
International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 8

Journal Homepage: www.ijcst.org

Debabrata Singh1, Milu Acharya2 and Soumya Das3

ITER, S ‘O’A University, Bhubaneswar, India
1debabrata.singh4u@gmail.com, 2milu_acharya@yahoo.com, 3 nicydas@gmail.com

Abstract– Grid networks provide users with a transparent way

to access computational and storage resources. The creation of

high performance Communication capabilities in multiple

organizations and their interconnection in to a high speed fiber

communications mesh have been described as Lambda Grid. We

propose a modified ACO-based algorithm which can provided

on-demand and dynamically light paths on a grid system.

Indeed, the proposed algorithm can schedule jobs by discovering

processing and network resources on the grid, assigning the job

to a specific system and executing the job. We also propose a co-

scheduling lambda grid system for job routing in optical grid

networks, based on the concept of ant colony optimization, which

studies the behavior of ants for gathering food and the routing of

packets inside a network. Simulated results show an increased

performance of our algorithms over more classical co-scheduling

protocols, even though this is accompanied by a slight increase in

complexity.

Index Terms– GMPLS-Controlled, ACO, RSVP-TE, BADR

and CLL

I. INTRODUCTION

N the lambda grid network scenario, users are generally
more interested in the successful completion of their jobs
than in the location where the actual processing occurs .

Job routing and scheduling in grid networks are managed by
resource brokers, which assign each job to a resource and
route the job in a co-scheduling way. A co-scheduling
approach using grid-aware network algorithms would bypass
the need for a resource broker and increase scalability. This
work is to complement the development of computing GRIDS
as defined in GGF, Globus, and other places – hence the use
of “GRID”. This paper looks at Lambda Grid
implementations as generally falling into two high level
models: 1) provider controlled networks and, 2) user
controlled networks.
 In a provider controlled network the user connects to the

network edge and requests a path through the network to
another edge. The network is responsible for finding and
setting up an appropriate path and passing traffic through the
path. The provider may also manage faults and provide
internal backup paths in case of a failure in the network. The
Optical Interconnect Forum (OIF) has defined interfaces to
support this– the UNI for user interface to the network and the

NNI for connecting between network segments. The GMPLS
[2] specifications have created a modified MPLS protocol to
support creation and grouping of paths, which include fibers.
Some more about this protocol is covered in a few
paragraphs. The Fig. 1 shows an example of a provider
controlled network. It shows users connecting to the net edge
router with UNI interfaces the routers finding creating paths
between network end points and connecting to users at the
other end.
User controlled networking is a concept being developed in

a number of experiments to support applications which
support class 2 (several to several) and especially class 3
(high performance few-few) networking [11]. In the user
controlled networking model the provider has a number of
light paths from which it delegates subsets of resources to
other organizations giving them the right to provision that
subset of the provider’s resources. The implication of this is
that there must be a control mechanism that allows a user to
setup paths using the links delegated to it, In fact this is what
is being done for several Lambda Grid Projects [3] It also
allows the use of fiber elements as resources to be allocated,
just as GRID computing treats computing and storage
elements as resources to be allocated to an application. This
ability to treat Fiber links as resources may allow Grid
software for controlling distributed computing to be used to
interface with optical controllers.

Fig. 1: Provider Controlled Networks

I

Co-Scheduling in Lambda Grid Systems by using of Ant
Colony Optimization

ISSN 2047-3338

Debabrata Singh et al. 9

Fig. 2: User Controlled Networks

II. ARCHITECTURE

The lambda grid architecture is built around an integrated
GMPLS-controlled WDM optical network [4]. We consider
two different grid scheduling systems: one based on ants for
routing the light paths and collecting resource availability,
and a distributed publish-and-subscribe with topological
routing [5] of the light path.
In the first system, both the management of Grid resources

