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Abstract– Grid networks provide users with a transparent way 

to access computational and storage resources. The creation of 

high performance Communication capabilities in multiple 

organizations and their interconnection in to a high speed fiber 

communications mesh have been described as Lambda Grid. We 

propose a modified ACO-based algorithm which can provided 

on-demand and dynamically light paths on a grid system. 

Indeed, the proposed algorithm can schedule jobs by discovering 

processing and network resources on the grid, assigning the job 

to a specific system and executing the job. We also propose a co-

scheduling lambda grid system for job routing in optical grid 

networks, based on the concept of ant colony optimization, which 

studies the behavior of ants for gathering food and the routing of 

packets inside a network. Simulated results show an increased 

performance of our algorithms over more classical co-scheduling 

protocols, even though this is accompanied by a slight increase in 

complexity. 

 

Index Terms– GMPLS-Controlled, ACO, RSVP-TE, BADR 

and CLL 
 

I.    INTRODUCTION 

N the lambda grid network scenario, users are generally 
more interested in the successful completion of their jobs 
than in the location where the actual processing occurs . 

Job routing and scheduling in grid networks are managed by 
resource brokers, which assign each job to a resource and 
route the job in a co-scheduling way. A co-scheduling 
approach using grid-aware network algorithms would bypass 
the need for a resource broker and increase scalability. This 
work is to complement the development of computing GRIDS 
as defined in GGF, Globus, and other places – hence the use 
of “GRID”. This paper looks at Lambda Grid 
implementations as generally falling into two high level 
models: 1) provider controlled networks and, 2) user 
controlled networks.     
 In a provider controlled network the user connects to the 

network edge and requests a path through the network to 
another edge. The network is responsible for finding and 
setting up an appropriate path and passing traffic through the 
path. The provider may also manage faults and provide 
internal backup paths in case of a failure in the network. The 
Optical Interconnect Forum (OIF) has defined interfaces to 
support this– the UNI for user interface to the network and the  

 
NNI for connecting between network segments. The GMPLS 
[2] specifications have created a modified MPLS protocol to 
support creation and grouping of paths, which include fibers. 
Some more about this protocol is covered in a few 
paragraphs. The Fig. 1 shows an example of a provider 
controlled network. It shows users connecting to the net edge 
router with UNI interfaces the routers finding creating paths 
between network end points and connecting to users at the 
other end. 
User controlled networking is a concept being developed in 

a number of experiments to support applications which 
support class 2 (several to several) and especially class 3 
(high performance few-few) networking [11]. In the user 
controlled networking model the provider has a number of 
light paths from which it delegates subsets of resources to 
other organizations giving them the right to provision that 
subset of the provider’s resources. The implication of this is 
that there must be a control mechanism that allows a user to 
setup paths using the links delegated to it, In fact this is what 
is being done for several Lambda Grid Projects [3] It also 
allows the use of fiber elements as resources to be allocated, 
just as GRID computing treats computing and storage 
elements as resources to be allocated to an application. This 
ability to treat Fiber links as resources may allow Grid 
software for controlling distributed computing to be used to 
interface with optical controllers. 
  
 

 
         

Fig.  1: Provider Controlled Networks 
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Fig. 2: User Controlled Networks 
 

II.    ARCHITECTURE 

The lambda grid architecture is built around an integrated 
GMPLS-controlled WDM optical network [4]. We consider 
two different grid scheduling systems: one based on ants for 
routing the light paths and collecting resource availability, 
and a distributed publish-and-subscribe with topological 
routing [5] of the light path. 
In the first system, both the management of Grid resources 

and light paths are naturally combined in the Grid scheduling, 
since the ants act on behalf of the user to make resource 
discovery and allocation, and to route light paths. On the other 
hand, in the second system, the Grid resources and the optical 
network are separately managed, resulting in an overlay 
approach.  
The signaling part relies on the RSVP-TE protocol, as 

described in an extra error code is reported by the RSVP-TE 
protocol when the Path message arrives at the resource node 
and there is no available processor, i.e., the light paths request 
is blocked due to the lack of processing resources. This is 
necessary for the case when a resource node, which had 
available processors, is now busy and the information about 
the node's actual status has not reached the user nodes yet. 
After a resource node is selected to handle a job, the 

process of establishing a light path between the user node and 
the resource node is triggered. Once the light path is 
established, the data related to the job is transferred to the 
resource node to be processed. After the transfer of the job 
data, the light path is torn down and the job is executed. 
However, blocking of a job request can occur due to two main 
reasons: the first one is caused by lack of a node to process 
the job, i.e., the allocated resource node or all resource nodes 
are busy. The second type of blocking happens when there are 
insufficient network resources to establish a light path. 

