
International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 21

Journal Homepage: www.ijcst.org

Jasbir Singh
1
 and Gurvinder Singh

2

1
Department of Computer Science and IT, Guru Gobind Singh Khalsa College, Sarhali (Tarn Taran), Punjab-India

2
Department of Computer Science and Engineering, Guru Nanak Dev University (Amritsar), Punjab, India

jasbir2gill@yahoo.com, gsbawa71@yahoo.com

Abstract– The scheduling problem deals with the optimal

assignment of a set of tasks onto parallel multiprocessor system

and orders their execution so that the total completion time is

minimized. The efficient execution of the schedule on parallel

multiprocessor system takes the structure of the application and

the performance characteristics of the proposed algorithm. Many

heuristics and approximation algorithms have been proposed to

fulfill the scheduling task. It is well known NP-complete problem.

This study proposes a genetic based approach to schedule parallel

tasks on heterogeneous parallel multiprocessor system. The

scheduling problem considered in this study includes - next to

search for an optimal mapping of the task and their sequence of

execution and also search for an optimal configuration of the

parallel system. An approach for the simultaneous optimization

of all these three components of scheduling method using

performance effective genetic algorithm is presented and its

performance is evaluated in comparison with the First Come

First Serve (FCFS), Shortest Job First (SJF) and Round Robin

(RR) scheduling methods.

Index Terms– First Come First Serve (FCFS), Shortest Job

First (SJF), Round Robin (RR), Performance Effective Genetic

Algorithm (PEGA), Directed Acyclic Graph (DAG),

Heterogeneous Processor and Simultaneous Optimization

I. INTRODUCTION

ASK assignment and scheduling [1], [2], [3], [4] can be
defined as assigning the tasks onto a set of processor and
determining the sequence of execution of the task at each

processor. While the total finish time of the tasks is determined
by the performance of the processors and the sequence of the
tasks, therefore, an execution scheduling consists of three
components:

• Performance of the heterogeneous processor

• Mapping of the tasks onto the processors

• Sequence of the execution of the tasks on each processor

All three components of this optimization problem [5],

[30] are highly dependent on each other and should not be

optimized separately.

A Performance Effective Genetic Algorithm (PEGA)

approach is being proposed to handle the problem of parallel

system task scheduling. A GA [7], [8] starts with a generation

of individual, which are encoded as strings known as

chromosome. A chromosome corresponds to a solution to the

problem. A fitness function is used to evaluate the fitness of

each individual. In general, PEGAs consists of selection,

crossover and mutation operations [15] based on some key

parameters such as fitness function, crossover probability and

mutation probability.
This study is divided into following sections: In section 2 an

overview of the problem is given along with brief description
of the solution methodology. Section 3 provides a detailed
improved parallel genetic algorithm. Experimental results and
performance analysis are provided in section 4 and conclusion
is followed in section 5.

II. PROBLEM DEFINITION

Parallel Multiprocessor system scheduling can be classified

into many different classes based on the characteristics of the

tasks to be scheduled, the multiprocessor system and the

availability of the information [6], [9], [11]-[14]. The strategy

behind the execution of the tasks on parallel multiprocessor

system environment is to efficiently partitioning the huge task

into set of tasks of appropriate gain size and an abstract model

of the partitioned tasks that can be represented by Directed

Acyclic Graph (DAG) [25], [28], [29]. The focus is on a

deterministic scheduling problem in which there exist

precedence relations among the tasks to be scheduled. A

deterministic scheduling problem [16] is one in which all

information about the tasks and the relation to each other such as

execution time and precedence relation are known to the

scheduling algorithm in advance and the processor environment is

heterogeneous [23], [24], [26], [27]. Heterogeneity of processors

means that the processors have different speeds or processing

capabilities.

In this study, a study has been done regarding the task

scheduling problem as a deterministic on the heterogeneous

multiprocessor environment. The main objective is to

minimize the total task finish time (execution time + waiting

time or idle time).

The multiprocessor computing environment consists of a set

of m heterogeneous processor:

P = {pi: i =1, 2, 3…m}

They are fully connected with each other via identical links.

T

Task Scheduling using Performance Effective Genetic

Algorithm for Parallel Heterogeneous System

ISSN 2047-3338

Jasbir Singh and Gurvinder Singh 22

Fig. 1: A fully connected parallel processor

Fig. 2: Directed acyclic graphs of task size=25 with task precedence. Where

wi,j = execution time of different tasks on different processors as shown in
Table 1

Fig. 1 shows a fully connected eight parallel system with

identical link. The parallel application can be represented by a

directed acyclic graph (DAG), G = (T, E, W, C), where the

vertices set T consist of n tasks as:

T = {tj: j =1, 2, 3…n}

A directed edge set E consist of k edges as:

E = {ek: k =1, 2, 3…r}

This represents the precedence relationships among tasks.

