
International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 58

Journal Homepage: www.ijcst.org

S. Kishore
1
, R. Chandra

2
 and D. Ganesh

3

1
Wipro Technologies, Bangalore, India

2
St. Mary’s College of Engineering and Technology, India

3
Department of Information Technology, Sree Vidyanikethan Engineering College, India

1
kishore.sirasala@hotmail.com,

2
r.chandra8000@gmail.com,

3
dgani05@gmail.com

Abstract– TCP becomes inefficient when the Bandwidth of the

network and delay increases, because slow loss-recovery, a RTT

bias inherent in its AIMD congestion-control algorithm, and the

bursting data flow caused by its window control. To overcome

this problem an application-level is built on top of UDP, called

UDP based data Transfer Protocol, or UDT. UDT protocol

contains the protocol design and its own congestion control

algorithm which is also a framework for configuring new

congestion control algorithm. UDT is a high performance data

transport protocol, which is mainly, designed for bulk data

transfer over high speed wide area networks. It is extended with

Configurable Congestion Control to new enhanced versions

called UDT/CCC, which supports a wide variety of control

algorithms, including TCP algorithms. It is a configurable or

reusable user space network stack on which a new congestion

control algorithm can be easily implemented, deployed and

evaluated. In this paper the potential of the UDT/CCC

framework is analyzed by implementing the new control

algorithms which is inherited from the CCC. Two types of

control algorithm are implemented which is of type Rate based

and Window based, after implementing the performances are to

be obtained.

Index Terms– TCP, RTT Bias, UDT, High Speed Wide Area

Networks and UDT/CCC

I. INTRODUCTION

HE prevalent and significant development of advanced

high speed networks has created opportunities for new

technology to prosper. Recent developments in network

research introduced an enhanced version of UDT [1],

considered to be one of the next generation of high

performance data transfer protocols. UDT introduces a new

three-layer protocol architecture that is composed of a

connection flow multiplexer, enhanced congestion control,

and resource management. The new design allows protocol to

be shared by parallel connections and to be used by future

connections. It improves congestion control and reduces

connection set-up time. UDT provides better usability by

supporting a variety of network environments and application

scenarios. It addresses TCP’s limitations by reducing the

overhead required to send and receive streams of data [2].

There is a need to create a configurable or reusable user

space network stack on which a new congestion control

algorithm can be easily implemented, deployed, and

evaluated. This stack can be useful in three ways. First, a user

space stack is much easier to get deployed, and so is the

congestion control algorithms built in it. Second, this stack is

useful to support application aware control approaches. An

application may prefer to use different congestion control

strategies in different situations. Third, this stack can save

significant time for network researchers and developers

because they can focus on the control algorithm itself rather

than the whole protocol implementation. As a sequence, as

there are more and more users, this stack can provide good

software quality to support application development. To serve

these needs UDT protocol was designed and the problem is it

is very vulnerable for the attackers because it is not having the

security and the configurable congestion control feature of

UDT/CCC is not analyzed.

In this paper we have covered the Overview of UDT

protocol, the application interface of UDT, UDT application

socket interface, the design of configurable congestion control

algorithm, deploying congestion control algorithms, results,

Conclusion and future work, acknowledgements and authors.

II. OVERVIEW OF UDT

UDT is a UDP-based approach and is considered to be the

only UDP-based protocol that employs a congestion control

algorithm targeting shared networks. It is a new application

level protocol with support for user configurable control

algorithms and more powerful APIs.

A. Packet Structures

UDT is designed to have two packet structures: first, the

data packets and second, the control packets. They are

distinguished by the first bit (flag bit) of the packet header.

The data packet header starts with 0, while the control packet

starts with 1 (Fig. 1).

T

Exploring Configurable Congestion Control Feature of

UDT Protocol

ISSN 2047-3338

S. Kishore et al. 59

 0 1 Data Packet 31

 0 1 4 Control Packet 15 31

Fig. 1: UDT Packet Header Structure

The first bit of the packet header is a flag indicating if this is

a data or control packet. Data packets contain a 31-bit

sequence number, 29 bit message number, and a 32 bit time

stamp. On the other hand, control packet header, 1-15 bit is

the packet type information and 16 -31 can be used for user

defined types. The detailed control information depends on the

packet type [1]. The packet sequence number uses 31 bits after

the flag bit. It uses packet based sequencing, which means the

sequence number is increased by 1 for each sent data packet in

the order of packet sending. The Sequence number is wrapped

after it is increased to the maximum number (2
31
 - 1).