A. Node Selection Policy 

Only one node selection algorithm was proposed: the 
selection of the least loaded node to execute the job. Although 
this approach seems interesting for balancing the grid 
workload, it may waste important network resources, 

increasing the total blocking. For this reason, we propose two 
alternative algorithms in addition to the Least-Loaded (LL) 
one: 
i). The Closest Least-Loaded (CLL): This approach chooses 

the least-loaded node among the closest ones in terms of 
number of hops. The rationale behind this algorithm is to 
avoid the sending of jobs to nodes too far away.  
ii). The Best Availability-Distance Ratio (BADR): This 

strategy selects the node whose ratio between number of 
processors available and distance in terms of number of hops 
is the maximum one. Indeed, this policy represents a trade-off 
between the LL and CLL approaches. 
iii). Modified Ant Colony Algorithm: The proposed ant 

colony optimization is used to solve large complex problems. 
It requires grid scheduling to achieve high performance. 
Scheduling of independent jobs remains as a complex 
problem in grid environment. Hence better scheduling in grid 
systems can be achieved using heuristic approaches. The Ant 
colony algorithm – one of the popular heuristic approaches 
can be used. The basic Ant algorithm involves Transition 
Probability and Pheromone Updating Rule. Improved ant 
colony algorithm is, modified ant colony algorithm, and used 
to achieve better scheduling to improve the performance of 
grid system. The modified ant colony algorithm has changed 
the basic Pheromone updating rule of original ant colony 
algorithm.  
The improved pheromone updating rule is given by: 
 
τij(t)new=[{(1-ρ)/(1+ρ)}*τij(t)old] 
        +[{ρ/(1+ρ)}*∆τij(t)] ……………….(3) 
Where  
τij(t) � Trail intensity of the edge(i,j). 
     ρ � Evaporation rate. 
  ∆τij(t) � Additional pheromone when job moves from 
scheduler to resource.  
Pseudo code for Modified ACO is as follows: 
1. procedure Improved_ACO 
2. begin 
3. Initialize the pheromone 
4. while stopping criterion not satisfied do 
5. Position each ant in a starting node 
6. Repeat 
7. for each ant do 
8. Chose next node by applying the state 
transition rate 
Pij(t)k = [τ ij(t)]α*[ηij(t)]β 
/ΣuЄallowed(k) τ iu(t)]α*[ηiu(t)]β 
9. end for 
10. until every ant has build a solution 
11. Update the pheromone 
τij(t)new=[{(1-ρ)/(1+ρ)}*τij(t)old] 
+ [{ρ/(1+ρ)}*∆τij(t)] 
12. end while 
13. end 
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III.    EXPERIMENTAL RESULTS 

The proposed Ant colony algorithm as a whole is a best 
suited method for tracking problem with large data sets. The 
above approach was simulated using GRID Sim toolkit and 
was found to be working efficiently and effectively. 
Experimental test carried out for a varied range of input set to 
ascertain the efficiency of the algorithm. From the results it is 
clearly evident that the proposed Ant colony algorithm offers 
better optimization a very fast rate. 
 

Table 1: Proposed System VS Existing System 

Number of 

tasks 

involved 

Proposed Ant colony 

system (% of time taken 

for execution ) 

Existing Ant colony 

system (% of time 

taken for execution) 

10 0.32 0.59 
20 0.72 0.81 
30 0.42 0.62 
40 0.63 0.75 
50 0.81 0.89 
60 0.49 0.70 
70 0.67 0.80 
80 0.62 0.76 
90 0.50 0.66 

100 0.73 0.84 

         

The above table1 shows the amount of tasks considered for 
each period of execution. The results are tabulated for interval 
of every 10 tasks, starting from 10 tasks to 100 tasks 
respectively. 
The above graph reveals that the proposed system works 

effectively than the existing system. The time taken to 
complete 10 tasks, 20 tasks, 30 tasks, 40 tasks, 50 tasks, 60 
tasks, 70 tasks, 80 tasks, 90 tasks and 100 tasks are lesser 
when the proposed methodology is applied when compared to 
that of the existing system. Thus the proposed methodology is 
found evidently to work more effectively than that of the 
existing methodology. 
 