and light paths are naturally combined in the Grid scheduling,
since the ants act on behalf of the user to make resource
discovery and allocation, and to route light paths. On the other
hand, in the second system, the Grid resources and the optical
network are separately managed, resulting in an overlay
approach.
The signaling part relies on the RSVP-TE protocol, as

described in an extra error code is reported by the RSVP-TE
protocol when the Path message arrives at the resource node
and there is no available processor, i.e., the light paths request
is blocked due to the lack of processing resources. This is
necessary for the case when a resource node, which had
available processors, is now busy and the information about
the node's actual status has not reached the user nodes yet.
After a resource node is selected to handle a job, the

process of establishing a light path between the user node and
the resource node is triggered. Once the light path is
established, the data related to the job is transferred to the
resource node to be processed. After the transfer of the job
data, the light path is torn down and the job is executed.
However, blocking of a job request can occur due to two main
reasons: the first one is caused by lack of a node to process
the job, i.e., the allocated resource node or all resource nodes
are busy. The second type of blocking happens when there are
insufficient network resources to establish a light path.

A. Node Selection Policy

Only one node selection algorithm was proposed: the
selection of the least loaded node to execute the job. Although
this approach seems interesting for balancing the grid
workload, it may waste important network resources,

increasing the total blocking. For this reason, we propose two
alternative algorithms in addition to the Least-Loaded (LL)
one:
i). The Closest Least-Loaded (CLL): This approach chooses

the least-loaded node among the closest ones in terms of
number of hops. The rationale behind this algorithm is to
avoid the sending of jobs to nodes too far away.
ii). The Best Availability-Distance Ratio (BADR): This

strategy selects the node whose ratio between number of
processors available and distance in terms of number of hops
is the maximum one. Indeed, this policy represents a trade-off
between the LL and CLL approaches.
iii). Modified Ant Colony Algorithm: The proposed ant

colony optimization is used to solve large complex problems.
It requires grid scheduling to achieve high performance.
Scheduling of independent jobs remains as a complex
problem in grid environment. Hence better scheduling in grid
systems can be achieved using heuristic approaches. The Ant
colony algorithm – one of the popular heuristic approaches
can be used. The basic Ant algorithm involves Transition
Probability and Pheromone Updating Rule. Improved ant
colony algorithm is, modified ant colony algorithm, and used
to achieve better scheduling to improve the performance of
grid system. The modified ant colony algorithm has changed
the basic Pheromone updating rule of original ant colony
algorithm.
The improved pheromone updating rule is given by:

τij(t)new=[{(1-ρ)/(1+ρ)}*τij(t)old]
 +[{ρ/(1+ρ)}*∆τij(t)] ……………….(3)
Where
τij(t) � Trail intensity of the edge(i,j).
 ρ � Evaporation rate.
 ∆τij(t) � Additional pheromone when job moves from
scheduler to resource.
Pseudo code for Modified ACO is as follows:
1. procedure Improved_ACO
2. begin
3. Initialize the pheromone
4. while stopping criterion not satisfied do
5. Position each ant in a starting node
6. Repeat
7. for each ant do
8. Chose next node by applying the state
transition rate
Pij(t)k = [τ ij(t)]α*[ηij(t)]β
/ΣuЄallowed(k) τ iu(t)]α*[ηiu(t)]β
9. end for
10. until every ant has build a solution
11. Update the pheromone
τij(t)new=[{(1-ρ)/(1+ρ)}*τij(t)old]
+ [{ρ/(1+ρ)}*∆τij(t)]
12. end while
13. end

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 10

III. EXPERIMENTAL RESULTS

The proposed Ant colony algorithm as a whole is a best
suited method for tracking problem with large data sets. The
above approach was simulated using GRID Sim toolkit and
was found to be working efficiently and effectively.
Experimental test carried out for a varied range of input set to
ascertain the efficiency of the algorithm. From the results it is
clearly evident that the proposed Ant colony algorithm offers
better optimization a very fast rate.