For any two tasks ti, ti+1 Є T with having directed edge ek (i.e.,

edge from task ti to ti+1) means that task ti+1 cannot be

scheduled until ti has been completed, ti is a predecessor of ti+1
and ti+1 is a successor of ti. In other words ti sends a message

whose contents are required by ti+1 to start execution.

The elements set W are the weights of the vertices as:

W = {wi,j: i =1, 2, 3…m, j: 1, 2, 3,…n}

It represents the execution duration of the corresponding task

and are varies from processor to processor because of

heterogeneous processor environment.

The elements set C are the weights of the edges as:

C = {ck: k =1, 2, 3…r}

It represents the data communication between the two tasks,

if they are scheduled to different processors. But if both tasks

are scheduled to the same processor, then the weight

associated to the edge becomes null. Figure 2 show example of

DAGs. It consist of a set of tasks T: {tj: j = 1, 2 …}, Fig. 1

indicates set of processors P = {pi : i = 1, 2, 3…} and Table 1

show a matrix of execution time of each task on processor p1,

p2, p3, p4, p5, p6, p7, p8, because of heterogeneous environment

every processor works on different speeds and processing

capabilities. It is assumed that processor p1 is much faster than

p2, p3 and so on. Processor p2 is faster than p3, p4 and so on.

(i.e., the order of speed and processing capabilities can be

expressed as p1>p2> p3 > p4 > p5 > p6 > p7>p8). As given in

Table 1 task t1 takes 6 time units to complete their

execution on processor p1 and takes 11 time units and 12

time units to complete their execution on processor p7 and

p8 respectively. This execution time has been calculated on

the basis of the size of the tasks by processing on different

processors.

III. PERFORMANCE EFFECTIVE GENETIC

ALGORITHM

PEGAs operate through a simple cycle of stages: creation of

a population strings, evaluation of each string, selection of the

best strings and reproduction to create a new population. The

individuals are encoded in the population string known as

chromosomes. Once the chromosome has been coded, it is

possible to evaluate the performance or fitness of individuals

in a population. A good coding scheme [17], [18] will benefit

operators and make the object function easy to calculate.

During selection, each individual is assigned a fitness value

given by the objective function and choose the fittest

individual of the current population to serve as parent of the

next generation. Reproduction involves two types of operators

namely crossover and mutation.

The crossover operator chooses randomly a pair of individuals

among those selected previously and exchange some part of

the information. The mutation operator takes an individual

randomly and alters it.

A. Creation of the Population String

The first step in the PEGAs algorithm is the creation of the

initial population. Number of processors, number of tasks and

population size are needed to generate initial population. The

initial population is initialized with randomly generated

individuals. The length of all individuals in an initial

population is equal to the number of tasks in the DAG. Each

task is randomly assigned to a processor.

B. Evaluation of the Fitness Function

 The fitness function used for improved parallel genetic

algorithm is based on the total completion time for the

schedule, which includes execution time and communication

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 23

Table 1: Shows a tasks execution matrix on different processors with task size = 25

delay time. The fitness function separates the evaluation into

two parts: Task fitness and processor fitness. The task fitness

focuses on ensuring that all tasks are performed and scheduled

in valid order. A valid order means that a pair of tasks is

independent if neither task get data output from the other task

for execution. The scheduling of a pair of tasks to a single

processor is valid if the pair is independent or if the order in

which they are assigned to the processor matches the order of

their dependency. Table 2 (a) show a valid order of the tasks

assigned to the set of processors (p1, p2, p3……) and invalid

order in Table 2 (b).

The processor fitness component of the fitness

functionattempts to minimize processing time. Consider the

following schedule S1 and S2 for single processor and

multiprocessor parallel system tasks schedules with task size

equal to 25 tasks respectively (here, we consider the case

when fitness function assigned all tasks to a single processor

and randomly generated tasks to heterogeneous parallel

system.) The processor chosen for scheduler S1 is p1 and the

execution time for all task are given in Table 1. The total finish

time of scheduler S1 and S2 is:

S1: t1 →t2 →t3 -------- →t24 →t25

Total Finish Time = Execution time + Comm. time.