 

 
 
 
Fig. 3: Proportionate improvement of the Proposed Ant colony system VS 
Existing Ant colony system 

The demand for scheduling is to achieve high performance 
computing. Typically, it is difficult to find an optimal 
resource allocation for specific job that minimizes the 
schedule length of jobs. The scheduling problem is defined 
NP-hard problem [9] and it is not trivial. 
The motivation of this paper is to develop a grid scheduling 

algorithm that can perform efficiently and effectively in terms 
of minimizing total tardiness time. Not only does it improve 
the overall performance of the system but it also adapts to the 
dynamic grid system. First of all, this paper proposes an Ant 
Colony Optimization (ACO) algorithm to find the optimal 
resource allocation of each job within the dynamic grid 
system. Secondly, the simulation of the experiment is 
presented. This simulation is an extension of GridSim [6] 
toolkit version 4.0, which is a popular discrete-event 
simulator and grid scheduling algorithm. The simulator 
defines the different workload of resources, the arrival time of 
independent jobs, the length of each job, the criteria of a 
scheduler, etc. Finally, this paper compares the performance 
of various job schedulers and dispatching rules for grid 
environment within fully controlled conditions. 

A. Job Scheduling in ACO 

Grid computing is the heterogeneous environment, which is 
also the dynamic environment. The scheduled jobs rarely 
coincide between actual execution times and the expected 
ones in the real computing environment. Therefore, the main 
challenge of the job scheduling is in both the grid system 
since no one has the ability to fully control all jobs. The other 
challenge is in the available dynamic resources and the 
difference between the expected execution time with the 
actual time in algorithm. 
To illustrate the impact of dynamic environment and 

uncertainty in the execution job time in grid scheduling 
system, heuristic algorithms [7] will be used as a solving tool 
in the studied system. The assumptions regarding four jobs: 
J1, J2, J3 and J4. They are to be scheduled onto grid system of 
two machines, M1, M2. Table II shows the expected 
execution time and the actual execution time on the machines, 
where the actual execution time gives in parentheses, the min-
min algorithm will allocate M1 for J1, M2 for J2, M2 for J3 
and M1 for J4 based on the expected execution time. The 
result is 40 time units of scheduling length, which is the 
optimal solution. However, the precise expected execution 
time of job cannot be determined in advance because of the 
load dynamic and many the other unknown. Hence, the 
previous solution is not the optimal because the scheduling 
will has length 50 time units. In the other words, if the assign 
job to the machine based on the actual execution time, it can 
achieve the shortest schedule length is in 30 time units. 
 
 

Table 2: The expected and actual execution time on the machines 

Job 
Machine 1: 

M1 

Machine 2: 

M2 

J1 10(20) 20(10) 
J2 30(20) 25(30) 
J3 20(10) 15(20) 
J4 15(10) 20(5) 
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With the above concept there is an importance issue 
regarding the local search, which assigns the job to improper 
machine. Therefore, the scheduling considers and swaps the 
job from improper machine to more proper machine in the 
solution,  
 

 
Fig. 4: Time table of problem processor (left hand side) and non
processor (right hand side) 

