
International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 60

Journal Homepage: www.ijcst.org

Zaheer Aslam, Nauman Qamar, Noor Khan, Shehzad Rizwan, Kamal Ahmad, Noor Zaman, Shafiullah and Rashid Zubair

Gandhara University of Sciences, Peshawar, Pakistan

Abstract– Since Wireless Sensor Networks (WSN) formulate

the recent research into some advances to enable progression in

the field of software and hardware technologies. Hence, in this

research work, we study the performance and behavior of

wireless sensor networks (WSN) in terms of effectiveness of

system requirements on the resulting software architecture. As

WSN currently faces a challenge due to rapid development in

software technology and thus requires some new techniques for

programming and tools.

Index Terms– WSN, Architecture, Issues, Analysis and

Software

I. INTRODUCTION

IRELESS sensor networks (WSNs) are just one of the

presently/currently hot/active research topics. Both

noncombatant/civilian and military oriented

institutions have sidetracked/diverted a prodigious

contract/deal of funding/subsidy to research on WSNs as

advances in software and hardware deliver the means to make

WSNs. WSN,s are masses of various small sensor nodes.

Each node can send/transmit messages through the network to

the information sink – or decisive controlling device. The

nodes can also forward messages from other nodes, execute

network organization tasks, and an assortment of other

functions. The applications of WSNs vary widely. WSNs

could be secondhand in industrial settings for machine control

and environment monitoring. Other applications could be

medical – monitoring a patient’s health from a variety of

perspectives. The military is highly interested in sensor

networks for intelligence gathering, while WSNs have

possible applications in aerospace for the structural integrity

of planes. A great deal of research has already been performed

on WSNs, and a number of possible implementations and

architectures suggested. The University of California–

Berkley has remained at the forefront of research, creating

smart-dust, WEbS, and PicoRadio [1]. Through all prior

research, it has been shown that WSNs require unique

software architecture to solve inherent difficulties [1].

II. WSN CHARACTERISTICS

The idea of wireless sensor networks infers a number of

WSN characteristics/features which severely sway the

software architecture. Specifically, WSNs must be self

organizing, execute cooperative processing, energy optimized,

and modular. These four requirements/needs in particular

influence/impact seriously on the form of the software

architecture.

A. Self-Organization

The outsized number of nodes in a WSN renders direct

handling/manipulation by a user for network organization

impractical [1]. The user might not go through thousands of

nodes leading the network configuration and clustering.

Subsequently, the nodes must be proficient of organizing the

network and partitioning it for competent operation given the

environment and network attributes [1]. Additionally, the

nodes of a sensor network must be robust [2]. The aggregate

formed by the nodes must have a high up time. The large

number of nodes in a network along with unattended

operation complicates any attempt at a fault tolerant design

[2]. Sensor networks with wired connections do not

necessarily rely on other nodes to transmit data. This reduces

the need for redundancy and the robustness of individual

nodes. In contrast, wireless sensor network nodes transmit

information from node to node with a small amount of

processing in between [2]. Consequently individual nodes

must be highly robust, while the organization of the network

must tolerate individual device failure [2]. Variations in the

network topology can affect the degree of network

vulnerability to failures, necessitating complex routines to

implement fault tolerance [4].

B. Cooperative/Obliging Processing, Concurrency

Nodes in a network mostly direct information flow/stream

through the network to several data-sinks- the points to which

data from the network is served/fed [2]. Every sensor node

might posses a restricted quantity of memory, so that the

cushioning/buffering of data is unfeasible [2]. Moreover, the

node performs/executes a number of concurrent operations:

processing, capturing, and transmitting/sending sensor data,

whilst concurrently forwarding/sending data from further

nodes in bridging or multi-hop situations [2]. Wireless Sensor

Networks also deliver/offers a distinctive chance for obliging

processing. Cooperative/obliging processing can

reduce/diminish network traffic through data

aggregation/accumulation and preprocessing [1]; e.g., the

establishment of a wireless network might encompass the

triangulation of a firsthand node when it joins a network to

inaugurate the node’s position.

C. Energy Efficiency

Wired sensor network have the luxury of external power

sources such as power over Ethernet. The nodes of wireless

networks have no practical way of utilizing an external energy

source, which would in any case be contrary to the point of a

W

A Survey of Wireless Sensor Network- Software

Architecture Design Issues

ISSN 2047-3338

Zaheer Aslam et al. 61

WSN. A sensor network may also be distributed in hostile or

remote environments [1]. Energy efficiency dictates the

minimization of communication between nodes. Therefore the

choice of protocols and network configuration are key in

terms of network lifespan [1]. Protocol related energy savings

are directly related to the physical, link, and network layers

[1]. Additional power savings come from an operation system

(OS) for the nodes which supports advanced power

management and lower power task scheduling [1]. Power

sensitive task scheduling can minimize power use though non

linear battery effects [1]. Advanced power management

would put any hardware not in use to sleep, minimizing

power consumption [2].