As in other protocols such as DCCP, the sequence number

is used to arrange packets into sequence, to detect loss and

network duplicates, and to protect against attackers, half-open

connections, and delivery of very old packets. Every packet

carries a Sequence Number; most packet types include an

Acknowledgment Number, which is carried in a control packet

- the second packet structure of UDT. The control packet is

parsed according to the structure if the flag bit of a UDT

packet is 1.

Meanwhile, UDT is a connection-oriented duplex protocol,

which supports data streaming and partial reliable messaging.

It also uses rate-based congestion control (rate control) and

window-based flow control to regulate outgoing traffic. This

was designed such that rate control updates the packet sending

period for every constant interval, whereas flow control

updates the flow window size each time an acknowledgment

packet is received. It was expanded to satisfy more

requirements for both network research and applications

development. This expansion is called Composable UDT and

designed to complement the kernel space network stacks.

However this feature is intended for:

• Implementation and deployment of new control

algorithms. Data transfer through the private links can be

implemented using Composable UDT.

• Composable UDT supports application aware

algorithms.

• Ease of testing new algorithms for kernel space when

using Composable UDT compared to modifying an OS

kernel.

The Composable UDT library implements a standard TCP

Congestion Control Algorithm (CTCP). CTCP can be

redefined to implement more TCP variants, such as TCP (low-

based) and TCP (delay-based). The designers emphasized that

Composable UDT library does not implement the same

mechanisms as in the TCP specification. TCP [3] uses byte-

based sequencing, whereas UDT uses packet-based

sequencing. It was stressed that this does not prevent CTCP

from simulating TCP’s congestion avoidance behavior.

Nevertheless, UDT was designed with the Configurable

Congestion Control (CCC) interface which composed of four

categories 1) control event handler call backs, 2) protocol

behavior configuration, 3) packet extension, and 4)

performance monitoring. Its services/features can be used for

bulk data transfer and streaming data processing, unlike TCP

which cannot be used for this type of processing because it has

two problems.

Firstly, in TCP, the link must be clean (little packet loss) for

it to fully utilize the bandwidth. Secondly, when two TCP

streams start at the same time, the stream with longer RTT

will be starved due to the RTT bias problem, thus, the data

analysis process will have to wait for the slower data stream.

UDT, moreover, can cater for streaming video to many

clients. It can also provide selective streaming for each client

when required, while TCP cannot send data at a fixed rate, and

in UDP most of the data reliability control work has to be

handled by the application.

III. UDT APPLICATION SOCKET INTERFACE

UDT was developed to adapt itself into the layered network

protocol architecture (Figure 2) [1]. It uses UDP through the

socket interface provided by operating systems. It provides a

UDT socket interface to applications. Applications can call the

UDT socket API in the same way they call the system socket

API. Since UDT is a duplex transport protocol, each UDT

entity has two logical parts: the sender and the receiver. The

sender sends (and retransmits) application data according to

the flow control and rate control. The receiver receives both

data packets and control packets, and sends out control

packets according to the received packets as well.

Fig. 2: Layered architecture of UDT

Sequence Number

Timestamp

0

Type 1 Type 2 ACK Sequence Number

Control Information

1

Application

UDT Socket

UDT

OS Socket Interface

UDP

International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 60

A. Implementation

According to Gu [1], the special difficulty in processing

Gb/s speed data transfer was noticed a decade ago. Gu

contended that although the need for additional processor and

hardware overhead no longer required today, the

implementation of an application level transport protocol is

still sensitive to its performance. Overheads of memory copies

and context switches bring more difficulty for application

level implementations. This section will discuss those

implementation issues from the software point of view and

give practical solutions.

B. Software Architecture

Fig. 3 depicts the UDT software architecture. The UDT

layer has five function components: the API module, the

sender, the receiver, the listener, and the UDP channel, as well

as four data components: sender’s protocol buffer, receiver’s

protocol buffer, sender’s loss list, and receiver’s loss list.

Because UDT is bi-directional, all UDT entities have the same

structure.

Fig. 3: UDT framework

In the above figure the solid line represents the data flow,

and the dashed line represents the control flow. The shading

blocks (buffers and loss lists) are the four data components,

whereas the blank blocks (API, UDP channel, sender,

receiver, and listener) are function components.

The API module is responsible for interacting with

applications. The data to be sent is passed to the sender's

buffer and sent out by the sender into the UDP channel. At the

other side of the connection, the receiver reads data from the

UDP channel into the receiver's buffer, reorders the data, and

checks packet losses. Applications can read the received data

from the receiver's buffer.

