
International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 105

Journal Homepage: www.ijcst.org

Burhan Khurshid
1
, Ghulam Mohd Rather

1
 and Najeeb-ud-din Hakim

1

1
Department of ECE, National Institute of Technology, Srinagar, J & K, India

Abstract— CORDIC is an acronym for COordinate Rotation

Digital Computer. It is a hardware-efficient, shift and add

algorithm that is used in various digital signal processing

applications for computing trigonometric, logarithmic, hyperbolic

and other linear and transcendental functions. Traditionally the

algorithm is implemented in hardware in two different styles:

folded and unfolded. Unfolded structures are pipelined to

increase the throughput of the structure. This paper implements

the algorithm in normal unfolded style, but using multistage

pipelined adders. The resulting structure is compared against the

traditional unfolded and pipelined approaches and is shown to

have an improved throughput. The structure has been coded in

VHDL and implemented using Xilinx FPGA synthesis tool. The

algorithm has been simulated for sine and cosine function

evaluation. The simulations are carried out using Xilinx ISim tool.

Index Terms—FPGA, Rotation Mode, Pipelined Adders and

Unfolded Architecture

I. INTRODUCTION

ANY of the algorithms used today in DSP require

elementary functions such as trigonometric, inverse

trigonometric, logarithmic, exponential, multiplication and

division functions [1]. The traditional approach for

implementing these functions was to look for some software

solutions. These included the use of look-up tables, power

series and polynomial expansion methods. These software

based approaches, however, suffered from many drawbacks.

Look-up table methods, although fast, required large

memory for high precision results. The use of power series was

This work has been carried out in SMDP-II VLSI laboratory of the

Electronics and Communication Engineering Department, of National

Institute of Technology Srinagar, India. This SMDP – II VLSI project is

funded by Ministry of Communication and Information Technology,

Government of India. Authors are grateful to the Ministry for the facilities

provided under this project.

B. Khurshid is with the Electronics and Communication Department

National Institute of Technology, Srinagar, J & K, India (phone: 9797875163;

e-mail: khurshid_burhan@yahoo.com).

G. M. Rather is with the Electronics and Communication Department

National Institute of Technology, Srinagar, J & K, India.

N. Hakim is with the Electronics and Communication Department

National Institute of Technology, Srinagar, J & K, India.

time consuming as it was too slow to converge to a desired

precision.

With digital signal processing switching back to hardware

efficient solutions [2], CORDIC came to picture. The

CORDIC method of computation basically represents a

compromise between the look-up table method and the power

series method, wherein the precision of the result is preserved

without having to use any considerable amount of on chip

memory. With the advancement in VLSI technology, the

design of high speed VLSI architectures for modern digital

signal processing systems became a reality. This provided

designers with significant impetus to map CORDIC algorithm

into hardware structures. However, the frequent use of these

architectures in modern DSP systems requires a rapid increase

in performance accompanied by a reduction in cost and shorter

time to market [1]. This is achieved by optimizing these

structures for various performance parameters such as speed,

power and area. One way of optimizing these structures is to

incorporate such architectural modifications that enable them

to be clocked at higher operating frequencies. The optimized

structures are then implemented using suitable hardware

platforms.

IC technology provides a variety of implementation formats

for system designers. The implementation format defines the

technology to be used, how the switching elements are

organized and how the system functionality will be

materialized. Perhaps the most advanced implementation

platform used today is the reconfigurable platform. FPGAs are

reconfigurable systems that are often used as co-processors to

implement CORDIC architectures. Historically, FPGAs have

been slower, less energy efficient and generally achieved less

functionality than their fixed ASIC counterparts. This has

provided enough scope for designers to optimize FPGA based

structures for parameters like throughput, power, area etc.

The rest of the paper is organized in the following manner.

Section II discusses the CORDIC algorithm and its operating

mode for sine and cosine function evaluation. Section III

discusses the folded and unfolded CORDIC architectures.

Section IV discusses the pipelined addition. Section V

provides the implementation and simulation results and based

on the comparison metrics, performance evaluation of folded,

unfolded, pipelined and proposed CORDIC architectures is

carried out.