D. Modularity

Sensor nodes in a network tend to be specific, and therefore

contain only the hardware needed for the application [2]. The

range of possible applications dictates a large variance in the

hardware required for sensor nodes [2]. Accordingly, the

software for the nodes must exhibit a high degree of

modularity [2].

III. SOFTWARE ARCHITECTURE COMPONENTS

The nature of a sensor network lends itself to a service

oriented component based framework. Applications split into

sensor, node, and network applications, providing the basis

for fundamental application layers in a sensor network [2].

Sensor applications interface with the sensors, local data, and

hardware on a node, along with the operating system [2].

Sensor applications form the base layer and provide the basic

functions of a sensor node [2]. Node applications use the

basic functions provided by sensor applications to perform

middleware tasks for network buildup, maintenance, and

localization [2]. Network applications deal with the services

and tasks of the network as a whole [2]. Network applications

thereby act as an interface to the layer administrating to the

network [2].

A. Middleware

Middleware refers “to the software layer between operating

system and sensor application on the one hand and the

distributed application which interacts over the network on

the other hand” [2]. Opinions vary on the actual granularity

limitations. Some maintain that middleware, in various forms,

exists in a sensor network hierarchy all the way down to

individual nodes [2]. Others favor the cluster as the basic unit

of middleware [3]. Regardless of the granularity, the design of

middleware aims to be scalable, adaptive, generic, and

reflective. Scalable middleware performs optimization based

on resource constraints at runtime [2]. The nature of wireless

sensor networks calls for lightweight middleware, or

middleware which has low communication and computations

requirements [3]. By performing optimizations at runtime the

interfaces of middleware are customized [2]. The sensor

network changes as nodes move, necessitating runtime

adaptations of the middleware to exchange and run

components as needed by the application [2].

Localized algorithms can be used to enhance system

scalability and robustness in the face of interactions between

sensor nodes [3]. These algorithms can also provide reflective

middleware, which changes the behavior of layers on the fly

instead of exchanging them [2]. Generic middleware attempts

to reduce overhead imposed by using generic interfaces for

middleware components [2]. This implies the customization

of the application interfaces and features, allowing for

interpretation by middleware and compile time optimization

[2], [3]. Generic interfaces also allow for the standardization

of system services to diverse application [3]. Conversely,

while middleware interfaces may be generic, the interfaces of

application component on a specific sensor node are anything

but. In short, middleware acts as an abstraction layer to help

hide software specifics from the application layer.

IV. SOFTWARE ARCHITECTURE

The requirements and characteristics of a wireless sensor

network mentioned in the previous sections call for a service

based architecture. The services provided naturally divide

into layers which vary depending on the exact topology of the

network. Sections A and B examine two possible software

architectures for a WSN detailed in [1], [2], [3], and [4],

accompanied by the underlying reasoning for each

architecture.

A. A Basic Service Oriented Architecture

1) Architectural Description: A simple use case can help

determine the software architecture. An example use case in

[1] provides illustration. The client application requests data

from the network about surface conditions in a certain area.

The client first sends a request to a surrogate proxy for the

desired information. The proxy communicates with the

appropriate nodes, which in turn then determine the surface

conditions in the area using cooperative algorithms [1]. The

proxy takes the information returned from the nodes,

translates it, and sends it back to the client [1]. Fig. 1

illustrates the use case. The use case, along with the

requirements and characteristics specified in previous sections

of this paper, calls for flexible software architecture. Such

architecture can be realized using the node application

structure shown in Fig. 2, along with the sensor network

architecture shown in Fig. 3.

Fig. 2 illustrates the division of node applications into three

layers. The lowest layer handles hardware specifics, such as

hardware and sensor drivers. The node operating system acts

as a buffer layer between the hardware specifics and the host

middleware application layer. The operating system layer

handles the processes which relate strictly to the node

operation, while the host middleware handles processes

concerning the services offered by the node to the network

[1]. The middleware is comprised of four different

components which are called as needed, with the option to

add additional modules for security or routing [1]. The VM

or Virtual machine component enables platform independent

program execution, while algorithms define the behavior of

modules [1].

Fig. 1: Surrogate Architecture in Sensor Networks [1]

International Journal of Computer Science and Telecommunications [Volume 3, Issue 3, March 2012] 62

The general overall software architecture of the sensor net

is shown in Fig. 3. The individual nodes interact with the

distributed middleware layer to perform the functions dictated

by the sensor network application. The administration

terminal is a connection point independent external actor

which evaluates results from the sensor network application

[1]. The diagram specifically illustrates the behavior of the

sensor network application, which cannot assign tasks to

individual nodes. Instead the layer abstract shown indicates

that the distributed middleware handles tasks for the entire

network and acts as network service coordinator [1].

