
International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 1

Journal Homepage: www.ijcst.org

Ei Phyu Zaw and Ni Lar Thein

University of Computer Studies, Yangon, Myanmar

zaw.eiphyu@gmail.com

Abstract—Live migration is a technology with which an entire

running virtual machine (VM) is moved from one physical

machine to another. Migration at the level of an entire VM

means that in-memory state can be transferred in a consistent

and efficient fashion. In pre-copy approach that is mainly used

in live migration, total migration time which affect on the

performance of VM, is prolonged by iterative copy operations

and the significant amount of transferred data during the whole

migration process. In this paper, we presented a framework that

includes pre-processing phase in traditional pre-copy based live

migration for reducing the amount of transferred data. In pre-

processing phase, we propose the prediction working set

algorithm. Applying the proposed algorithm which combined

LRU (Least Recent Used) cache with splay tree algorithm, the

system can reduce the amount transferred memory page. We

evaluated the effectiveness of the working set prediction

algorithm with various workloads. Experiment demonstrates

that compared with XEN’s default pre-copy based migration

algorithm, the proposed framework can reduce 23.67% of the

total data transferred during migration and 11.45% of total

migration time on average.

Index Terms—Least Recently Used (LRU), Pre-Copy Based

Live Migration, Total Migration Time and Virtual Machine

I. INTRODUCTION

IRTUALIZATION technology is gaining more and more

interest in the high-performance computing world. It has

many advantages, such as security isolation, abstraction

from heterogeneous hardware, reliability, and so on.

Virtualization technology also provide by better utilizing

computing resources, improving scalability, reliability and

availability while lowering total cost of ownership.

Migrating operating system instances across distinct

physical hosts is a most important features of virtualization

technology. It allows a clean separation between hardware

and software, and facilitates fault management.

Live migration of VMs is a useful capability of virtualized

clusters and data centers. It can be done by performing while

the operating system is still running. It allows more flexible

management of available physical resources by making to

load balance and do infrastructure maintenance without

entirely compromising application availability and

responsiveness.

VM migration is expected to be fast and VM service

degradation is also expected to be low during migration.

There are two major performance metrics of migration: i)

total migration time, the duration between the start of

migration and the time when migrated VM begins to run in

destination and gets a consistent state with the original one; ii)

downtime, the time period from when migrated VM is

suspended on the source node to when it is resumed on the

destination node in the last migration phase.

The key challenge is to achieve impressive performance

with minimal service downtime and total migration time in

live migration [1]. During the migration, resource in both

machines must be reserved on migration application and the

source machine may not be freed up for other purpose and so

it is important to minimize the total migration time. It need to

consider the moving of VM’s memory content, storage

content, and network connections from the source node to the

target node.

The best technique for live migration of VMs is pre-copy

[2]. It incorporates iterative push phases and a stop-and-copy

phase which lasts for a very short duration. By ‘iterative’, pre-

copying occurs in rounds in which the pages to be transferred

during round n are those that are modified during round n-1.

The number of rounds in pre-copy migration is directly

related to the working set which are being updated so

frequently pages. The final phase stop the VM, copies the

working set and CPU state to the destination host.

 The issue of pre-copy based live migration is that total

migration time is prolonged. It is caused by the significant

amount of transferred data during the whole migration process

and maximum number of iterations must be set because dirty

pages, frequently updated page, are ensured to converge over

multiple rounds.

This paper aims to predict the memory pages which are

used in near future. Recency and Frequency of references are

the two important parameters that determine the likelihood of

a memory page to be accessed in the near future. The LRU

policy gives importance only to the recency of references.

Making memory pages grouping is very important to

predict the memory pages. It is also need to measures how

close a group of data is accessed together within an execution.

They measure togetherness with a stack distance, which is

defined as the amount of distinct data accessed between two

V

Improved Live VM Migration using LRU and Splay Tree

Algorithm

ISSN 2047-3338

Ei Phyu Zaw and Ni Lar Thein 2

memory references in an execution trace. We used splay tree

algorithm for grouping the current memory pages.