The receiver also processes received control information. It

will update the sender's loss list (when NAK is received) and

the receiver's loss list (when loss is detected). Certain control

events will trigger the receiver to update the congestion

control module, which is in charge of the sender’s packet

sending.

The UDT socket options are passed to the sender/receiver

(synchronization mode), the buffer management modules

(buffer size), the UDP channel [4] (UDP socket option), the

listener (backlog), and CC (the congestion control algorithm,

which is only used in Composable UDT). Options can also be

read from these modules and provided to applications by the

API module.

C. User Interface

The API (application programming interface) is an

important consideration when implementing a transport

protocol. Generally, it is a good practice to comply with the

socket semantics. However, due to the special requirements

and use scenarios in high performance applications, additional

modifications to the original API are necessary according to

Gu and Bernardo [1].

In the past several years, network programmers have

welcomed the new sendfile method. It is also an important

method in data intensive applications, as these are often

involved with disk-network IO. In addition to sendfile, a new

recvfile method is also added, to receive data directly onto

disk. The sendfile/recvfile interfaces and send/recv interfaces

are orthogonal.

UDT also implements overlapped IO at both the sender and

the receiver sides. Related functions and parameters are added

into the API. Some lower level APIs should be exposed to

applications by an upper level protocol. For example, if the

transport layer knows whether a packet loss is due to

congestion or link error from the network layer, it will be very

helpful for congestion control on links with high bit error

rates. UDT exposes many UDP interfaces to give applications

the most flexibility for configuring their transport facilities.

An application can make use of the UDT library in a few

ways according to Gu. The library provides a set of C++ API

that is very similar to the system socket API. Network

programmers can learn it easily and use it in a similar way as

using TCP sockets. When used in applications written by

languages other than C/C++, an API wrapper can be used. So

far, both Java and Python UDT API wrappers have been

developed. Certain applications have a data transport

middleware to make use of multiple transport protocols. In

this situation, a new UDT driver can be added to this

middleware, and then used by the applications transparently.

For example, a UDT XIO driver has been developed so that

the library can be used in Globus applications.

Finally, the library also provides a set of C API that has

exactly the same semantics as the system socket API. An

existing application can be re-compiled and linked against the

UDT/CCC C library. In this way, the applications use our

library transparently without any changes to the source codes.

There is one limitation, though. UDT does not support multi-

process models (e.g., using fork system call) due to efficiency

considerations, so this method does not work if the existing

application uses the same sockets in multiple processes.

D. Protocol Configuration

To accommodate certain control algorithms according to Gu

some of the protocol behavior has to be customized. For

example, a control algorithm may be sensitive to the way that

data packets are acknowledged. UDT/CCC provides necessary

protocol configuration APIs for these purposes.

S. Kishore et al. 61

It allows users to define how to acknowledge received

packets at the receiver side. The functions of setACKTimer

and setACKInterval determine how often an acknowledgment

is sent, in elapsed time and the number of arrived packets,

respectively.

The method of sendCustomMsg sends out a user-defined

control packet to the peer side of a UDT connection, where it

is processed by callback functions processCustomMsg.

Finally, UDT/CCC also allows users to modify the values of

RTT and RTO. A new congestion control class can choose to

use either the RTT value provided by UDT, or its own

calculated value. Similarly, the RTO value can also be

redefined.

There are other features of the UDT protocol that are either

not related to congestion control or are helpful to most control

algorithms. These features, such as selective acknowledgment

(SACK) and robust reordering (RR) [5], cannot be configured

by CCC users, although some of the features can be

configured through UDT interfaces.

IV. CONFIGURABLE CONGESTION CONTROL (CCC)

DESIGN

UDT/CCC supports a wide variety of control algorithms,

including but not limited to, TCP algorithms (e.g., New Reno,

Vegas, FAST, Westwood, High-speed, BiC, and Scalable),

bulk data transfer algorithms (e.g., SABUL, RBUDP, Lambda

Stream, CHEETAH, and Hurricane), and group transport

control algorithms (e.g., CM and GTP) [6].

The following are the use scenarios for UDT/CCC:

• Implementation and deployment of new control

algorithms. Certain control algorithms may not be

appropriate to be deployed in kernel space, e.g., a bulk

data transfer mechanism used only in private links. These

algorithms can be implemented using UDT/CCC.

