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Abstract— CORDIC is an acronym for COordinate Rotation 

Digital Computer. It is a hardware-efficient, shift and add 

algorithm that is used in various digital signal processing 

applications for computing trigonometric, logarithmic, hyperbolic 

and other linear and transcendental functions. Traditionally the 

algorithm is implemented in hardware in two different styles: 

folded and unfolded. Unfolded structures are pipelined to 

increase the throughput of the structure. This paper implements 

the algorithm in normal unfolded style, but using multistage 

pipelined adders. The resulting structure is compared against the 

traditional unfolded and pipelined approaches and is shown to 

have an improved throughput. The structure has been coded in 

VHDL and implemented using Xilinx FPGA synthesis tool. The 

algorithm has been simulated for sine and cosine function 

evaluation. The simulations are carried out using Xilinx ISim tool. 

 

Index Terms—FPGA, Rotation Mode, Pipelined Adders and 

Unfolded Architecture 

 

I. INTRODUCTION 

ANY of the algorithms used today in DSP require 

elementary functions such as trigonometric, inverse 

trigonometric, logarithmic, exponential, multiplication and 

division functions [1]. The traditional approach for 

implementing these functions was to look for some software 

solutions. These included the use of look-up tables, power 

series and polynomial expansion methods. These software 

based approaches, however, suffered from many drawbacks. 

Look-up table methods, although fast, required large 

memory for high precision results. The use of power series was  
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time consuming as it was too slow to converge to a desired 

precision. 

With digital signal processing switching back to hardware 

efficient solutions [2], CORDIC came to picture. The 

CORDIC method of computation basically represents a 

compromise between the look-up table method and the power 

series method, wherein the precision of the result is preserved 

without having to use any considerable amount of on chip 

memory. With the advancement in VLSI technology, the 

design of high speed VLSI architectures for modern digital 

signal processing systems became a reality. This provided 

designers with significant impetus to map CORDIC algorithm 

into hardware structures. However, the frequent use of these 

architectures in modern DSP systems requires a rapid increase 

in performance accompanied by a reduction in cost and shorter 

time to market [1]. This is achieved by optimizing these 

structures for various performance parameters such as speed, 

power and area. One way of optimizing these structures is to 

incorporate such architectural modifications that enable them 

to be clocked at higher operating frequencies. The optimized 

structures are then implemented using suitable hardware 

platforms. 

IC technology provides a variety of implementation formats 

for system designers. The implementation format defines the 

technology to be used, how the switching elements are 

organized and how the system functionality will be 

materialized. Perhaps the most advanced implementation 

platform used today is the reconfigurable platform. FPGAs are 

reconfigurable systems that are often used as co-processors to 

implement CORDIC architectures. Historically, FPGAs have 

been slower, less energy efficient and generally achieved less 

functionality than their fixed ASIC counterparts. This has 

provided enough scope for designers to optimize FPGA based 

structures for parameters like throughput, power, area etc. 

The rest of the paper is organized in the following manner. 

Section II discusses the CORDIC algorithm and its operating 

mode for sine and cosine function evaluation. Section III 

discusses the folded and unfolded CORDIC architectures. 

Section IV discusses the pipelined addition. Section V 

provides the implementation and simulation results and based 

on the comparison metrics, performance evaluation of folded, 

unfolded, pipelined and proposed CORDIC architectures is 

carried out. 
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II. CORDIC ALGORITHM 

The CORDIC algorithm provides an iterative method of 

performing vector rotations by arbitrary angles using only shift 

and add operations [3]. The algorithm, credited to Volder [4], 

is derived from the general (Givens) rotation transform:     

x'=  x cos ø – y sin ø          (1) 

y'=  x sin ø + y cos ø          (2) 

This rotates a vector in a Cartesian plane by the angle ø. These 

can be rearranged so that: 

x'= cos ø  [ x - y tan ø ]         (3) 

y'= cos ø [ y + x tan ø ]         (4) 

The rotation angles are restricted so that, tan ø = ±2
-i
. This 

reduces the multiplication operation by the tangent term to 

simple shift operation. Any given target angle ø can be 

decomposed into a sequence of smaller micro rotations. Thus ø 

is decomposed as a sequence of elementary rotations: 

ø =Σ αi              (5) 

 Using these basic ideas we have the basic iterative rotations 

as: 

x i+1 = cos αi  [ xi  –  yi tan αi  ]         (6) 

y i+1 = cos αi   [yi  +  xi tan αi  ]        (7)  