In this paper, we propose the algorithm to predict the

working set, the collection of recent used memory pages, in

pre-copy based migration for VMs and then define working

set. We also present the proposed framework for pre-copy

based live migration to reduce the total migration time.

According to the experimental results, we can reduce the total

migration time of live migration of VMs.

The rest of this paper is organized as follows. Section 2

describes the related work. In Section 3, we discuss the live

migration of VMs, LRU replacement algorithm and Splay

Tree algorithm. In Section 4, the framework of pre-copy

based live migration and proposed predicting working set

algorithm are described. In Section 5, experimental results are

described. Finally, Section 6 concludes the paper.

II. RELATED WORK

In live VM migration, Pre-Copy [2] is the default migration

algorithm for Xen. Because of programs' local principles,

VM’s downtime is expected to be minimal, and in the same

time, the source node maintains the newest memory image

until migration is finished. The whole process is reliable,

because if destination node crashes, Pre-Copy can abort

migration and continue to run VM on the source node.

However, when applications’ loads are intensive, Pre-Copy

has to transfer too much memory image data, and

consequently has great time overhead.

Post-Copy [3] is proposed to solve this problem, and it

works in two phases. In the first phase, VM is suspended on

the source node, and its VCPU context and minimal memory

working set are copied to destination. In the second phase,

VM is started on the destination node, and all the memory

write operations are executed locally.

When VM needs to read some pages that the source node

has the newest version, these pages are fetched through

network. In the meantime, the source node keeps pushing

remaining memory image to the destination node until done.

Post-copy thus ensures that each memory page is transferred

at most once. However, both source and destination have part

of the newest memory status during migration. If the

destination node crashes, VM can not restart on the source

node, so Post-Copy does not have the same level of reliability

as Pre-Copy.

In pre-copy based live migration [4] of VM such as

VMware [5], XEN [6] and KVM [7] and post-copy based live

migration, sorting the page-cache in LRU order performs

better than non-LRU cases by improving the locality of

reference of neighboring memory pages in the pseudo-paging

device. Recency and Frequency of references are the two

important parameters that determine the likelihood of a

memory page to be accessed in the near future. The LRU

policy gives importance only to the recency of references.

FBR is a frequency-based policy that is similar to LRU but

uses the concepts of correlated references [8]. In LRU-K

policy, replacements are based on the time of the K
th
 to last

non-correlated reference to each block [9].

The proposed algorithm used the LRU replacement policy

with splay tree for grouping the current memory pages

according to their process ID to predict the working set in

Live VM migration.

III. BACKGROUND THEORY

A. Live Migration of VMs

VM migration takes a running VM and moves it from one

physical machine to another. This migration must be

transparent to the guest operating system, applications

running on the operating system, and remote clients of the

VM.

Live Migration migrate OS instances including the

applications that they are running to alternative VMs freeing

the original VM for maintenance. It rearranges OS instances

across VMs in a cluster to relieve load on congested hosts

without any interruption in the availability of the VM as

shown in Fig. 1.

Fig. 1. Live Migration of VMs

A key challenge in managing the live migration of OS

instances is how to manage the resources which include

networking, storage devices and memory [9].

Networking: In order for a migration to be transparent all

network connections that were open before a migration must

remain open after the migration completes. To address these

requirements, the network interfaces of the source and

destination machines typically exist on a single switched

LAN.

Storage Devices: We rely on storage area networks (SAN)

or NAS to allow us to migrate connections to storage devices.

This allows us to migrate a disk by reconnecting to the disk

on the destination machine.

Memory: Memory migration is one of the most important

aspects of VM migration. Moving the memory instance of the

VM from one physical state to another can be approached in

any number of ways.