• Application awareness support and dynamic

configuration. An application may choose different

congestion control strategies under different networks,

different users, and even different time slots. UDT/CCC

supports these application aware algorithms.

• Evaluation of new control algorithms. Even if a control

algorithm is to be deployed in kernel space, it needs to be

tested thoroughly before OS vendors distribute the new

version. It is much easier to test the new algorithms using

UDT/CCC than modifying an OS kernel.

Fig. 4 shows how the new CCC feature is inserted into

UDT's layered architecture. An application can provide a

congestion control class instance (CC in Fig. 4) for UDT to

process the control events, or use the default congestion

control algorithm provided by UDT. The CC instance includes

a set of necessary user-defined callback functions (control

event handlers) to process certain control events.

 Fig. 4: UDT/CCC Architecture

There are four categories of configuration features to

support configurable congestion control mechanisms [1]. They

are: 1) control event handler callbacks, 2) protocol behavior

configuration, 3) packet extension, and 4) performance

monitoring.

A. Control Event Callbacks

Seven basic callback functions are defined in the base CCC

class. They are called by UDT when a control event is

triggered.

• init and close: These two methods are called when a UDT

connection is set up and when it is torn down. They can be

used to initialize necessary data structures and release them

later.

• onACK: This handler is called when an ACK

(acknowledgment) is received at the sender side. The

sequence number of the acknowledged packet can be

learned from the parameters of this method.

• onLoss: This handler is called when the sender detects a

packet loss event. The explicit loss information is given to

users as the onLoss interface parameters. Note that this

method may be redundant for most TCP algorithms that

use only duplicate ACKs to detect packet loss.

• onTimeout: A timeout event can trigger the action defined

by this handler. The timeout value can be assigned by

users, otherwise it uses the default value according to the

TCP RTO calculation described in RFC 2988.

• onPktSent: This is called right before a data packet is sent.

The packet information (sequence number, timestamp,

size, etc.) is available through the parameters of this

method.

• onPktReceived: This is called right after a data packet is

received. Similar to onPktSent, the entire packet

information can be accessed by users through the function

parameters.

• onPktSent and onPktReceived are the two most powerful

event handlers, because they allow users to check every

single data packet. For example, onPktReceived can be

redefined to compute the loss rate in TFRC. Due to the

International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 62

same reason, these two callbacks can also allow users to

trace the microscopic behavior of a protocol.

• processCustomMsg: This method is used for UDT to

process user-defined control messages.

B. The Sending Algorithm

In this algorithm, a sender’s loss list is a data structure that

records the lost data packets when informed of them by loss

reports from the receiver or by sender side timeouts. ACK and

NAK are the abbreviations of acknowledgment and loss report

(negative acknowledgment), respectively [7].

Fig. 5: Sending Algorithm

C. The Receiving Algorithm

It describes the abstract UDT/CCC receiving algorithm. In

this algorithm, the receiver's loss list is a data structure to store

the sequence numbers of the lost packets. EXP is the

abbreviation for timeout (expiration).

Fig. 6: Receiving Algorithm

V. DEPLOYING CONGESTION CONTROL

ALGORITHMS

In this section, details about the implementation of

congestion control algorithms of 2 types will be described.

They are rate based and window based including both loss-

based and delay-based algorithms [8]. UDT/CCC uses an

object-oriented design. It provides a base C++ class (CCC)

that contains all the functions and event handlers that helps in

the creation of new congestion control algorithm. A new

control algorithm can inherit from this class and redefine

certain control event handlers. The implementation of any

control algorithm is to update at least one of the two control

parameters: the congestion window size (m_dCWndSize) and

the packet-sending period (m_dPacketPeriod), both of which

are CCC class member variables.

A. Rate-based Congestion Control Algorithm

A rate-based reliable UDP library (CUDPBlast) is often

used to transfer bulk data over private links. To implement this

control mechanism, CUDPBlast initializes the congestion

window with a very large value so that the window size will

not limit the packet sending. The rest is to provide a method to

assign a data transfer rate to a specific CUDPBlast instance.

In the algorithm, CUDPBlast inherits from the base class

CCC. In the constructor, it sets the congestion window size to

a large value so that it will not affect the packet sending. (This

is pure rate based method to blast UDP packets.) [4] The

method SetRate() can be used to set a fixed packet sending

rate at any time.

 The application can use setsockopt/getsockopt to assign this

control class to a UDT instance, and/or set its parameters.