Table 1: Proposed System VS Existing System

Number of

tasks

involved

Proposed Ant colony

system (% of time taken

for execution)

Existing Ant colony

system (% of time

taken for execution)

10 0.32 0.59
20 0.72 0.81
30 0.42 0.62
40 0.63 0.75
50 0.81 0.89
60 0.49 0.70
70 0.67 0.80
80 0.62 0.76
90 0.50 0.66

100 0.73 0.84

The above table1 shows the amount of tasks considered for
each period of execution. The results are tabulated for interval
of every 10 tasks, starting from 10 tasks to 100 tasks
respectively.
The above graph reveals that the proposed system works

effectively than the existing system. The time taken to
complete 10 tasks, 20 tasks, 30 tasks, 40 tasks, 50 tasks, 60
tasks, 70 tasks, 80 tasks, 90 tasks and 100 tasks are lesser
when the proposed methodology is applied when compared to
that of the existing system. Thus the proposed methodology is
found evidently to work more effectively than that of the
existing methodology.

Fig. 3: Proportionate improvement of the Proposed Ant colony system VS
Existing Ant colony system

The demand for scheduling is to achieve high performance
computing. Typically, it is difficult to find an optimal
resource allocation for specific job that minimizes the
schedule length of jobs. The scheduling problem is defined
NP-hard problem [9] and it is not trivial.
The motivation of this paper is to develop a grid scheduling

algorithm that can perform efficiently and effectively in terms
of minimizing total tardiness time. Not only does it improve
the overall performance of the system but it also adapts to the
dynamic grid system. First of all, this paper proposes an Ant
Colony Optimization (ACO) algorithm to find the optimal
resource allocation of each job within the dynamic grid
system. Secondly, the simulation of the experiment is
presented. This simulation is an extension of GridSim [6]
toolkit version 4.0, which is a popular discrete-event
simulator and grid scheduling algorithm. The simulator
defines the different workload of resources, the arrival time of
independent jobs, the length of each job, the criteria of a
scheduler, etc. Finally, this paper compares the performance
of various job schedulers and dispatching rules for grid
environment within fully controlled conditions.

A. Job Scheduling in ACO

Grid computing is the heterogeneous environment, which is
also the dynamic environment. The scheduled jobs rarely
coincide between actual execution times and the expected
ones in the real computing environment. Therefore, the main
challenge of the job scheduling is in both the grid system
since no one has the ability to fully control all jobs. The other
challenge is in the available dynamic resources and the
difference between the expected execution time with the
actual time in algorithm.
To illustrate the impact of dynamic environment and

uncertainty in the execution job time in grid scheduling
system, heuristic algorithms [7] will be used as a solving tool
in the studied system. The assumptions regarding four jobs:
J1, J2, J3 and J4. They are to be scheduled onto grid system of
two machines, M1, M2. Table II shows the expected
execution time and the actual execution time on the machines,
where the actual execution time gives in parentheses, the min-
min algorithm will allocate M1 for J1, M2 for J2, M2 for J3
and M1 for J4 based on the expected execution time. The
result is 40 time units of scheduling length, which is the
optimal solution. However, the precise expected execution
time of job cannot be determined in advance because of the
load dynamic and many the other unknown. Hence, the
previous solution is not the optimal because the scheduling
will has length 50 time units. In the other words, if the assign
job to the machine based on the actual execution time, it can
achieve the shortest schedule length is in 30 time units.