In pre-copy based live migration of VM, it involves a

bounded iterative push phase and then a typically very short

stop-and-copy phase. It first transfers the memory pages

iteratively, in which the pages modified in a certain round will

be transferred later in the next round. The iterative push phase

continues until stop conditions. After that, the source VM

stops and transfers its own state and modified pages from the

last iteration.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 3

Many hypervisor-based approaches such as VMware [5],

XEN [6] and KVM [7] is used the pre-copy approach for live

migration of VMs.

B. Least Recently Used (LRU) Replacement Algorithm

It associates with each page the time of that page’s last use.

When a page must be replaced, LRU chooses the page that

has not been used for the longest period of time [10]. The

problem is to determine and order for the fames defined by

the time of last use. Two implementations are feasible:

Counters and Stack [11]. We apply Stack implementation that

keeps a stack of page numbers and most recent memory page

move to the top. So, the memory pages used in the recent past

is always on the top of the stack. By dynamically monitoring

memory accesses and constructing the LRU list, we can

predict the Working Set list of a VM.

C. Splay Tree Algorithm

A splay tree [12] is a self-adjusting binary search tree with

the additional property that recently accessed elements are

quick to access again. It performs basic operations such as

insertion, look-up and removal in O(log n) amortized time, n

means number of nodes. For many sequences of nonrandom

operations, splay trees perform better than other search trees,

even when the specific pattern of the sequence is unknown.

They use a heuristic restructuring called splaying to move a

specified node to the root of the tree via a sequence of

rotations along the path from that node to the root. Thus,

future calls to this node will be accessed faster. Splay trees

even enjoy a constant operation time. The key to a splay tree

is, of course, the restructuring splay heuristic [12].

Specifically, when a node is searched, it repeats the following

splay step until is the root of the tree.

• Case 1 (zig): if p(x), the parent of x, is the root, rotate the

edge joining x with p(x).

• Case 2 (zig-zig): if p(x) is not the root, and x and p(x) are

both left or both right children, rotate the edge joining

p(x) with its grandparent g(x) and then rotate the edge

joining x with p(x).

• Case 3 (zig-zag): if p(x) is not the root and x is a left

child and p(x) a right child or vice versa, rotates the

edge joining x with the new p(x).

Fig. 2 demonstrates the splay step through examples.

Observe the move-to-root heuristic, which moves the target

item to the root of the tree for each search operation.

Although the cost is high for an individual operation, a benefit

is the rough halving of the depth along the access path.

(a) zig rotation case

(b) zig-zig rotation case

(c) zig-zag rotation case

Fig. 2. Splaying steps, the node accessed is x.

Good performance for a splay tree depends on the fact that

it is self-optimizing, in that frequently accessed nodes will

move nearer to the root where they can be accessed more

quickly. The worst-case height - though unlikely - is O(n),

with the average being O(log n). Having frequently-used

nodes near the root is an advantage for nearly all practical

applications.

The advantages of splay tree algorithm are i) Simple

implementation, ii) Comparable performance, iii) Small

memory footprint, and iv) Working well with nodes

containing identical keys. The disadvantage of splay tree

algorithm is the height of a splay tree can be linear.

IV. A FRAMEWORK FOR LIVE VM MIGRATION

In this Section, we present a framework for pre-copy based

live migration to reduce the total migration time. The

proposed framework consists of the pre-processing phase,

push phase and stop and copy phase as shown in Fig. 2.

i) Pre-processing Phase

The system applies the proposed working set

prediction algorithm as the pre-processing phase. This

algorithm is based on Least-recently-used (LRU)

replacement algorithm and splay tree algorithm to define

the working set list that collects the most recent used

memory pages (operation 1).

ii) Push Phase

The system transfer memory pages except working set

list in first iteration and then memory pages modified

during the previous iteration are transferred to the

destination (operation 2).

iii) Stop and Copy Phase

This phase consists of three steps. Firstly, the systems

suspend the source VM for a final transfer round

(operation 3). Secondly, the system discards the source

VM and then transfer last modified pages and CPU state

Ei Phyu Zaw and Ni Lar Thein 4

(operation 4). Lastly the system activates the Target VM

(operation 5).