UDT::setsockopt(usock,0, UDT_CC, new

CCCFactory<CUDPBlast>,

sizeof(CCCFactory<CUDPBlast>));

The above code assigns the CUDPBlast control algorthm to a

UDT socket usock. Note that CCCFactory is using the

Abstract Factory design pattern.

 To set a specific data sending rate, the application needs to

obtain a handle to the concrete CCC class instance used by the

UDT socket usock.

 CUDPBlast* cchandle = NULL;

 int temp;

UDT::getsockopt(usock, 0, UDT_CC, &cchandle, &temp);

 The application can then call the method of setRate() to

set a 500Mbps data rate.

 if (NULL != cchandle)

 cchandle->setRate(500);

The UDT/CCC can be used to implement most control

mechanims, including but not limited to rate-based

approaches, TCP variants (e.g., TCP, [9] Scalable, HighSpeed,

BiC, Vegas, FAST), and group-based approaches [10] (e.g.,

GTP, CM).

 By using setsockopt an application can assign CUDPBlast

to a UDT socket and by using getsockopt the application can

obtain a pointer to the instance of CUDPBlast being used by

1) If there is no application data to send, sleep until it is activated by

the application.

2) Packet sending:

a) If the sender’s loss list is not empty and the number of

unacknowledged packets does not exceed the congestion window size,

remove the first lost sequence number from the list and pack the

corresponding packet.

b) Otherwise, if the number of unacknowledged packets does not

exceed the congestion and flow window sizes, pack a new packet.

c) Otherwise, wait here until an ACK or NAK is received, or timeout

occurs. Go to Step 1.

3) onPktSent().

4) Send the packed packet out.

5) Wait until the next packet sending time. Go to Step 1.

1) Query the timers

a) If ACK timer is expired and there are new packets to acknowledge,

send back an ACK report; otherwise, if the user-defined ACK interval

is reached, send back a lightweight ACK report.

b) If NAK timer is expired and the receiver’s loss list is not empty,

send back a NAK report;

c) If EXP timer is expired and there are sent but unacknowledged

packets, execute onTimeOut(), and put the sequence numbers of these

packets into the sender’s loss list;

d) Reset the expired timers.

2) Start time bounded UDP receiving. If nothing is received before the

UDP timer expires, go to Step 1.

3) If there is no unacknowledged packet, reset the EXP timer.

4) If the received packet is a control packet, process it, and reset EXP

timer if it is an ACK or NAK; According to the packet type, one of the

following callback functions may be executed:

 onACK(); onLoss(); processCustomMsg();

 Go to Step 1.

5) Process the data packet.

6) Check packet loss. If there are packet losses, insert the sequence

numbers of the lost packets into the receiver’s loss list and generate a

loss report (NAK).

7) onPktReceived(); Go to Step 1.

S. Kishore et al. 63

the UDT socket. The application can then call the setRate

method of this instance to set or modify a fixed sending rate at

any time.

Then after cresting this pure Rate Based UDPBlast

congestion control algorithm, the client and server uses the

newly created control algorithm to transfer the data by making

use of UDT protocol and the performance is captured.

B. Window-based Congestion Control Algorithm

A Window-based TCP Library is also used to transfer bulk

data through private links. It doesn’t uses the rate instead of

rate here it uses the window size (the number of packets sent

at a time from the sender to receiver) which updates itself on

seeing the acknowledgements from the client. If there exists

any negative acknowledgements [6] then the window size will

be reduced and if all the packets are received properly then the

window size will be slightly increased.

In the algorithm CTCP class is inherited from the CCC class

and redefined control event handlers like onACK() and

onTimeout(). It also contains the steps that are to be taken

when the proper ACK is came from the receiver and also the

required steps when duplicate acknowledgements comes [2].

VI. RESULTS

In this section results are obtained from three types of

congestion control algorithms one is the UDT’s default

congestion control Algorithm, second is the rate based (UDP)

congestion control algorithm and third is the window based

(TCP) congestion control algorithm.

A. Performance using its own Algorithm (CCC)

Fig. 7: UDT performance using its own algorithm

Here RecvNAK field shows the number of negative

acknowledgements which means that the number of packets

lost in the middle. Here the performance is measured based on

the number of NAKs. By using its own control algorithm there

are less number of NAKs.

B. Performance using Rate Based Algorithm

Fig. 8: UDT performance using rate based algorithm

Here there are more number of NAKs when we compared

with the NAKs obtained while using its own congestion

control algorithm. So that it can be understood that the own

algorithm is better than our user defined rate based control

algorithm.