The rotation angles are restricted so that: 

tan αi = ±2
-i
 

This assures that the multiplication by the tangent term is 

reduced to simple shifting operation. 

x i+1 = [ xi – yi  tan αi  ] / ( 1 + tan
2
 αi )

1/2
 

y i+1 = [ yi + xi  tan αi  ] / ( 1 + tan
2
 αi )

1/2
 

 Rearranging: 

x i+1 = [ xi – yi  (±2
-i
) ] / ( 1 + 2

-2i 
)
1/2
 

y i+1 = [ yi + xi  (±2
-i
) ] /  ( 1 + 2

-2i 
)
1/2
   

Or    

x i+1 = Ki. [ xi  –  yi .di. 2
-i
]         (8) 

      y i+1 = Ki. [ yi  +  xi .di. 2
-i
]        (9) 

    Where, 

Ki   = 1/(1+2
-2i
)
1/2
; known as  scale constant. 

                    di = ±1;  known as decision function. 

Removing the scale constant from the iterative equations 

yields a shift-add algorithm for vector rotation.  The product of 

the Ki’s can be applied elsewhere in the system or treated as 

part of a system processing gain.  That product approaches 

0.6073 as the number of iterations goes to infinity. Therefore, 

the rotation algorithm has a gain, An, of approximately 1.647. 

The exact gain depends on the number of iterations, and obeys 

the relation: 

An = Π [1+2
-2i
]
1/2 

 The angle accumulator adds a third difference equation to the 

CORDIC algorithm: 

z i+1 = zi – αi 

z i+1 = zi – di tan
-1
 (  2

-i 
 )              { tan αi = ±2

-i
 } 

For a single CORDIC micro-rotation the resulting equations 

are: 

 x i+1  =  xi  –  yi .di. 2
-I          

(10) 

y i+1  =  yi  +  xi .di. 2
-I          

(11) 

z i+1  =  zi  –  di  tan
-1
 (  2

-i 
 )       (12) 

The CORDIC rotator is normally operated in one of two 

modes.  In rotation mode, the angle accumulator is initialized 

with the desired rotation angle. The rotation decision at each 

iteration is made to diminish the magnitude of the residual 

angle in the angle accumulator.  The decision at each iteration 

is therefore based on the sign of the residual angle after each 

step.  The CORDIC equations are: 

x i+1 = xi – yi .di. 2
-i
 

y i+1 =  yi + xi .di. 2
-i 

z i+1 = zi – di tan
-1
 (  2

-i 
 ), 

Where, 

di = -1 if zi  < 0 

 +1,      otherwise 

After n iterations we are provided with following results: 

xn =  An [ x0 cosz0 – y0 sinz0 ]        (13) 

yn =  An [ y0 cosz0 + x0 sinz0 ]        (14) 

 zn  =  0                 (15) 
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Setting the y component of the input vector to zero reduces the 

rotation mode result to: 

 xn =  An . x0 cosz0                                              (16) 

yn =  An . x0 sinz0                                                                      (17) 

By setting x0 equal to 1/An, the rotation produces the unscaled 

sine and cosine of the angle argument z0. 

III. CORDIC ARCHITECTURES 

In general, CORDIC architectures can be broadly classified 

as folded and unfolded, based upon the hardware realization of 

the three iterative equations [5]. A direct duplication of 

equations 10, 11 and 12 into hardware results in folded 

architecture. Folded architectures have to be multiplexed in 

time domain so that all the iterations are carried out in a single 

functional unit. This provides a means for trading area for 

speed [6] in signal processing architectures. One of the widely 

used folded architectures is implementing the entire CORDIC 

core using a word serial design.  

A. Folded word serial design 

A folded word serial design [7], [8], also called iterative bit-

parallel design is obtained simply by duplicating each of the 

three difference equations in hardware as shown in Fig. 1.  

 
 

Fig. 1. A folded word serial CORDIC 

 

Being a shift- add algorithm, each individual unit consists of 

an adder/subtractor unit, a shifter and a register for holding the 

computed values after each iteration. To start with, the initial 

values are fed into each branch via a multiplexer. The value in 

the z branch determines the operation of the adder-subtractor 

unit. Signals in the x and y branch pass through the shifter 

units and are then added to (or subtracted from) the unshifted 

signal in the opposite path. The z branch arithmetically 

combines the register values with the values taken from a 

lookup table whose address is changed according to the 

number of iteration. The result of this operation determines the 

nature of operation for the next iteration. After n iterations the 

results are directly read from the adder/subtractor units. A 

finite state machine is used to keep a track of shifting distances 

and the ROM addresses. Since the adder/subtractor unit and 

the shifters in each path are shared on time basis this 

conventional approach of implementing the CORDIC 

algorithm is not suitable for high speed applications [7]. 