M

FPGA Implementation of a High Speed Multistage

Pipelined Adder Based CORDIC Structure for Large

Operand Word Lengths
ISSN 2047-3338

Burhan Khurshid et al. 106

II. CORDIC ALGORITHM

The CORDIC algorithm provides an iterative method of

performing vector rotations by arbitrary angles using only shift

and add operations [3]. The algorithm, credited to Volder [4],

is derived from the general (Givens) rotation transform:

x'= x cos ø – y sin ø (1)

y'= x sin ø + y cos ø (2)

This rotates a vector in a Cartesian plane by the angle ø. These

can be rearranged so that:

x'= cos ø [x - y tan ø] (3)

y'= cos ø [y + x tan ø] (4)

The rotation angles are restricted so that, tan ø = ±2
-i
. This

reduces the multiplication operation by the tangent term to

simple shift operation. Any given target angle ø can be

decomposed into a sequence of smaller micro rotations. Thus ø

is decomposed as a sequence of elementary rotations:

ø =Σ αi (5)

 Using these basic ideas we have the basic iterative rotations

as:

x i+1 = cos αi [xi – yi tan αi] (6)

y i+1 = cos αi [yi + xi tan αi] (7)

The rotation angles are restricted so that:

tan αi = ±2
-i

This assures that the multiplication by the tangent term is

reduced to simple shifting operation.

x i+1 = [xi – yi tan αi] / (1 + tan
2
 αi)

1/2

y i+1 = [yi + xi tan αi] / (1 + tan
2
 αi)

1/2

 Rearranging:

x i+1 = [xi – yi (±2
-i
)] / (1 + 2

-2i
)
1/2

y i+1 = [yi + xi (±2
-i
)] / (1 + 2

-2i
)
1/2

Or

x i+1 = Ki. [xi – yi .di. 2
-i
] (8)

 y i+1 = Ki. [yi + xi .di. 2
-i
] (9)

 Where,

Ki = 1/(1+2
-2i
)
1/2
; known as scale constant.

 di = ±1; known as decision function.

Removing the scale constant from the iterative equations

yields a shift-add algorithm for vector rotation. The product of

the Ki’s can be applied elsewhere in the system or treated as

part of a system processing gain. That product approaches

0.6073 as the number of iterations goes to infinity. Therefore,

the rotation algorithm has a gain, An, of approximately 1.647.

The exact gain depends on the number of iterations, and obeys

the relation:

An = Π [1+2
-2i
]
1/2

 The angle accumulator adds a third difference equation to the

CORDIC algorithm:

z i+1 = zi – αi

z i+1 = zi – di tan
-1
 (2

-i
) { tan αi = ±2

-i
 }

For a single CORDIC micro-rotation the resulting equations

are:

 x i+1 = xi – yi .di. 2
-I

(10)

y i+1 = yi + xi .di. 2
-I

(11)

z i+1 = zi – di tan
-1
 (2

-i
) (12)

The CORDIC rotator is normally operated in one of two

modes. In rotation mode, the angle accumulator is initialized

with the desired rotation angle. The rotation decision at each

iteration is made to diminish the magnitude of the residual

angle in the angle accumulator. The decision at each iteration

is therefore based on the sign of the residual angle after each

step. The CORDIC equations are:

x i+1 = xi – yi .di. 2
-i

y i+1 = yi + xi .di. 2
-i

z i+1 = zi – di tan
-1
 (2

-i
),

Where,

di = -1 if zi < 0

 +1, otherwise

After n iterations we are provided with following results:

xn = An [x0 cosz0 – y0 sinz0] (13)

yn = An [y0 cosz0 + x0 sinz0] (14)

 zn = 0 (15)

International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 107

Setting the y component of the input vector to zero reduces the

rotation mode result to:

 xn = An . x0 cosz0 (16)

yn = An . x0 sinz0 (17)

By setting x0 equal to 1/An, the rotation produces the unscaled

sine and cosine of the angle argument z0.

III. CORDIC ARCHITECTURES

In general, CORDIC architectures can be broadly classified

as folded and unfolded, based upon the hardware realization of

the three iterative equations [5]. A direct duplication of

equations 10, 11 and 12 into hardware results in folded

architecture. Folded architectures have to be multiplexed in

time domain so that all the iterations are carried out in a single

functional unit. This provides a means for trading area for

speed [6] in signal processing architectures. One of the widely

used folded architectures is implementing the entire CORDIC

core using a word serial design.