 
To illustrate the local search in Fig. 4, the scheduling length 

of the solution in the left hand side is 30 time units and the 
problem is in machine 2. The local search finds the optimal 
machine and directs the job to suitable assigned machine. 
Hence, this will reduce the overall of the scheduling length. 
The procedure can search a job on M2 that can be swapped to 
the other machine. At the same time, the other job
searched and swapped to another machines. In addition, a job 
J3 is swapped to machine M2 and J4 is swapped to machine 
M1 for that the scheduling length is reduced from 30 time 
units to 25 time unites. 
Motivated by these facts, the goal of this pap

an Ant Colony algorithm that can produce the optimal 
resources selection technique, which can find the optimal 
resources to process the jobs and overall performance system 
in term of minimizing tardiness time. 
The approach is to develop scheduling algorithm within the 

objective to minimize total tardiness time of the jobs based on 
an Ant Colony Optimization (ACO) [8]. The problem is stated 
as follows. A set of n jobs are available for processing on 
available set of m machines. Each job has a processing time 
pj, a due date time dj, an arrival time aj and a release time 
which is incurred when job j immediately follows job 
assumed that all the processing times, due dates, release time 
and arrival times are non-negative integers. Job preemptions 
are not allowed. Let Cij be completion time of the operation 
of job j on machine i. Thus, the completion time of the job 
in machine ith is given as: 
 

Ci,j = aj + rj + pi,j       …………….   (4) 
 
The tardiness of the jth job in machine i is given as
 
Ti,j = max( Ci,j – dj, 0)   ……………(5) 
 
The objective is to minimize the maximal total tardiness time 
of all the jobs within machine of grid environment.
 
m    n 
∑  ( ∑   Ti,j )      ………………….. (6) 
i=1  j=1 
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he problem is stated 
jobs are available for processing on 

a processing time 
and a release time rj 
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assumed that all the processing times, due dates, release time 

negative integers. Job preemptions 
be completion time of the operation 

Thus, the completion time of the job jth 

is given as 

The objective is to minimize the maximal total tardiness time 
e of grid environment. 

it used to calculate the optimal resources for processing the 
job.  

B. Implementation of ACO 

In this subsection, the actual implementation of ACO, in 
which ants explore the network, is discussed. In optical grid 
networks, ants are small packets that travel from the clients to 
the resources and back and help to distribute the information 
needed in the algorithms. We can distinguish two types of 
ants: “forward ants” and “backward ants
A forward ant travels from a client to one of the resources. 

In the resource the ant discovers first it will be transformed 
into a backward ant and return to its origin. While foraging 
the network, a forward ant will execute the following pseudo
code in every node/router.  
 

1  if (node connected to resource) {
2  visit (resource); 
3  store (information); 
4  } else{ 
5  if (routerTable_NOT empty){
6  p0=random (); 
7  if(p0<threshold){ 
8  link_algorithm(); 
9  } else{ 
10 link=random(); 
11  } 
12  }else{ 
13  link=random (); 
14  } 
15  store (information); 
16  send (); 
17  } 

 
When the node is connected to a resource, the ant will visit 

the resource to gather the needed information (lines 2 and 3). 
If the node is not connected to a resource, the router table is 
investigated. In line 7 a random number is compared to a 
threshold as a way of controlling the algorithms dynamics. A 
low threshold will encourage the ants to discover new roads 
and not to follow the path indicated by the router tables. This 
can be compared to the ants’ likelihood of following existing 
pheromone tracks. The “algorithm()” 
algorithms described in Section 3 to route the ant, i.e., 
selecting which resource to choose and which path to follow 
using the data mentioned. Before traveling to the next link, 
the forward ant will gather information about the node and the 
next link. This information will be stored in the ant and will 
be carried along (line 15). 
When a forward ant has reached a resource and has 

gathered the needed information about the resource, it has 
accomplished its task and will be transformed into a backward 
ant. A backward ant will return to the client on the same route 
of the forward ant, and while on its way is updating the 
nodes’ router tables. 
The following pseudo-code explains what happens with

backward ant entering a node: 
 
1 if (!(local && lifetime_>=sizeNeighborhood)){

                                                                             11 
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2 if (node connected to client C && 
sourceClient=C){ 
3 update (router); 
4 }else{ 
5 update (router); 
6 link=ant. getNextLink (); 
7 send (); 
8 } 

         
If the ant has reached the router connected to the client, it 

only has to update the information in this router. If the 
backward ant is in an intermediary node, it also has to 
determine on which link its forward ant traveled (line 6), 
which is stored internally in the ant. 