The design involves iteration though multiple rounds of

copying in which the VM memory pages that have been

modified since the previous copy are resent to the destination.

Fig. 3: A Framework for pre-copy based live migration

A. Proposed Working Set Prediction Algorithm

In pre-copy based live migration, the system first transfers

all memory pages and then copies pages just modified during

the last round iteratively. VM service downtime is expected to

be minimal by iterative copy operations but total migration

time is prolonged that caused by the significant amount of

transferred data during the whole migration process. The

proposed algorithm predicts the most recently used memory

pages that directly affects the total migration time.

In the proposed algorithm as shown in Figure 4, memory of

VM employ with LRU cache with splay tree. The page which

is at the top of the LRU cache and its splay tree which collect

memory pages used in the same process are defined as

Working Set.

Fig. 4. Block diagram for LRU cache with Splay tree

If a new page from the new process is faulted into main

memory, it is constructed the splay tree with the new

ProcessID. If a new page from the running process is faulted,

it is inserted into the splay tree with the correspondence

ProcessID. After that, the new page with its correspondence

splay tree is placed at the top of the LRU cache and defined as

the Working Set. If the LRU cache is full, the last page is

removed from the LRU cache to place the most recent used

page. The Working Set prediction is deployed by least

recently used (LRU) algorithm and splay tree algorithm as

shown in Fig. 5. The proposed algorithm:

• predicts the working set which is the collection of

memory pages in future use to reduce not only the

amount of modified pages during the push phase but

also the rounds of copying.

• dynamically defines the working set according to the

most recent process.

• reduces the transferring of the zero page’s reference page

by grouping the memory pages with their ProcessID.

Prediction time is performance bottleneck of addition

overhead introduced by prediction operation. We use Least

Recent Used (LRU) cache with splay tree prediction

algorithm to get the perfect accuracy of prediction operation

without a notable execution time.

Algorithm: Working Set Prediction

(1) Input : Request page j with ProcessID

(2) {

(3) SplayTree(ProcessID, Requestpage);

(4) if (! LRU cache is full)

(5) {

(6) place the page j with splay tree at the top of the LRU cache;

(7) }

(8) else

(9) {

(10) if (!request page j is in LRU cache)

(11) {

(12) remove page i whose is located at the end of the LRU

cache;

(13) insert request page j with splay tree at the top ofthe LRU

cache;

(14) }

(15) else

(16) {

(17) move the page j with splay tree at the top of the LRU

cache;

(18) }

(19) }

(20) define the page j with splay tree as the Working Set;

(21) }

 Function: SplayTree (ProcessID, Requestpage)

(1) {

(2) if (! ProcessID)

(3) {

(4) construct new Splay tree with page j;

(5) }

(6) else(! page j in correspondent Splay tree)

(7) {

(8) insert page j in correspondent splay tree;

(9) }

(10) }

Fig. 5. Proposed Working Set Prediction Algorithm

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 5

V. EVALUATION

In this section, we evaluate the framework with the

proposed working set prediction algorithm by using various

workloads, then present and analyze performance

improvement compared with XEN's default Pre-Copy based

migration algorithm.

A. Experimental Environment

Our experiment platform is a cluster composed by six

identical computer servers. One server works as the storage

server, and provides shared storage by iSCSI protocol through

isolated gigabit Ethernet to other two servers, which act as the

source and destination of migration separately. The remaining

three servers work as clients for different workloads. For each

server, its configuration includes two Intel Xeon E5520 quad-

core CPUs running at 2.2GHz, 8GB DDR RAM. All the

servers are connected by a Gigabit LAN. The version of

VMM is Citrix XEN-5.6.0 and Guest OS is the modified

Linux-2.6.18.8. The migrated unprivileged VM is configured

with one VCPU and 512MB RAM. Migration does not use

separate network, it shares the same network with workloads.