A. Folded word serial design

A folded word serial design [7], [8], also called iterative bit-

parallel design is obtained simply by duplicating each of the

three difference equations in hardware as shown in Fig. 1.

Fig. 1. A folded word serial CORDIC

Being a shift- add algorithm, each individual unit consists of

an adder/subtractor unit, a shifter and a register for holding the

computed values after each iteration. To start with, the initial

values are fed into each branch via a multiplexer. The value in

the z branch determines the operation of the adder-subtractor

unit. Signals in the x and y branch pass through the shifter

units and are then added to (or subtracted from) the unshifted

signal in the opposite path. The z branch arithmetically

combines the register values with the values taken from a

lookup table whose address is changed according to the

number of iteration. The result of this operation determines the

nature of operation for the next iteration. After n iterations the

results are directly read from the adder/subtractor units. A

finite state machine is used to keep a track of shifting distances

and the ROM addresses. Since the adder/subtractor unit and

the shifters in each path are shared on time basis this

conventional approach of implementing the CORDIC

algorithm is not suitable for high speed applications [7].

Another disadvantage is with respect to the shift operations.

When implemented in hardware the shifters have to change the

shift distance with the number of iteration. For large number of

iterations these require a high fan in and reduce the maximum

speed for the application [7, 9].These shifters do not map well

into FPGA architectures and if implemented require several

layers of logic. The result is a slow design that uses large

number of logic cells. In addition the output rate is also limited

by the fact that the operation is performed iteratively and

therefore the maximum output rate equals 1/n times the clock

rate, where n is the number of iterations.

B. Unfolded parallel design

The iterative nature of the CORDIC processor discussed

above demands that the processor has to perform iterations at

n times the data rate. The iteration process can be unfolded [8,

10] so that each of n processing elements always performs the

same iteration. A direct application of the unfolding

transformation is to design parallel processing architectures

from serial processing architectures. At the word level, this

means that word-parallel architectures can be designed from

word-serial architectures [11]. An unfolded CORDIC

processor is shown in Fig. 2.

Fig. 2. Unfolded CORDIC design

Unfolding the CORDIC processor results in two significant

changes. First, the shifter in each unit is of fixed shift i.e. it has

to perform a constant shifting operation in each stage. Thus the

shifter needs not to be updated as in the iterative structure.

This makes their implementation in FPGAs quite feasible.

Second, the unfolding process eliminates the use of ROM from

the processor which was required to hold the constant angle

values during each iteration. Those constants can be hardwired

instead of requiring storage space. The entire CORDIC

processor is thus reduced to an array of interconnected adder-

subtraction units. The need for registers is also eliminated,

making the unrolled processor strictly combinatorial. Another

advantage of the unrolled design is that the processor can be

easily pipelined [12] by inserting registers between the adder-

subtraction units. In case of most FPGA architectures there

are already registers present in each logic cell, so the addition

of the pipeline registers has no additional hardware cost.

Burhan Khurshid et al. 108

IV. PIPELINED ADDERS

A very useful implementation technique, especially for

signal processing circuits, is pipelining. Consider a 128-bit

adder made up of four 32-bit adders. A parallel

(combinational) implementation is described in Fig. 3. The

computation time (latency) of the circuit is roughly equal to

4.T, where T is the computation time of a 32-bit adder, so that

the maximum sample rate of the input operands x and y is

equal to 1/(4.T). The corresponding pipelined circuit is shown

in Fig. 4: a register is inserted between the computation

resources assigned to successive cycles, in such a way that a

new addition can be started as soon as the first cycle of the

preceding addition has been completed, that is, every T

seconds. In this way the latency is still equal to 4.T.

Nevertheless, the sample rate is equal to 1/T instead of 1/(4.T).

Fig. 3. Parallel Adder

Fig. 4. Pipelined Adder

Most often, the basic cell of the field programmable gate

arrays includes a flip flop so that the insertion of pipeline

registers does not necessarily increase the total cost, computed

in terms of used basic cells. The pipeline registers could

consist of flip-flops not used in the non pipelined version.

V. IMPLEMENTATION AND RESULTS

A. Methodology

The proposed multistage pipelined adder based CORDIC

processor is implemented in seven stages and for a word length

of 32 and 64 bits. The initial design entry is done using

VHDL. The design translation is carried out in Xilinx ISE 12.4

[13]. The simulator database is then analyzed for different

performance parameters and logical conclusions are drawn.

