stored in struct btrfs_inode_item.The Btrfs inode

structure is relatively small, and is not containing any

embedded file data or extended attribute data.

B. Btrfs Snapshots & Subvolumes

Btrfs subvolumes reflect a btree that stores files and

directories .Subvolumes can be given a quota of blocks, and

Bimal Kumar Goja and Prof. Devanad Padha 78

once this quota is reached, no new write operations are

allowed. All of the blocks and file extents inside of the

subvolumes are reference counted to allow snapshot

operations. Experiment done which shows up to 264

subvolumes can be created per Btrfs filesystem.In Btrfs,

snapshots are identical to subvolumes, but their root block is

initially shared with another subvolume. When the snapshot

is taken, the reference count on the root block is increased,

and the copy-on-write Btrfs transaction mechanism ensures

changes made in either the snapshot or the source subvolume

are private to that root. Snapshots are writable active updates

to the snapshot are possible, and they can be snapshotted

again (any number of times). The Btrfs snapshots are

basically utilized either as backups or as fast emergency

copies of the existing data set. Btrfs provides vast flexibility

in regards to snapshot functionalities.

C. Btrfs Copy-On-Write

Data, as well as metadata in Btrfs are protected with copy-

on-write logging. Once the transaction that allocated the

space on disk has committed, any new write operations to

that logical address in the file or btree will go to a newly

allocated block, and block pointers in the btrees and

superblocks will be updated to reflect the new location. Btrfs

also utilizes the copy-onwrite mechanism in conjunction with

snapshot updates.

D. Btrfs RAID Support

Btrfs supports RAID-0, RAID-1, and RAID-10,

respectively. Btrfs allows adding devices (physical disks) to

the file system after the original filesystem has been created

(the dynamic inode allocation feature is paramount to support

this). Further, Btrfs allows for dynamically removing devices

from an existing, mounted filesystem. Btrfs further provides

file system check and defragmentation options that can be

invoked while the filesystem is in use. From a metadata

perspective we found that the following options are supported

right now.

• RAID-0 - the metadata is appended across all devices.

• RAID-1 - the metadata is mirrored across all devices.

• RAID-10 the metadata is appended and mirrored across all

devices.

• Single – the metadata is placed on a single device.

E. Compression

Btrfs provides compression mechanisms focusing on

saving disk space, and potentially improving IO performance

(the zlib kernel capabilities are being used. Btrfs has

significant impact on actual IO performance and has no data

copy on write. There is no data checksums and compress

which has to turn on.

V. BTRFS VERSES ZFS PERFORMANCE

ZFS as well as Btrfs reveal some design and

implementation components that ultimately govern their

respective IO performance. In general, a volume manager

represents a layer of software that groups a set of block

devices for protection and device aggregation purposes. A

filesystem represents an abstraction layer that manages such

a block device by utilizing a portion of physical memory and

layered model interface.From a user space perspective,

applications issue read and writes requests to the filesystem,

and the filesystem generates IO operations to the scenario of

block devices. ZFS collapses these 2 functions into a single

entity. ZFS manages a set of block devices (the leaf vdev

components), normally groups them into so-called protected

devices (such as RAID-Z), and aggregates the top-level vdevs

into pool components. The top-level vdevs can be added to a

pool at any time.

Objects that are stored in a pool are dynamically striped

onto the available vdevs. Associated with the pools, ZFS

manages a number of lightweight filesystem objects. A ZFS

filesystem can basically be described as a set of properties

that are associated with a given mount point.The properties

of a ZFS filesystem include the quota (maximum size) and

reservation (guaranteed size) as well as attributes such as

compression . ZFS files smaller than the recordsize are stored

by utilizing a single filesystem block (FSB). The FSB is of

variable length but is determined in multiple of a disk sector.

Larger files are stored utilizing multiple FSB’s, each FSB of

recordsize bytes.

Currently, the default FSB size equals to 128KB.In other

words, the FSB reflects the basic unit as managed by ZFS

(the checksum is applied to the FSB). This gives ZFS high

performance.The Btrfs filesystem is still undergoing major

development changes. As a matter of fact, the actual disk

format has not yet been finalized. In a nutshell, the Btrfs

filesystem provides and supports writable snapshots,

subvolumes, object-level mirroring and, data checksums,

compression, online filesystem checks and defragmentation

features.