Table 2: The expected and actual execution time on the machines

Job
Machine 1:

M1

Machine 2:

M2

J1 10(20) 20(10)
J2 30(20) 25(30)
J3 20(10) 15(20)
J4 15(10) 20(5)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

1
0

0

T
im

e
 T

a
k

e
n

 T
o

 C
o

m
p

le
te

Task Invoked

Chart Title

Modified ACO

Existing ACO

With the above concept there is an importance issue
regarding the local search, which assigns the job to improper
machine. Therefore, the scheduling considers and swaps the
job from improper machine to more proper machine in the
solution,

Fig. 4: Time table of problem processor (left hand side) and non
processor (right hand side)

To illustrate the local search in Fig. 4, the scheduling length

of the solution in the left hand side is 30 time units and the
problem is in machine 2. The local search finds the optimal
machine and directs the job to suitable assigned machine.
Hence, this will reduce the overall of the scheduling length.
The procedure can search a job on M2 that can be swapped to
the other machine. At the same time, the other job
searched and swapped to another machines. In addition, a job
J3 is swapped to machine M2 and J4 is swapped to machine
M1 for that the scheduling length is reduced from 30 time
units to 25 time unites.
Motivated by these facts, the goal of this pap

an Ant Colony algorithm that can produce the optimal
resources selection technique, which can find the optimal
resources to process the jobs and overall performance system
in term of minimizing tardiness time.
The approach is to develop scheduling algorithm within the

objective to minimize total tardiness time of the jobs based on
an Ant Colony Optimization (ACO) [8]. The problem is stated
as follows. A set of n jobs are available for processing on
available set of m machines. Each job has a processing time
pj, a due date time dj, an arrival time aj and a release time
which is incurred when job j immediately follows job
assumed that all the processing times, due dates, release time
and arrival times are non-negative integers. Job preemptions
are not allowed. Let Cij be completion time of the operation
of job j on machine i. Thus, the completion time of the job
in machine ith is given as:

Ci,j = aj + rj + pi,j ……………. (4)

The tardiness of the jth job in machine i is given as

Ti,j = max(Ci,j – dj, 0) ……………(5)

The objective is to minimize the maximal total tardiness time
of all the jobs within machine of grid environment.

m n
∑ (∑ Ti,j) ………………….. (6)
i=1 j=1

Debabrata Singh et al.

With the above concept there is an importance issue
regarding the local search, which assigns the job to improper
machine. Therefore, the scheduling considers and swaps the
job from improper machine to more proper machine in the

table of problem processor (left hand side) and non-problem of

4, the scheduling length
of the solution in the left hand side is 30 time units and the

search finds the optimal
machine and directs the job to suitable assigned machine.
Hence, this will reduce the overall of the scheduling length.

that can be swapped to
the other machine. At the same time, the other jobs can be
searched and swapped to another machines. In addition, a job

is swapped to machine
for that the scheduling length is reduced from 30 time

Motivated by these facts, the goal of this paper is to propose
an Ant Colony algorithm that can produce the optimal
resources selection technique, which can find the optimal
resources to process the jobs and overall performance system

heduling algorithm within the
objective to minimize total tardiness time of the jobs based on

he problem is stated
jobs are available for processing on

a processing time
and a release time rj

immediately follows job i. It is
assumed that all the processing times, due dates, release time

negative integers. Job preemptions
be completion time of the operation

Thus, the completion time of the job jth

is given as

The objective is to minimize the maximal total tardiness time
e of grid environment.

it used to calculate the optimal resources for processing the
job.

B. Implementation of ACO

In this subsection, the actual implementation of ACO, in
which ants explore the network, is discussed. In optical grid
networks, ants are small packets that travel from the clients to
the resources and back and help to distribute the information
needed in the algorithms. We can distinguish two types of
ants: “forward ants” and “backward ants
A forward ant travels from a client to one of the resources.

In the resource the ant discovers first it will be transformed
into a backward ant and return to its origin. While foraging
the network, a forward ant will execute the following pseudo
code in every node/router.