The core is implemented with the following synthesis

description:

Platform: FPGA

Family: Virtex5

Target device: XC5VLX30

Package: FF324

Fig. 5 shows the generated RTL schematic of the proposed

multistage pipelined adder based CORDIC for one iteration.

Fig. 5. RTL schematic of Proposed CORDIC

B. Simulations

The generated core has been simulated for sine and cosine

functions by operating it in the rotation mode. Fig. 6 shows the

simulated sine and cosine values of certain angles calculated

using 32-bit proposed CORDIC.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 109

Fig. 6. Simulation result for 32-bit proposed CORDIC

C. Analysis and Results

The proposed structure is analyzed for different

performance parameters. Table 1 gives the maximum

operating frequency comparison for the 4-stage pipeline

proposed, unfolded and pipelined structures for word lengths

of 32 and 64 bits.

Table 1: Throughput comparison for 32 and 64-bit CORDIC

Parameter

CORDIC architectures.

Proposed (4-

stage pipeline)

Unfolded

(parallel)

Unfolded

(pipelined)

32-bit 64-bit
32-

bit
64-bit 32-bit 64-bit

Max.

operating

frequency

327.8

MHz

293.5

MHz

31.6

MHz
16.99
MHz

125.9

MHz

74.6

MHz

It is observed that when frequency response of the CORDIC

structures is concerned, the proposed architecture has

maximum operating frequency. The proposed structure can

thus be clocked at high frequencies resulting in faster

operations. The throughput can further be increased by

increasing the number of pipeline stages of the adder unit.

Table 2 below gives the throughput comparisons for 64-bit

CORDIC using 8 pipeline stages in the adder unit.

Table 2: Throughput comparison for 64-bit CORDIC using 8 pipeline stages

Parameter

CORDIC architectures.

Proposed (8-

stage pipeline)
Unfolded (parallel)

Unfolded

(pipelined)

64-bit 64-bit 64-bit

Max.

operating

frequency

325.850MHz

16.994 MHz 74.64 MHz

The proposed structure is analyzed for power consumption

during operation. Since the structure is clocked at higher

frequencies the power dissipation values are slightly greater

than the conventional structures. Table 3 below gives the

power comparison for the three structures. The power analysis

has been carried out using Xpower analyzer tool

Table 3: Power comparison for 32-bit CORDIC

Instance

(resource)

CORDIC architectures

Proposed (4-

stage

pipeline)

Unfolded

(parallel)

Folded

(pipelined)

power (clock) 36.97 mW -- 17.75 mW

power (logic) 20.28 mW 13.87 mW 9.20 mW

power (signals) 19.86 mW 11.01 mW 12.33 mW

power (IOs) 180.26 mW 196.07 mW 196.64 mW

power (leakage)/

quiescent
382.50 mW 382.30 mW 382.21 mW

dynamic power 257.3 mW 220.95mW 235.92 mW

total power

dissipation
639.86 mW 603.25 mW 618.13 mW

Finally the three designs are analyzed for area consumption

in terms of resource utilization and the results are tabulated in

Table 4 below:

Table 4: Area comparison for 32-bit CORDIC

parameter

CORDIC architectures.

Proposed (4-

stage

pipeline)

Unfolded

(parallel)

Folded

(pipelined)

No. of Registers 1,579
--

678

No. of LUTs 2,376 1093 1006

 No. of logic

blocks used 1,705 1093 1006

No. of occupied

Slices 989 589 336

No. of LUT Flip

Flop pairs used 2,532 1093 1013

No. of bonded

IOBs 194 193 194

As expected, the proposed structure is not an efficient user

of logic since the introduction of pipeline stages requires

additional registers to be inserted in between adders. However,

since the implementation is FPGA based registers are already

present in each logic cell and does not add to the overall cost

of implementation.

VI. CONCLUSION

This paper proposed a multistage pipelined adder based

CORDIC structure. The proposed structure was meant for

modern day high speed and large operand DSP applications.