C. Performance using Rate Based Algorithm

Fig. 9: UDT performance using window based algorithm

In this context there are most number of NAKs are observed

which means that there are many packet losses in the

transmission so that it can be concluded that the own control

algorithm is the efficient one from these three algorithms. In

the same manner some other control algorithms can also be

implemented, deployed and can be evaluated using the

configurable framework of UDT protocol. So that large

amount of data can be transferred through the effective control

algorithm.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 64

VII. CONCLUSION AND FUTUREWORK

UDT contains configurable congestion control framework,

by making use of this framework new congestion control

algorithms can be created, evaluated and deployed. Through

the configurable feature of UDT, the protocol can use newly

generated effective congestion control algorithms. So the

emerging efficient control algorithms can also be used with

the UDT protocol. In this paper two types of congestion

control algorithms which are of type rate-based and window-

based are created, deployed and used in the data transfer by

making use of UDT protocol from the sender to the receiver.

When the Rate-Based congestion control algorithm is used

in the UDT protocol data transfer there are so many negative

acknowledgements that means there are so many packet

losses. On the other hand when the window-based congestion

control algorithm is used, in this here also there exist some

negative acknowledgements which are lesser when compared

to the rate- based and greater than the NAKs generated while

UDT using its default congestion control algorithm. So it can

be concluded that the new control algorithms can be deployed

using feature of configurable congestion control feature of

UDT. So it can be useful to control the congestion the future

by the emerging control algorithms.

 ACKNOWLEDGEMENT

This work was carried out at the Centre for Development of

Advanced Computing Hyderabad and supported by the project

engineers and Research and Development Coordinator of

CDAC.

REFERENCES

[1] Y. Gu, R. Grossman, UDT: UDP-based Data Transfer for

High-Speed Wide Area Networks. Computer Networks

(Elsevier). Vol. 51, Issue 7, 2007.

[2] Sumitha Bhandarkar, Saurabh Jain, and A. L. Narasimha

Reddy: Improving TCP performance in high bandwidth high

RTT links using layered congestion control. Proc. PFLDNet

2005 Workshop, February 2005.

[3] A. Aggarwal, S. Savage, and T. Anderson “Understanding the

performance of TCP pacing”. IEEE Infocom '00, Tel

Aviv,Israel, Mar. 26-30, 2000.

[4] J. Postel: User datagram protocol. RFC 768, IETF, 1980

[5] M. Allman, V. Paxson, and W. Stevens: TCP congestion

control. IETF, RFC 2581, April 1999.

[6] V. Gorodetsky, V. Skormin, and L. Popyack (Eds.),

Information Assurance in Computer Networks: Methods,

Models, and Architecture for Network Security, St. Petersburg,

Springer, 2001.

[7] A. Leon-Garcia, I. Widjaja, Communication Networks,

McGraw Hill, 2000.

[8] Cosimo Anglano, Massimo Canonico: A comparative

evaluation of high-performance files transfer systems for

dataintensive grid applications. WETICE 2004, pp. 283-288.

[9] R.Stewart (Editor), Stream Control Transmission Protocol,

RFC 4960, 2007.

[10] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow: TCP

selective acknowledgment options. IETF RFC 2018, April

1996.

Kishore Sirisala has received his B.Tech degree

in Information Technology from SK University,

Anantapur in 2009 and M.Tech degree in

Software Engineering from JNT University,

Anantapur in 2011.Currently working as a Project

Engineer in WIPRO Technologies Bangalore,

India.

R. Chandra has received his B.Tech Degree in

Computer science in Information Technology

(CSIT) from G. Pulla Reddy Engineering College

Affiliated to Sri Krishna Devaraya University,

Anantapur and currently studying M.Tech in

Computer Science Engineering at St. Mary’s

College of Engineering and Technology,

Affiliated to JNTU, Hyderabad, A.P, India.

D. Ganesh received his B.Tech degree in

Information Technology from JNT University,

Hyderabad in 2006 and M.Tech degree in

Computer Science and Engineering from Acharya

Nagarjuna University in 2010.During the period

2006-07 he worked as Assistant Professor in

Information Technology department at AITS,

Rajampet, India. Since 2007, he is working as Assistant Professor in

IT Department at Sree Vidyanikethan Engineering College, Tirupati,

India. He has Published 9 papers in national and International

conferences. His current research interests are computer

networks,wireless networks, ad mobile ad-hoc networks. He is a

member of ISTE, CSI.