For evaluating the performance of our proposed framework,

we select several representative applications in virtualization

environment as the workloads of migrated VM:

•••• Compilation: Linux kernel compilation with two parallel

threads, which is a balanced workload to test

performance of system virtualization.

•••• VOD: Server for Video on Demand, which contains little

writes, but it is sensitive to latency. There are 300

concurrent sessions connected from clients.

•••• Dynamic Web Server: Specweb2005 which uses the

most objective workloads (Banking and Ecommerce) for

measuring a system's ability to act as a synthetic web

server. It supports static and dynamic web contents. It

consumes too much system resources, and is a more

challenging workload for migration. It works in HTTP

1.1 protocol. There are 300 concurrent sessions

connected from clients.

Migrated VM is the only unprivileged VM running in

source, and there are not any other unprivileged VMs residing

in destination.

B. Transferred Memory Page

We illustrated the number of transferred memory pages of

each migration round in Complication workload during

migration process in Fig. 6.

In Fig. 7, we present the number of transferred memory

pages of each migration round in Video on Demand (VOD)

workload during migration process.

In Fig. 8, the graph shows the number of transferred

memory pages of each migration round in Banking workload

during migration process.

In Fig. 9, we present the number of transferred memory

pages of each migration round in Ecommerce workload

during migration process.

According to the results, the number of transferred memory

pages using the LRU algorithm as working set prediction is

not significantly different with XEN except at the first round

of migration process but the propose system (LRU cache with

splay tree algorithm using as working set prediction) reduce

the transferred memory pages in every round of migration

process.

Fig. 6. Number of Transferred pages of each migration round whose
workload is Complication

Fig. 7. Number of Transferred pages of each migration round whose
workload is Video on Demand

Fig. 8. Number of Transferred pages of each migration round whose
workload is Banking

Ei Phyu Zaw and Ni Lar Thein 6

Fig. 9. Number of Transferred pages of each migration round whose
workload is Ecommerce

Fig. 10. Total Data Transferred in Migration Process

In Fig. 10, the result shows the total transferred memory

size(MB) for the proposed framework (using LRU cache with

splay tree as working set prediction), the framework (using

LRU as working set prediction) and XEN with various

workloads. These results show that the workload which runs

the same process repeatedly such as Banking can more reduce

the total transferred memory size using the proposed working

set algorithm during migration process.

C. Total Migration Time

We analyze the live migration process and calculate the

total migration time of the propose framework and XEN. Xen

has a built-in migration tool which uses pre-copy scheme for

runtime state migration. It requires a shared device to provide

file system for the migrated virtual machine.

Assuming that the memory could be processed in the

propose framework as pages with a fixed size equal to P

bytes, M is the memory size, the bandwidth available for the

transfer is constant and equal to B bytes per second, WS is the

working set list and WM is the modified page per second as

shown in Table 1.

Therefore, the time cost to transfer the memory pages in the

propose framework is shown in the following.

Execution time for push phase of the proposed framework:

TABLE I. ABBREVIATIONS FOR THE PROPOSED FRAMEWORK

P Page Size

M Memory Size

B Transfer Rate (bytes per second)

WS Size of Working Set list

WM Modified Pages per second

Execution time of i

th
 iteration for push phase

Execution time for stop phase

Execution Time for preprocessing phase

 (1)

where i=1,2,3,…n and and for first

iteration and then modified memory page size is updated by:

 (2)

Execution time for stop phase of the proposed framework:

 (3)

Total Migration Time= (4)

And the time cost to transfer the memory pages in XEN is

Execution time for push phase of XEN :

 (5)

where i=1,2,3,…n and and for first

iteration and then modified memory page size is updated by:

 (6)

 Execution time for stop phase of XEN,

 (7)

Total Migration Time = (8)

In push phase of the proposed framework as shown in eq.

(1), the system first transfer the memory page except the

Working set list that include the most recent pages

during the migration time.