1 if (node connected to resource) {
2 visit (resource);
3 store (information);
4 } else{
5 if (routerTable_NOT empty){
6 p0=random ();
7 if(p0<threshold){
8 link_algorithm();
9 } else{
10 link=random();
11 }
12 }else{
13 link=random ();
14 }
15 store (information);
16 send ();
17 }

When the node is connected to a resource, the ant will visit

the resource to gather the needed information (lines 2 and 3).
If the node is not connected to a resource, the router table is
investigated. In line 7 a random number is compared to a
threshold as a way of controlling the algorithms dynamics. A
low threshold will encourage the ants to discover new roads
and not to follow the path indicated by the router tables. This
can be compared to the ants’ likelihood of following existing
pheromone tracks. The “algorithm()”
algorithms described in Section 3 to route the ant, i.e.,
selecting which resource to choose and which path to follow
using the data mentioned. Before traveling to the next link,
the forward ant will gather information about the node and the
next link. This information will be stored in the ant and will
be carried along (line 15).
When a forward ant has reached a resource and has

gathered the needed information about the resource, it has
accomplished its task and will be transformed into a backward
ant. A backward ant will return to the client on the same route
of the forward ant, and while on its way is updating the
nodes’ router tables.
The following pseudo-code explains what happens with

backward ant entering a node:

1 if (!(local && lifetime_>=sizeNeighborhood)){

 11

it used to calculate the optimal resources for processing the

In this subsection, the actual implementation of ACO, in
is discussed. In optical grid

networks, ants are small packets that travel from the clients to
the resources and back and help to distribute the information
needed in the algorithms. We can distinguish two types of

orward ants” and “backward ants”.
A forward ant travels from a client to one of the resources.

In the resource the ant discovers first it will be transformed
into a backward ant and return to its origin. While foraging
the network, a forward ant will execute the following pseudo-

if (node connected to resource) {

if (routerTable_NOT empty){

When the node is connected to a resource, the ant will visit
the resource to gather the needed information (lines 2 and 3).
If the node is not connected to a resource, the router table is
investigated. In line 7 a random number is compared to a
threshold as a way of controlling the algorithms dynamics. A
low threshold will encourage the ants to discover new roads
and not to follow the path indicated by the router tables. This

d to the ants’ likelihood of following existing
acks. The “algorithm()” in line 8 uses one of the

algorithms described in Section 3 to route the ant, i.e.,
selecting which resource to choose and which path to follow

efore traveling to the next link,
the forward ant will gather information about the node and the
next link. This information will be stored in the ant and will

When a forward ant has reached a resource and has
d information about the resource, it has

accomplished its task and will be transformed into a backward
ant. A backward ant will return to the client on the same route
of the forward ant, and while on its way is updating the

code explains what happens with a

1 if (!(local && lifetime_>=sizeNeighborhood)){

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 12

2 if (node connected to client C &&
sourceClient=C){
3 update (router);
4 }else{
5 update (router);
6 link=ant. getNextLink ();
7 send ();
8 }

If the ant has reached the router connected to the client, it

only has to update the information in this router. If the
backward ant is in an intermediary node, it also has to
determine on which link its forward ant traveled (line 6),
which is stored internally in the ant.

C. Resource Selection

Here we propose four alternatives for resource selection:
using the algorithm of Dijkstra, using the information stored
by the ants in the router tables, a weighted choice with the
information in the router tables and best link. The latter one is
not really a resource selection procedure but determines the
overall best link to reach one of the resources.
When using the well-known algorithm of Dijkstra each

node knows in advance which one is the closest resource,
which thus will be selected. Here the calculations to
determine the closest resource only have to be executed when
the information in the router table is updated, more
specifically when a new resource is discovered or when a
resource goes offline.
A resource can also be determined by the use of the router

table which keeps track of the free capacity of every resource
and per resource and per link the number of ants that choose
that link to reach the resource. According to the ACO
principle the closest resource is the one that has been reached
most, i.e., the resource with the highest number of ants
independent of the path they followed to reach the resource.
Additionally, the resource with the highest spare capacity can
easily be deduced from the router table.
The previous selection procedures choose the resource

unambiguously [10]. In contrast, when using a weighted
choice, a level of uncertainty is introduced. Again the
information in the router table is used to select a resource, but
every resource is now assigned a probability proportional to
the information in the router table. To find the “closest
resource” the following formula is used:

p� �
∑ ����	, ��

∑ �∑ ����	, ��

Where pk is the probability that resource k is the closest

resource. Ant (i , j) defines the number of ants that traversed
link j to reach resource i. So this probability is equal to the
number of ants that reached resource i divided by the total
number of ants that crossed the router. A unit interval is split
according to these probabilities, and the section in which the
randomly chosen number is situated determines the selected
resource. An analog procedure can be used to select the
“resource with the freest capacity,” but instead of the number
of ants the remaining free capacity is used. The last resource

selection procedure determines the best link to traverse in
order to reach one of the resources, without explicitly
selecting a single resource. In fact this is a link selection
algorithm, but since no resource selection is needed in
advance it is categorized here. The link that has been crossed
the most will be chosen. If we want to introduce a level of
uncertainty this selection can happen in a weighted manner, as
explained previously.

IV. LINK SELECTION

Once a resource has been selected, we have to decide on
which link the job has to travel first to reach this resource. We
examined two ways to perform this link selection. Internal
nodes can calculate the shortest routes to the resources in
advance using the algorithm of Dijkstra. For each resource the
node now knows which link a job has to travel on to reach the
resource as fast as possible. These links only have to be
recalculated if the network topology changes .Another way
makes use of the router table. By determining how many ants
crossed each link to reach the selected resource, the link that
is most likely part of the shortest path can be selected. To
introduce a way of load balancing we opted here for a
weighted choice, according to the procedure discussed above.

A. Complexity

Here we examine the additional overhead introduced by the
novel routing algorithms. We focus on two aspects: the
amount of memory routers needed to store the routing table
and a quantitative analysis of the processing complexity to
execute the different routing algorithms.
The structure of the routing table (Fig. 5) shows memory is

required to store two values for every resource that can be
reached, together with a table containing a number of entries
consisting of two values. The maximum number of entries in
this table is the number of outgoing links (mi for resource i).
Assuming N resources are in the network, the formula for the
amount of memory needed in a router is:
(N2c (1 +mi))/8, where c represents the number of bits needed
to represent a single value. Here we have taken the standard
integers, c to be of 32 bits.
Table 3 and Fig. 7 show the amount of memory needed for

six different network topologies: for ring network, mesh
network, random network, bus network, star network and the
simulated topology. As it is clear from the table, for a
considerable amount of resources in the network, the amount
of memory needed to store a single routing table remains very

Table 3: Router Table Memory Needs

Networks Average LCa
Number of

Resources

RTb

(kB)

Ring 2 200 4.8

Mesh 4 200 8

Bus 5 200 3.2

Star 5 200 9.6

Random 6 200 11.2

Proposed N/w 3 200 0.16

Fig. 5: Router Table Memory Needs

reasonable. For a much larger number of resources,
aggregation techniques could prove useful to reduce the
routing table’s size at the expense of slightly less accurate
routing decisions.
In the simulation we used software proposed model

which all information is stored centrally. To save on memory
space we opted for a smaller network with only five resources
and an average link connectivity of 3 (simulation network in
Table 3). In this way, less space is needed to store the router
tables of all routers.
Next we examined the number of calculations needed for

the different selection procedures. This is presented in Table
3, where N represents the number of resources in the network,
while mi denotes the number of outgoing links in a router.
The first column indicates the selection procedure concerns
resources (R) or links (L). Random () denotes the number of
calculations needed to determine a random number and
selection () denotes the number of calculations required to
pick the maximum value (max) or the item that corresponds to
the random number (rand).
We see that the application of ACO is more complex than

the application of the algorithm of Dijkstra, in which, after
primary calculations, only a table has to be consulted. When
using the algorithm of Dijkstra the shortest paths have been
calculated once with a running time of O (│V
simplest implementation [11]. (V represents the set of
vertices; E represents the set of edges). Once the closest
resource is determined, and this is stored inside the router, no
additional calculations are needed to route a job.
Only when the network topology changes drastically, the

new calculations are needed. When us
algorithms, calculations have been executed every time a job
enters a router. Additionally ants are foraging the network for
initialization at runtime.