C. Resource Selection 

Here we propose four alternatives for resource selection: 
using the algorithm of Dijkstra, using the information stored 
by the ants in the router tables, a weighted choice with the 
information in the router tables and best link. The latter one is 
not really a resource selection procedure but determines the 
overall best link to reach one of the resources. 
When using the well-known algorithm of Dijkstra each 

node knows in advance which one is the closest resource, 
which thus will be selected. Here the calculations to 
determine the closest resource only have to be executed when 
the information in the router table is updated, more 
specifically when a new resource is discovered or when a 
resource goes offline. 
A resource can also be determined by the use of the router 

table which keeps track of the free capacity of every resource 
and per resource and per link the number of ants that choose 
that link to reach the resource. According to the ACO 
principle the closest resource is the one that has been reached 
most, i.e., the resource with the highest number of ants 
independent of the path they followed to reach the resource. 
Additionally, the resource with the highest spare capacity can 
easily be deduced from the router table. 
The previous selection procedures choose the resource 

unambiguously [10]. In contrast, when using a weighted 
choice, a level of uncertainty is introduced. Again the 
information in the router table is used to select a resource, but 
every resource is now assigned a probability proportional to 
the information in the router table. To find the “closest 
resource” the following formula is used: 
 

p� �
∑ ����	, ��

∑ �∑ ����	, ��

 

                       
Where pk is the probability that resource k is the closest 

resource. Ant (i , j) defines the number of ants that traversed 
link j to reach resource i. So this probability is equal to the 
number of ants that reached resource i divided by the total 
number of ants that crossed the router. A unit interval is split 
according to these probabilities, and the section in which the 
randomly chosen number is situated determines the selected 
resource. An analog procedure can be used to select the 
“resource with the freest capacity,” but instead of the number 
of ants the remaining free capacity is used.  The last resource 

selection procedure determines the best link to traverse in 
order to reach one of the resources, without explicitly 
selecting a single resource. In fact this is a link selection 
algorithm, but since no resource selection is needed in 
advance it is categorized here. The link that has been crossed 
the most will be chosen. If we want to introduce a level of 
uncertainty this selection can happen in a weighted manner, as 
explained previously. 

IV.   LINK SELECTION 

Once a resource has been selected, we have to decide on 
which link the job has to travel first to reach this resource. We 
examined two ways to perform this link selection. Internal 
nodes can calculate the shortest routes to the resources in 
advance using the algorithm of Dijkstra. For each resource the 
node now knows which link a job has to travel on to reach the 
resource as fast as possible. These links only have to be 
recalculated if the network topology changes .Another way 
makes use of the router table. By determining how many ants 
crossed each link to reach the selected resource, the link that 
is most likely part of the shortest path can be selected. To 
introduce a way of load balancing we opted here for a 
weighted choice, according to the procedure discussed above. 

A. Complexity 

Here we examine the additional overhead introduced by the 
novel routing algorithms. We focus on two aspects: the 
amount of memory routers needed to store the routing table 
and a quantitative analysis of the processing complexity to 
execute the different routing algorithms. 
The structure of the routing table (Fig. 5) shows memory is 

required to store two values for every resource that can be 
reached, together with a table containing a number of entries 
consisting of two values. The maximum number of entries in 
this table is the number of outgoing links (mi for resource i). 
Assuming N resources are in the network, the formula for the 
amount of memory needed in a router is:                                    
(N2c (1 +mi))/8, where c represents the number of bits needed 
to represent a single value. Here we have taken the standard 
integers, c to be of 32 bits. 
Table 3 and Fig. 7 show the amount of memory needed for 

six different network topologies: for ring network, mesh 
network, random network, bus network, star network and the 
simulated topology. As it is clear from the table, for a 
considerable amount of resources in the network, the amount 
of memory needed to store a single routing table remains very  
 
 

Table 3: Router Table Memory Needs 

Networks Average LCa 
Number of 

Resources 

RTb 

(kB) 

Ring 2 200 4.8 

Mesh 4 200 8 

Bus 5 200 3.2 

Star 5 200 9.6 

Random 6 200 11.2 

Proposed N/w 3 200 0.16 



 