The performance analysis of the proposed structure was

carried out and the results were compared with the traditional

pipelined and unfolded CORDIC architectures. The

Burhan Khurshid et al. 110

implementation was targeted for FPGA devices. The proposed

design uses the resources extensively but shows the best

latency per sample and thus maximum throughput rate. It

should be noted that the proposed structure will have no effect

on the precision of the results, as the precision is the function

of number of stages in the CORDIC core and not the approach

used to implement the core. The paper provides a future scope

for further improvements in the overall throughput by utilizing

the same pipelined architecture for higher radix CORDIC

algorithms. Also the structure may be optimized for power and

area parameters by the repeated use of adders; this however

will result in the decrease in the throughput of the overall

structure.

REFERENCES

[1] B. Khurshid, G.M.Rather and N.Hakim, “Performance

Comparison of Non-redundant and Redundant FPGA based

Unfolded CORDIC Architectures,”in International Journal of

Electronics and Communication Technology, vol. 3, issue 1 pp

85-89, Marcch 2012.

[2] B. Khurshid, G.M.Rather and N.Hakim, “Performance Analysis

of CORDIC Architectures Targeted for FPGA Devices,” in

International Journal of Advanced Research in Computer

Science and Software Engineering, vol. 2, issue 2 February

2012.

[3] J. E. Volder, “The CORDIC trigonometric computing

technique,” IRE Trans. Electronic Computing, volume EC-8,

pp 330 – 334, 1959.

[4] E. Deprettere, P. Dewilde, and R. Udo, "Pipelined CORDIC

Architecture for Fast VLSI Filtering and Array Processing,"

Proc. ICASSP'84, 1984, pp. 41.A.6.1- 41.A.6.4.

[5] E. Meggitt, “Pseudo division and pseudo multiplication

processes,” IBM Journal, vol. 6, no. 2, pp. 210–226, 1962.

[6] C.H.Lin and A.Y. Wu, “Algorithm and Architecture for High-

Performance Vector Rotational DSP Applications,” Regular

IEEE Transactions: Circuits and Systems I, Volume 52, pp

2385- 2398, November 2005.

[7] J.S. Walther, “A unified algorithm for elementary functions,”

Proc. Spring. Joint Comp. Conf., vol. 38, pp. 379-385, 1971.

[8] M.D. Erecegovac and T. Lang, Digital Arithmetic, Elsevier,

Amsterdam, the Netherlands, 2004.

[9] R.Andraka, “A survey of CORDIC algorithms for FPGA based

computers,” FPGA ’98, in ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, pp 191-200,

1998.

[10] Y.H. Hu, “Pipelined CORDIC architecture for the

implementation of rotational based algorithm,” in Proceedings

of the International Symposium on VLSI Technology, Systems

and Applications, p. 259, May 1985.

[11] K. K. Parhi, VLSI Digital Signal Processing Systems: Design

and Implementation, Wiley, 1999.

[12] A.A. De Lange, A.J. Van der Hoeven, E.F. Deprettere, and J.

Bu, “An optimal floating-point pipeline CMOS CORDIC

Processor,” IEEE ISCAS'88, pp. 2043-47, 1988.

[13] ISE Simulator, Xilinx incorporation San Jose U.S.A, 2011.

Burhan Khurshid received the B.E. degree in

Electronics and Communications Engineering

from the Kashmir University, India, in 2008, the

M.Tech degree in Communications and IT from

National Institute of Technology, Srinagar, India

in 2011. His research interests are in the field of

Reconfigurable and DSP Design (system level)

using VLSI.

G.M. Rather received the B.E. degree in

Electronics and Communications Engineering

from the Kashmir University, India, in 1981, the

M. S. degree (1988) in Computer

Communications and the Ph.D. degree (1997)

from the Indian Institute of Sciences Bangalore

India. He is currently Professor in the

Department of EC E, N I T, Srinagar, India. His research interests are

in the field of Communications and DSP Design using VLSI. He is a

member of IETE India.

Najeeb-ud-din received the B.E. degree in

Electronics and Communications Engineering

from the Kashmir University, India, in 1985, the

M. Eng. degree in Solid-state Electronics from

the University of Roorkee, India, and the Ph.D.

degree from the Indian Institute of Technology

(IIT), Bombay, India, in 2003. He is currently

Associate Professor in the Department of ECE, N I T, Srinagar, India.

His research interests are in the field of SOI, CMOS Devices, Design,

and Technology; in mixed-signal applications. He is a Senior

Member of IEEE.