Another disadvantage is with respect to the shift operations. 

When implemented in hardware the shifters have to change the 

shift distance with the number of iteration. For large number of 

iterations these require a high fan in and reduce the maximum 

speed for the application [7, 9].These shifters do not map well 

into FPGA architectures and if implemented require several 

layers of logic. The result is a slow design that uses large 

number of logic cells. In addition the output rate is also limited 

by the fact that the operation is performed iteratively and 

therefore the maximum output rate equals 1/n times the clock 

rate, where n is the number of iterations. 

B. Unfolded parallel design 

The iterative nature of the CORDIC processor discussed 

above demands that the processor has to perform iterations at 

n times the data rate.  The iteration process can be unfolded [8, 

10] so that each of n processing elements always performs the 

same iteration. A direct application of the unfolding 

transformation is to design parallel processing architectures 

from serial processing architectures. At the word level, this 

means that word-parallel architectures can be designed from 

word-serial architectures [11]. An unfolded CORDIC 

processor is shown in Fig. 2. 

 
 

Fig. 2. Unfolded CORDIC design 

 

Unfolding the CORDIC processor results in two significant 

changes. First, the shifter in each unit is of fixed shift i.e. it has 

to perform a constant shifting operation in each stage. Thus the 

shifter needs not to be updated as in the iterative structure. 

This makes their implementation in FPGAs quite feasible. 

Second, the unfolding process eliminates the use of ROM from 

the processor which was required to hold the constant angle 

values during each iteration. Those constants can be hardwired 

instead of requiring storage space.  The entire CORDIC 

processor is thus reduced to an array of interconnected adder- 

subtraction units.  The need for registers is also eliminated, 

making the unrolled processor strictly combinatorial. Another 

advantage of the unrolled design is that the processor can be 

easily pipelined [12] by inserting registers between the adder-

subtraction units.  In case of most FPGA architectures there 

are already registers present in each logic cell, so the addition 

of the pipeline registers has no additional hardware cost.  
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IV. PIPELINED ADDERS 

A very useful implementation technique, especially for 

signal processing circuits, is pipelining. Consider a 128-bit 

adder made up of four 32-bit adders. A parallel 

(combinational) implementation is described in Fig. 3. The 

computation time (latency) of the circuit is roughly equal to 

4.T, where T is the computation time of a 32-bit adder, so that 

the maximum sample rate of the input operands x and y is 

equal to 1/(4.T). The corresponding pipelined circuit is shown 

in Fig. 4: a register is inserted between the computation 

resources assigned to successive cycles, in such a way that a 

new addition can be started as soon as the first cycle of the 

preceding addition has been completed, that is, every T 

seconds. In this way the latency is still equal to 4.T. 

Nevertheless, the sample rate is equal to 1/T instead of 1/(4.T). 

 
 

Fig. 3. Parallel Adder 

 

 
 

Fig. 4. Pipelined Adder 

 

Most often, the basic cell of the field programmable gate 

arrays includes a flip flop so that the insertion of pipeline 

registers does not necessarily increase the total cost, computed 

in terms of used basic cells. The pipeline registers could 

consist of flip-flops not used in the non pipelined version. 

V. IMPLEMENTATION AND RESULTS 

A. Methodology 

The proposed multistage pipelined adder based CORDIC 

processor is implemented in seven stages and for a word length 

of 32 and 64 bits. The initial design entry is done using 

VHDL. The design translation is carried out in Xilinx ISE 12.4 

[13]. The simulator database is then analyzed for different 

performance parameters and logical conclusions are drawn. 

The core is implemented with the following synthesis 

description: 

Platform: FPGA 

Family: Virtex5 

Target device: XC5VLX30 

Package: FF324 

Fig. 5 shows the generated RTL schematic of the proposed 

multistage pipelined adder based CORDIC for one iteration. 

 
 

Fig. 5. RTL schematic of Proposed CORDIC 

 

B. Simulations 

The generated core has been simulated for sine and cosine 

functions by operating it in the rotation mode. Fig. 6 shows the 

simulated sine and cosine values of certain angles calculated 

using 32-bit proposed CORDIC.  
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Fig. 6. Simulation result for 32-bit proposed CORDIC 

 

C. Analysis and Results 

The proposed structure is analyzed for different 

performance parameters. Table 1 gives the maximum 

operating frequency comparison for the 4-stage pipeline 

proposed, unfolded and pipelined structures for word lengths 

of 32 and 64 bits. 