=6+3+8+3+2+4+5+7+8+9+6+11+5+13+9+10+7+11+8+11+7

+5+12+10+13=193time units.

Here comm. Time = 0, because all tasks are executed on

same processor. The processors chosen for schedule S2 are

same as given in Table 1 and the randomly order sequence is

given in Table 2 (a), here the processors chosen for scheduler

S2 are p1, p2, p3, p4 and p5 . Thus S2: Total finish time =

Execution time + Comm. Time = 76 time units.

The scheduler S1 shows a total finish time of 193 time units,

where as scheduler S2 shows a total finish time of just 76 time

units. Therefore, proper fitness function reduces the total finish

time very well.

Table 2(a): Random assignment of tasks to parallel processors (Valid order)

Table 2(b): Random assignment of tasks to parallel processors (Invalid

order), because no processor (p1, p2, p3……) starts execution of tasks t2, t3, t5
t15, t10 respectively until the execution of task t1

Therefore, the fitness values (task and processor) have been

evaluated for all chromosomes and the probability of higher

fitness is to be selected for reproduction from current

generation to the next generation.

C. Selection Operator

The design of the fitness function is the basic of selection

operation, so how to design the fitness function will directly

affect the performance of genetic algorithm. PEGAs uses

selection operator to select the superior and eliminate the

inferior. The individual are selected according to their fitness

value. Once fitness values have been evaluated for all

chromosomes, we can select good chromosomes through

rotating roulette wheel strategy. This operator generate next

generationby selecting best chromosomes from parents and

offspring.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25

p 1 6 3 8 3 2 4 5 7 8 9 6 11 5 13 9 10 7 11 8 11 7 5 12 1 0 1 3

p 2 7 3 9 4 2 5 6 7 9 10 6 12 6 14 1 0 1 1 8 12 8 12 8 6 13 1 1 1 4

p 3 7 4 9 4 3 6 7 8 9 11 7 13 7 15 1 1 1 2 8 13 9 13 9 7 14 1 2 1 5

p 4 8 5 10 5 4 6 8 9 10 1 2 8 13 7 16 1 2 1 2 9 13 1 0 1 4 9 7 15 1 3 1 6

p 5 1 0 6 10 5 4 7 8 10 1 1 1 3 9 14 8 16 1 3 1 3 1 0 1 4 1 1 1 5 1 0 8 15 1 3 1 7

p 6 1 1 7 11 6 5 8 9 10 1 2 1 3 1 0 1 5 9 17 1 3 1 4 1 0 1 5 1 2 1 5 1 1 9 16 1 4 1 7

p 7 1 1 8 12 6 6 9 9 11 1 2 1 4 1 0 1 5 9 18 1 4 1 5 1 1 1 6 1 3 1 6 1 2 1 0 1 7 1 5 1 8

p 8 1 2 8 13 7 6 10 1 0 1 2 1 3 1 5 1 1 1 6 1 0 1 9 1 5 1 6 1 2 1 7 1 4 1 7 1 3 1 0 1 7 1 6 1 9

Process Ordering of tasks

p1 t2, t23, t18, t16, t4, t1.

p2 t3, t8, t7, t6, t24, t25.

p3 t5, t9, t12, t13, t17.

p4 t15, t14, t19, t11.

p5 t10, t20, t21, t22.

Processor Ordering of tasks

p1 t1, t3, t7, t14, t20, t21, t24,

p2 t2, t4, t8, t12, t18, t23.

p3 t6, t9, t16, t17.

p4 t5, t11, t13, t19, t22.

p5 t10, t15.

Jasbir Singh and Gurvinder Singh 24

D. Crossover Operator

Crossover operator randomly selects two parent
chromosomes (chromosomes with higher values have more
chance to be selected) and randomly chooses their crossover
points, and mates them to produce two child (offspring)
chromosomes. We examine one and two point crossover
operators. In one point crossover, the segments to the right of
the crossover points are exchanged to form two offspring as
shown in Fig. 3(a) and in two point crossover [19], [20], the
middle portions of the crossover points are exchanged to form
two offspring as shown in Fig. 3(b).