In eq. (5) for the push phase of the XEN, the system first

transfers the all of the memory pages. The proposed

framework reduces the transfer memory page using the

working set list during the push phase of live migration. But

the total migration of the proposed framework include not

only the execution time for push phases and stop and copy

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 7

phase but also the overhead for pre-processing phase that

apply the working set prediction algorithm.

The result shows in Fig. 11 is the comparison of total

migration time for the proposed framework (using LRU cache

with splay tree as working set prediction), the framework

(using LRU as working set prediction) and XEN with various

workloads. According to these results, we can reduce 11.45%

of total migration time on average in live migration of virtual

machine than XEN.

Fig. 11. Total Migration Time

VI. CONCLUSION

Pre-copy migration ensures that keep downtime small by

minimizing the amount of VM state. It provides to abort the

migration should the target node ever crash during migration

because the VM is still running at the source. It also needs to

reduce the total migration time and impact of migration on

performance of source and target VMs. We then presented the

design and implementation of the proposed framework, which

introduces working set prediction during migration, and

reduces total migration time 11.45% on average compared

with Xen's default migration algorithm.

In future, we will study the compression algorithm of

memory data and further reduce the total transferred memory

pages in the migration process to make our proposed system

more attractive.

REFERENCES

[1] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan. Live VM

migration with adaptive memory compression. In Proceedings

of the 2009 IEEE International Conference on Cluster

Computing (Cluster 2009), 2009.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. July, C.

Limpach, I. Pratt, and A. Warfield, “Live Migration of VMs”,

Proceedings of the 2nd USENIX Symposium on Networked

Systems Design and Implementation, 2005.

[3] M. R. Hines and K. Gopalan, “Post-copy based live VM

migration using adaptive pre-paging and dynamic self-

ballooning”, in Proceedings of the ACM/Usenix international

conference on Virtual execution environments (VEE’09),

2009, pp. 51–60.

[4] P. Lu and K. Shen, “VM memory access tracing with

hypervisor exclusive cache”. In ATC’07: 2007 USENIX

Annual Technical Conference on Proceedings of the USENIX

Annual Technical Conference,pages 1–15, Berkeley, CA,

USA, 2007. USENIX Association. ISBN 999-8888-77-6.

[5] M. Nelson, B. Lim, and G. Hutchines, “Fast transparent

migration for VMs,” in Proceedings of the USENIX Annual

Technical Conference (USENIX’05), 2005, pp. 391– 394.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield, “XEN and the Art of

Virtualization”, Proceedings of the Nineteenth ACM

Symposium Operating System Principles (SOSP19), pages

164.177. ACM Press, 2003.

[7] A. Kivity, Y. Kamay, and D. Laor, “kvm: the linux VM

monitor”. In Proc. of Ottawa Linux Symposium (2007).

[8] J. T. Robinson and N. V. Devarakonda. Data Cache

Management Using Frequency based Replacement. In the

Proceedings of the 1990 ACM SIGMETRICS Conference,

pages 134-142, 1990. [11] A.Subramanian, “An Explanation

of Splaying”, Academic Press. Inc, 1996.

[9] E. J.O'Neil, P. E. O’Neil, G. Weikum. The LRU-K Page

Replacement Algorithm For Database Disk Buffering”. In

Proceedings of the 1993 ACM SIGMOD Conference pp. 297-

306, 1993.

[10] K. Cheng and Y. Kambayashi. LRU-SP: A Size-Adjusted and

Popularity-Aware LRU Replacement Algorithm for Web

Caching.

[11] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim,

“LRFU: A Spectrum of Policies that Subsumes the LRU and

LFU Policies”, IEEE Transactions on Computers, vol. 50, no.

12, pp.1352-1361, Dec. 2001.

[12] D. Dominic Sleator, R. Endre Tarjan. Self-Adjusting Binary

Search Trees. In Journal of the Association for Computing

Machinery, Vol. 32, No.3, July 1985, pp.652-686.