Debabrata Singh et al.

Router Table Memory Needs

reasonable. For a much larger number of resources,
aggregation techniques could prove useful to reduce the
routing table’s size at the expense of slightly less accurate

proposed model in
which all information is stored centrally. To save on memory
space we opted for a smaller network with only five resources
and an average link connectivity of 3 (simulation network in

ay, less space is needed to store the router

Next we examined the number of calculations needed for
s. This is presented in Table

represents the number of resources in the network,
denotes the number of outgoing links in a router.

The first column indicates the selection procedure concerns
). Random () denotes the number of

calculations needed to determine a random number and
r of calculations required to

pick the maximum value (max) or the item that corresponds to

We see that the application of ACO is more complex than
the application of the algorithm of Dijkstra, in which, after

, only a table has to be consulted. When
using the algorithm of Dijkstra the shortest paths have been

V│2 +│E│) in the
represents the set of

represents the set of edges). Once the closest
resource is determined, and this is stored inside the router, no
additional calculations are needed to route a job.
Only when the network topology changes drastically, the

new calculations are needed. When using the ACO
algorithms, calculations have been executed every time a job
enters a router. Additionally ants are foraging the network for

Fig. 6: Types of drops

V. RESULTS AND DISCUSSIONS

This subsection presents the simulat
examined the influence of the network topology by running
identical experiments on similar networks with a different
connectivity. One is less connected (ring network) with an
average link connectivity of 2.4 links, and the other one is
more connected (triangular network) with an average link
connectivity of 4.4 links. The algorithm selects the closest
resource using the router table and has a weighted link
selection. The acceptance probability increases according to
an increasing level of connectivity,
the resources exist. The overall observations remain the same
but the acceptance probabilities are shifted accordingly.

Table 4: Number of Unused Links Vs Average Number of Hops

Resource
Number o

Link Unused

Best link
Largest resource (global)
Closest resource(global)
Largest resource (local)
Closest resource (local)
Algo of Dijkstra(largest)

Algo of Dijkstra(closest)

Fig. 7: No. of Unused Links vs.

 13

Types of drops

DISCUSSIONS

This subsection presents the simulation results. We
examined the influence of the network topology by running
identical experiments on similar networks with a different
connectivity. One is less connected (ring network) with an
average link connectivity of 2.4 links, and the other one is

e connected (triangular network) with an average link
connectivity of 4.4 links. The algorithm selects the closest
resource using the router table and has a weighted link

he acceptance probability increases according to
onnectivity, the fact that more routes to

the resources exist. The overall observations remain the same
but the acceptance probabilities are shifted accordingly.

Table 4: Number of Unused Links Vs Average Number of Hops

Number of

Link Unused

Average

No of Hops

2 2.77
3 2.75
4 2.55
4 2.74
5 2.5
13 2.36

31 1.56

of Unused Links vs. Average No. of Hops

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 14

VI. CONCLUSION

A several ACO-based algorithms for routing and job
scheduling in optical grids. A simulation analysis was used to
demonstrate the efficiency and scalability of the algorithms.
Improvements in network usage (by load balancing) are
shown, together with an increase in job acceptance probability
when compared to traditional shortest path routing. However,
ACO-based algorithms exhibit slightly increased travel times
and have a higher complexity. To cope with the latter
problem, we introduced the notion of locality in routing,
which also addresses issues of scalability. Overall, the
improved performance of the ACO algorithms is due to their
ability to adapt to a dynamic grid network environment. The
experimental results prove that the improved ant colony
algorithm has effective role on grid scheduling. The modified
pheromone updating rule makes the ant colony algorithm to
work more efficiently than the original ant colony algorithm.
Thus grid scheduling problems can be easily overcome using
one of the heuristic approaches for optimization problems
modified ant colony algorithms. Further study is needed to
enhance the routing capability of the ACO algorithm in order
to be competitive with traditional routing strategies.