Randomly selects parent 1 and 2, crossover point 2:

Fig. 3: (a) One point crossover

Randomly selects parent 1 and 2, crossover points 1 and 3:

Fig. 3: (b) Two point crossover

E. Mutation operator

A mutation operation is designed to reduce the idle time of a
processor waiting for the data from other processors. It works
by randomly selecting two tasks and swapping them. Firstly, it
randomly selects a processor, and then randomly selects a task
[21] on that processor. This task is the first task of the pair to
be swapped. Secondly, it randomly selects a second processor
(it may be the same as the first), and randomly selects a task. If
the two selected tasks are the same task the search continues
on. If the two tasks are different then they are swapped over
(provided that the precedence relations must satisfy). Consider
the following example of six tasks DAG with tasks precedence
and the execution times of tasks t1 to t6 on processor p1 and p2
are given in Table 1. Fig. 4(a), Fig. 4(b) and Fig. 4(c)
demonstrates the mutation operation.

Fig. 4 (a): A DAG with tasks precedence

Fig. 4 (b): A Gantt chart before mutation operation, which takes 67 time units
to complete the schedule

Fig. 4 (c): A Gantt chart after mutation operation, which takes 36 time units to

complete the schedule

Here the mutation operation swaps task t2 on processor p1 to
task t3 on processor p2.

The procedure of the Performance Effective Genetic

Algorithm (PEGA) is:

Step 1: Setting the parameter

 Set the parameter: Read DAG (task execution matrix

(number of tasks n, number of processors m) and

comm. cost), population size pop_size, crossover

probability pc, mutation probability pm, and

maximum generation maxgen

 Let generation gen = 0, maxeval = 0

Step 2: Initialization

 Generate pop size chromosomes randomly.

Step 3: Evaluate

 Step 3.1: Calculate the fitness value of each

chromosomes

 Step 3.2: Task fitness

 Step 3.2: Processor fitness

Step 4:Crossover

 Perform the crossover operation on the

chromosomes selected with probability pc.

Step 5: Mutation

 Perform the swap mutation on chromosomes

selected with probability pm.

Step 6: Selection Select pop_size chromosomes from the

parents and offspring for the next generation

Step 7: Stop testing If gen = maxgen, then output best

solution and stop else gen = gen + 1 and return to

step 3

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

The final best schedule obtained by applying the

Performance Effective Genetic Algorithm (PEGA) to the

DAG of Fig. 2 with execution time shown in Table 1 onto

the parallelmultiprocessor system is shown in Fig. 5.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 25

Fig. 5: A Gantt chart of the PEGA for task size =25. It shows a time taken to

complete the schedule by applying the PEGA and execution time of
76 time units

Fig. 6: Time taken to complete the schedule by PEGA, RR, SJF and FCFS

Scheduler on parallel multiprocessor system for task size =
25tasks

Fig. 7: Speedup v/s number of parallel multiprocessor system for task size

= 25tasks

Fig. 8: Performance comparisons of the PEGA, SJF, FCFS and RR for task

size = 25tasks

We also compare the results with Shortest job First (SJF),

First Come First Serve (FCFS) and Round Robin (RR)

scheduling method [22] on parallel systems and execution of

the schedules are shown in Fig. 6 for task size equal to 25.

A. Performance Analysis

Speed up (Tsp): Speed up (Hwang and Briggs, 1985) is

defined as the completion time on a uniprocessor divided by

completion time on a multiprocessor. In case of homogeneous

system, it is denoted as: Tsp = p(1)/p(m). But in case of

heterogeneous system, it is denoted as Tsp= (min (p(1)) / p(m)

i.e., the best uniprocessor completion time divided by the

completion time on a heterogeneous multiprocessor system.

The speedup is measured with the execution of tasks on single

processor which shows 193 time units for task size equal 25

tasks divided by execution time units on PEGA, RR, SJF and

FCFS scheduler as shown in Fig. 7.

B. Efficiency (¢)

(Tsp / m), where m is the number of processors.

V. CONCLUSION

In this study we have proposed a Performance Effective

Genetic Algorithm (PEGA) for task scheduling in

heterogeneous parallel multiprocessor system to minimize the

finish time including execution time and waiting or idle time

and increase the throughput of the system. The proposed

method found a better solution for assigning the tasks to the

heterogeneous parallel multiprocessor system. Experimental

results and performance of the Performance Effective Genetic

Algorithm (PEGA) is compared with FCFS, SJF and RR

Scheduling methods. The performance study is based on the

best randomly generated schedule of the Performance

Effective Genetic Algorithm (PEGA).

REFERENCES

[1] Sara Baase, Allen Van Gelder, “Computer Algorithms”,

Published by Addison Wesley, 2000.

[2] Sartaj Sahni, “Algorithms Analysis and Design”, Published by

Galgotia Publications Pvt. Ltd., New Delhi, 1996.