Table 1: Throughput comparison for 32 and 64-bit CORDIC 

Parameter 

CORDIC architectures. 

Proposed (4-

stage pipeline) 

Unfolded 

(parallel) 

Unfolded 

(pipelined) 

32-bit 64-bit 
32-

bit 
64-bit 32-bit 64-bit 

Max. 

operating 

frequency 

 

327.8 

MHz 
 

293.5

MHz 
 

31.6 

MHz 
16.99 
MHz 

125.9

MHz 
 

74.6 

MHz 
 

 

It is observed that when frequency response of the CORDIC 

structures is concerned, the proposed architecture has 

maximum operating frequency. The proposed structure can 

thus be clocked at high frequencies resulting in faster 

operations. The throughput can further be increased by 

increasing the number of pipeline stages of the adder unit. 

Table 2 below gives the throughput comparisons for 64-bit 

CORDIC using 8 pipeline stages in the adder unit. 

Table 2: Throughput comparison for 64-bit CORDIC using 8 pipeline stages 

Parameter 

CORDIC architectures. 

Proposed (8-

stage pipeline) 
Unfolded (parallel) 

Unfolded 

(pipelined) 

64-bit 64-bit 64-bit 

Max. 

operating 

frequency 

 

325.850MHz 
 

16.994 MHz 74.64 MHz 
 

 

The proposed structure is analyzed for power consumption 

during operation. Since the structure is clocked at higher 

frequencies the power dissipation values are slightly greater 

than the conventional structures. Table 3 below gives the 

power comparison for the three structures. The power analysis 

has been carried out using Xpower analyzer tool 
 

 

 

Table 3: Power comparison for 32-bit CORDIC  

Instance 

(resource) 

CORDIC architectures 

Proposed (4-

stage 

pipeline) 

Unfolded 

(parallel) 

Folded 

(pipelined) 

power ( clock) 36.97 mW -- 17.75 mW 

power ( logic) 20.28 mW 13.87 mW 9.20 mW 

power ( signals) 19.86 mW 11.01 mW 12.33 mW 

power ( IOs) 180.26 mW 196.07 mW 196.64 mW 

power ( leakage)/ 

quiescent 
382.50 mW 382.30 mW 382.21 mW 

dynamic power 257.3  mW 220.95mW 235.92 mW 

total power 

dissipation 
639.86 mW 603.25 mW 618.13 mW 

 

Finally the three designs are analyzed for area consumption 

in terms of resource utilization and the results are tabulated in 

Table 4 below: 

Table 4: Area comparison for 32-bit CORDIC 

parameter 

CORDIC architectures. 

Proposed (4-

stage 

pipeline) 

Unfolded 

(parallel) 

Folded 

(pipelined) 

No. of Registers 1,579 
-- 

678 

No. of  LUTs 2,376 1093 1006 

 No. of logic 

blocks used 1,705 1093 1006 

No. of occupied 

Slices 989 589 336 

No. of LUT Flip 

Flop pairs used 2,532 1093 1013 

No. of bonded 

IOBs 194 193 194 

 

As expected, the proposed structure is not an efficient user 

of logic since the introduction of pipeline stages requires 

additional registers to be inserted in between adders. However, 

since the implementation is FPGA based registers are already 

present in each logic cell and does not add to the overall cost 

of implementation. 

VI. CONCLUSION 

This paper proposed a multistage pipelined adder based 

CORDIC structure. The proposed structure was meant for 

modern day high speed and large operand DSP applications. 

The performance analysis of the proposed structure was 

carried out and the results were compared with the traditional 

pipelined and unfolded CORDIC architectures. The 
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implementation was targeted for FPGA devices. The proposed 

design uses the resources extensively but shows the best 

latency per sample and thus maximum throughput rate. It 

should be noted that the proposed structure will have no effect 

on the precision of the results, as the precision is the function 

of number of stages in the CORDIC core and not the approach 

used to implement the core. The paper provides a future scope 

for further improvements in the overall throughput by utilizing 

the same pipelined architecture for higher radix CORDIC 

algorithms. Also the structure may be optimized for power and 

area parameters by the repeated use of adders; this however 

will result in the decrease in the throughput of the overall 

structure.    
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