 
Fig. 5: Router Table Memory Needs

 
 
reasonable. For a much larger number of resources, 
aggregation techniques could prove useful to reduce the 
routing table’s size at the expense of slightly less accurate 
routing decisions. 
In the simulation we used software proposed model

which all information is stored centrally. To save on memory 
space we opted for a smaller network with only five resources 
and an average link connectivity of 3 (simulation network in 
Table 3). In this way, less space is needed to store the router 
tables of all routers. 
Next we examined the number of calculations needed for 

the different selection procedures. This is presented in Table 
3, where N represents the number of resources in the network, 
while mi denotes the number of outgoing links in a router. 
The first column indicates the selection procedure concerns 
resources (R) or links (L). Random ( ) denotes the number of 
calculations needed to determine a random number and 
selection ( ) denotes the number of calculations required to 
pick the maximum value (max) or the item that corresponds to 
the random number (rand).  
We see that the application of ACO is more complex than 

the application of the algorithm of Dijkstra, in which, after 
primary calculations, only a table has to be consulted. When 
using the algorithm of Dijkstra the shortest paths have been 
calculated once with a running time of O (│V
simplest implementation [11]. (V represents the set of 
vertices; E represents the set of edges). Once the closest 
resource is determined, and this is stored inside the router, no 
additional calculations are needed to route a job. 
Only when the network topology changes drastically, the 

new calculations are needed. When us
algorithms, calculations have been executed every time a job 
enters a router. Additionally ants are foraging the network for 
initialization at runtime. 
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V.   RESULTS AND DISCUSSIONS

This subsection presents the simulat
examined the influence of the network topology by running 
identical experiments on similar networks with a different 
connectivity. One is less connected (ring network) with an 
average link connectivity of 2.4 links, and the other one is 
more connected (triangular network) with an average link 
connectivity of 4.4 links. The algorithm selects the closest 
resource using the router table and has a weighted link 
selection. The acceptance probability increases according to 
an increasing level of connectivity, 
the resources exist. The overall observations remain the same 
but the acceptance probabilities are shifted accordingly.
 

Table 4: Number of Unused Links Vs Average Number of Hops

Resource 
Number o

Link Unused

Best link 
Largest resource (global) 
Closest resource(global) 
Largest resource (local) 
Closest resource (local) 
Algo of  Dijkstra(largest) 

Algo of  Dijkstra(closest) 

 
 

 
Fig. 7: No. of Unused Links vs.  
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Types of drops 

DISCUSSIONS 

This subsection presents the simulation results. We 
examined the influence of the network topology by running 
identical experiments on similar networks with a different 
connectivity. One is less connected (ring network) with an 
average link connectivity of 2.4 links, and the other one is 

e connected (triangular network) with an average link 
connectivity of 4.4 links. The algorithm selects the closest 
resource using the router table and has a weighted link 

he acceptance probability increases according to 
onnectivity, the fact that more routes to 

the resources exist. The overall observations remain the same 
but the acceptance probabilities are shifted accordingly. 

Table 4: Number of Unused Links Vs Average Number of Hops 

Number of 

Link Unused 

Average 

No of Hops 

2 2.77 
3 2.75 
4 2.55 
4 2.74 
5 2.5 
13 2.36 

31 1.56 

 

of Unused Links vs.  Average No. of Hops 
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VI.   CONCLUSION 

A several ACO-based algorithms for routing and job 
scheduling in optical grids. A simulation analysis was used to 
demonstrate the efficiency and scalability of the algorithms. 
Improvements in network usage (by load balancing) are 
shown, together with an increase in job acceptance probability 
when compared to traditional shortest path routing. However, 
ACO-based algorithms exhibit slightly increased travel times 
and have a higher complexity. To cope with the latter 
problem, we introduced the notion of locality in routing, 
which also addresses issues of scalability. Overall, the 
improved performance of the ACO algorithms is due to their 
ability to adapt to a dynamic grid network environment. The 
experimental results prove that the improved ant colony 
algorithm has effective role on grid scheduling. The modified 
pheromone updating rule makes the ant colony algorithm to 
work more efficiently than the original ant colony algorithm. 
Thus grid scheduling problems can be easily overcome using 
one of the heuristic approaches for optimization problems 
modified ant colony algorithms. Further study is needed to 
enhance the routing capability of the ACO algorithm in order 
to be competitive with traditional routing strategies.  
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