It is further also found that Solid-state drive (SSD)

technologies becoming increasingly common, there is also an

SSD optimized mode that aims at increasing the performance

potential of Btrfs but we found that Sun's ZFS file system is

most capable of handling this feature and found most

innovative traditional file system. ZFS file system is also

been found best product currently in the market also.

Network Appliances’ snapshots and object-based storage

management, transactions, and checksumming features

influenced ZFS.

VI. DISCUSSIONS

The test can be conducted further which will provide an

overview of the most other important parameters of standard

RAID levels.

Array space efficiency is given as an expression in terms of

the number of drives n this expression designates a value

between 0 and 1, representing the fraction of the sum of the

drives capacities that is available for use.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 7, July 2012] 79

VII. CONCLUDING REMARKS

Big data storage, effective retrieval and the distribution of

data across multiple drives is managed by hardware and

operating system interface and main solution is a part of

SVM model. ZFS file system and RAID implementations are

very effectively provided by model interface operating system

which is found capable of storing and effective retrieval of

forensics Meta data files. It is also found that ZFS supports

equivalents of RAID 0, RAID 1, RAID 5 (RAID Z), RAID 6

(RAID Z2), and a triple parity version RAID Z3, and any

nested combination of those like 1+0. ZFS is the native file

system on Solaris, and also available on FreeBSD. It is also

found that a software RAID controller that is built into an

operating system usually uses proprietary data formats and

RAID levels. Most software implementations allow a RAID

to be created from partitions rather than entire physical

drives.

VIII. FUTURE SCOPE

The future scope of this study will be incorporated in

effective and big investigation evidences and the common

forensic analysis, in which evidence is recovered to support

or refute a hypothesis before a criminal court.

This study will also play a vital role for intuitions and

organizations in investigating computer security incidents,

troubleshooting and some information technology (IT)

operational problems by providing practical guidance on

performing high computer computations, bigger storage

resources, including files, operating systems (OS), network

traffic, and applications.

IX. CONCLUSIONS

i). ZFS file system found very effective and efficient across

all levels of RAID hard disk technology.

ii). The files across RAID disk technology provides the

Failure-resistant (systems that protect against loss of

data due to disk failure).

iii). Failure-tolerant (systems that protect against loss of

data access due to failure of any single component).

iv). Disaster-tolerant (systems that consist of two or more

independent zones, either of which provides access to

stored data).

v). Reconstruction of failed drive content to a replacement

drive

vi). Protection against data loss due to a "write hole".

vii). Disk automatic swap and hot swap.

viii). Protection against data loss due to cache failure.

ix). Protection against data loss due to external power

failure.

x). Faster access during read / write operation.

REFERENCES

[1] Brian Carrier,” Digital investigation foundation”, File System

Forensic Analysis, Publisher: Addision Wesley professional,

pub dates: 17th arch.2005, ch. 1, pp12-21.

[2] Brian Carrier, “File System Forensic Analysis”, Science direct,

Journal of digital forensic, 17th Agust.2005, volume1, issue

No.2, pp9-4.

[3] Nelson et al., “Meta data file System”, International journal of

Digital evidence, 11TH March 2004, volume 1, issue No. 2,

pp17-29.

[4] Nelson et al., “Meta data file System”, International journal of

Digital evidence, 19th September.2006, volume 2, issue No.3,

pp23-47.

[5] S. Ross, “Archival digital preservation and methodological

Preservation digital libraries“, 11th European conference,

Seamus Ross, HATII University of Glasgow, 17th September.

2007.

[6] Van der Hoeven , Jeffrey, Bram Lohman, and Verdegem

Remco , “Emulation for Digital Preservation in Practice“ , The

Results in International Journal of Digital Curation , 7th

September.2007, volume 2, issue No.2 , pp12-23.

[7] Matthew G, Kirschenbaum, Richard Ovenden, Gabriela

Redwine, “Presevation of strategy of digital Forensic meta

data”, 5th Australian Digital forensic conference, Edith Cowan

university, Mount lawlay campus, 3rd December.2007.

[8] Mason, C., “The Btrfs Filesystem “, The Orcale cooperation,

2007.

Bimal Kumar Goja: Technical Officer

Department of Computer Science & IT,

University of Jammu, Jammu J&K, India.