REFERENCES

[1] O. Yu, A. Li, Y. Cao, L. Yin, M. Liao, H. Xu, Multi-domain
lambda grid data portal for collaborative grid applications,
Future Generation Computer Systems 22 (8) ,(2006) ,993-
1003..

[2] A. Takefusa, M. Hayashi, N. Nagatsu, H. Nakada, T. Kudoh,
T. Miyamoto, T. Otani, H. Tanaka, M. Suzuki, Y. Sameshima,
W. Imajuku, M. Jinno, Y. Takigawa, S. Okamoto, Y. Tanaka,
S. Sekiguchi, G-lambda: Coordination of a grid scheduler and

lambda path service over GMPLS, Future Generation
Computer Systems 22 (8) ,(2006) ,868-875.

[3] P. Thysebaert, M.D. Leenheer, B. Volckaert, F.D. Turck, B.
Dhoedt, P. Demeester, Scalable dimensioning of resilient
lambda grids, Future Generation Computer Systems 24 (6),
(2008) ,549-560.

[4] H. Zang, J. Jue, B. Mukherjee, A review of routing and
wavelength assignment approaches for wavelength-routed
optical WDM networks, Optical Networks Magazine 1 (1)
(2000), 47_60.

[5] G.S. Pavani, H. Waldman, Evaluation of an ant-based
architecture for all-optical networks, in: 10th Conference on
Optical Network Design and Modelling, ONDM'06,
Copenhagen, Denmark, 2006.

[6] Bradley, P. and D. Baker (2006, Dec). Improved beta-protein
structure prediction by multilevel optimization of nonlocal
strand pairings and local backbone conformation. Proteins 65
(4), 922-929.

[7] D. Xuan, W. Jia, and W. Zhao, “Routing algorithms for
anycast messages,” presented at the International Conference
on Parallel Processing, Minneapolis, Minn., 10–14 August,
1998.

[8] G. S. Pavani and H. Waldman, “Grid resource management by
means of ant colony optimization,” Presented at the Third
International Workshop on Networks for Grid Applications
(GridNets 2006), San Jose, California, 2006.

[9] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204-1216, 2000.

[10] C. Ernemann , V. Hamscher and R. Yahyapour, “Benefits of
Global Grid Computing for Job Scheduling”, Proceedings of
the Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04), 2004.

[11] Yu, D., McKee, s., Cottrell, R., Robertazzi, T., Thomas, T.,
Principal Investigators, TerraPaths: A QoS Enabled
Collaborative Dat Sharing Infrastructure for Peta-scale
Computing Research, A DOE SciDAC and MICS Proosal for
the period July1, 2004 to June 30, 2007

Debabrata Singh is an Assistant Professor in the
Department of Information Technology, holds
M.Tech in Computer Science & Engg. (BPUT,
BBSR) He has nearly five years experience in
teaching, software development and research.
Presently, he is working as Assistant professor in
ITER, SOA University, Bhubaneswar, Orissa He

has published 12 papers on Multi agent technologies, Sensor
Network, & Grid Computing in national & international journals and
conferences.

Milu Acharya is a Professor in the Department
of Mathematics, holds PhD in Mathematics
(Utkal University). She has nearly 12 years
experience in teaching, and research. Presently,
she is working as a professor in ITER, SOA
University, Bhubaneswar, Orissa Her area of
interest are Wireless Mesh Networks, multi agent

technologies & Grid Computing environment.

Soumya Das is a research scholar in the
Department of Master in Computer Application
holds M. Tech in CSDP. He has nearly Two
years experience in software development and
research. Presently, he is working as senior tech
assistant in HP , Bhubaneswar, Orissa .His area
of interest are Multi agent technologies, Sensor

Network, & Grid Computing.