[3] Anup Kumar, Sub Ramakrishnan, Chinar Deshpande, Larry

Dunning, “ IEEE Conference on Parallel processing”,

1994Page no.83-87.

[4] Ananth Grama, Georage Karypis, Anshul Gupta, Vipin

Kumar,“Introduction to parallel computing”, Published by

Pearson Education, 2009.

[5] Kalyanmoy Deb,”Optimization for Engineering Design”,

Published by PHI, 2003.

[6] Dezso Sima, Terence Fountain, Peter Kacsuk, “Advanced

Computer Architectures”, Published by Pearson Education,

2009.

[7] David E. Goldberg, “Genetic Algorithms in Search,

Optimization and Machine Learning”, Published by Pearson

Education, 2004, Page No.60-83.

[8] Mitchell, Melanie,” An Introduction to Genetic Algorithm,

Published Bu MIT Press 1996

[9] Michael J Qumn, “Parallel Computing Theory and Practices,

2nd Edition”, Published by Tata McGraw Hill Education Private

Ltd, Page No. 346-364. Michael J. Qumn, “Parallel

Jasbir Singh and Gurvinder Singh 26

Programming”, Published by Tata McGraw Hill Education

Private Ltd, Page No. 63-89.

[10] John L Hennessy, David A Pattern, “Computer Architecture,

3rd Edition”, Published by Morgan Kaufmann & Elsevier India,

Page No. 528-590.

[11] David E Culler, “Parallel Computer Architecture”, Published

by Morgan Kaufmann & Elsevier India.

[12] J P Hayes, “Computer Architecture and Organization”,

Published by McGraw Hill International Edition.

[13] J D Carpinalli, “Computer System Organization &

Architecture”, Published by Pearson Education.

[14] Sung-Ho Woo, Sung-Bong Yang, Shin-Dug Kim, and tack-Don

Han ,” IEEE Trans on parallel System, 1997, Page 301-305.

[15] M.Salmani Jelodar, S.N.Fakhraie, S.M.fakharie, M.N.

Ahmadabadi,” IEEE Proceeding, 2006, Page No 340-347.

[16] Man Lin and Laurence tianruo Yang,”IEEE Proceeding”, 1999,

Page No 382-387

[17] Yajun Li, Yuhang yang, Maode Ma, Rongbo Zhu, “ IEEE

Proceeding”, 2008.

[18] YI-Wen Zhong, Jian-Gang Yang, Heng-Nlan QI,” IEEE

Proceeding”, August 2004, Page No. 2463-2468.

[19] Imtiaz Ahmad, Muhammad K. Dhodhi and Arif Ghafoor,”

IEEE Proceeding”, 1995, Page No. 49-53.

[20] Ceyda Oguz and M.Fikret Ercan,” IEEE Proceeding”, 2004,

Page No. 168-170

[21] Kai Hwang & Faye A. Briggs,”Computer Architecture and

Parallel Processing”, Published by McGraw Hill ,1985.Page

No. 445-47, 612.

[22] Andrei R. & Arjan J.C. van Gemund, “Fast and Effective Task

Scheduling in Heterogeneous Systems”, IEEE Proceeding,

2000.

[23] Michael Bohler, Frank Moore, Yi Pan, “Improved

Multiprocessor Task Scheduling Using Genetic Algorithms”,

Proceedings of the Twelfth International FLAIRS Conference,

1999.

[24] Andrew J. page,” Adaptive Scheduling in Heterogeneous

Distributed Computing System”,

[25] Jameela Al-Jaroodi, Nader Mohamed, Hong Jiang and David

Swanson,” Modeling Parallel Applications Performance on

Heterogeneous Systems”, Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS’03)

[26] Yu-Kwong and Ishraq Ahmad, “Static Scheduling Algorithms

for Allocating Directed Task Graphs to Multiprocessors”, ACM

Computing Surveys, Vol. 31, No. 4, December 1999

[27] Wai-Yip Chan and Chi-Kwong Li, “Scheduling Tasks in DAG

to Heterogeneous Processor System”, Proceeding IEEE 1998.

[28] Wojciech Cencek, “High-Performance Computing on

Heterogeneous Systems”, Computational Methods in Science

and Technology, 1999

[29] C.P Ravikumar, A.K Gupta,” IEEE proc. Comput. Digit. Tech.,

Vol 142, No. 2”, March 1995, Page No. 81-86.

[30] Michael J Qumn, “Parallel Programming”, Published by Tata

McGraw Hill Education Private Ltd, Page No. 63-89.