B. Architectural Issues

While the architecture presented certainly presents a solid

and basic design for a sensor network, it does not reflect some

of the requirements such as energy efficiency which can have

a significant effect of software architecture. Network topology

control in particular proves effective to extending network life

and increasing network capacity [5]. Additionally, the amount

of energy available to each sensor cannot support long range

communication, necessitating a tiered network structure [4].

The need for such a network structure then influences the

software architecture design. Finally, the use of a single tier

architecture increases network load on nodes surrounding the

command node [4]. The increases traffic on these key nodes

decreases their lifetime, and in turn shortens the lifetime of

the entire network. The adaptation of a multi-tiered network

structure can reduce the energy consumption imbalance if the

network supports sufficient fault-tolerance [4].

1) A Cluster Based Service Oriented Architecture: The

factors mention above can influence the software architecture

of a wireless sensor network when taken into account. A

second architecture, proposed in [3], uses clustering to handle

the factors mentioned, and provide for application Quality of

Service (QoS) management.

2) Architectural Description: One of the more favored

network architectures for wireless sensor networks involves

clustering. A cluster is a set of adjacent sensors which are

grouped together and interface with the rest of the network

through a gateway, or cluster head [4]. Gateways are higher

energy nodes which maintain the network in the cluster,

perform data aggregation, and organize sensors into subsets

[4]. Clusters exhibit dynamic behavior. Clusters form and are

modified on the fly depending on conditions and node

availability [4]. During cluster formation, one node is elected

as the gateway. It is important to note, that while clusters can

overlap spatially, one node cannot belong to multiple clusters

[3], [4].

Given the presence of clustering, a cluster can be regarded

as the base unit for the software architecture. Given such,

data collection would be performed in a distributed manner

[3]. However, in order to dynamically manage these clusters,

the architecture of the middleware needs be fairly complex.

Fig. 4 displays the software architecture at the cluster level.

Fig. 5 shows a cluster based middleware architecture

proposed in [3]. As shown in Fig. 5, the architecture proposed

contains an abstraction modeled as a Virtual Machine, similar

to the architecture conceived in Section IV.A of this paper.

The Virtual Machine provides the same service as in the first

architecture– that of hardware independent program execution

[3]. However, this Virtual Machine splits down into two

additional layers: the resource management layer and the

cluster layer. The cluster layer encompasses the distributed

cluster middleware illustrated in Fig. 4. This software layer

forms clusters from the collection of sensor nodes

surrounding the target area [3]. The exact factors controlling

the initial formation of clusters can vary depending on the

application of the sensor network, and do not have significant

impact on the software architecture.

The resource management layer controls resource

allocation and adaptation to meet QoS requirements for the

sensor network application [3]. Resource management is an

important part of QoS in distributed application such as a

wireless sensor network. Environmental and system changes

can affect the amount of available resources, requiring the

middleware to reallocate resources on the fly to accomplish

the tasks given by the sensor network application [3].

Distributed Cluster Middleware

Middleware

Operating

System

Hardware

Node A

Middleware

Operating

System

Hardware

Node B

Middleware

Operating

System

Hardware

Node C

Fig. 4: Cluster Software Base Architecture

Fig. 3: Sensor Network Software Architecture [1]

Fig. 2: Node Application Structure [1]

Zaheer Aslam et al. 63

Fig. 5: Middleware architecture for a cluster based WSN [3]

 C. Architectural Issues

The cluster based architecture proposed faces a number of

challenges inherent in its design. The more complicated

network topology incurs higher overhead costs for forming

and maintaining clusters [3]. Specifically, clusters must be

formed dynamically in order to track moving phenomena [3].

Therefore nodes would be changing cluster membership

depending on the speed of the target phenomena. Using

clusters also increases the vulnerability of the network to

faults [4]. If a gateway fails, the members of the cluster must

quickly deal with the fault, by electing a new cluster head or

resorting to ad hoc networking to members of other clusters

[4]. The more time is spent in network reconfiguration the

more data can be lost due to memory limitations at the

effected nodes [4]. This behavior implies an increased

network vulnerability to the algorithms used for network

formation. Overhead also comes from resource management

layer. In order to effectively manage the resources of the

network, the layer must gather and update information on

node energy levels, network connectivity, cluster loads, and a

number of other statistics [3]. Such polling can result in a

dramatic increase to overhead if it is not handled correctly.

Obviously the amount of overhead depends on the exact

implementation of the resource management.

V. NODE SOFTWARE DEVELOPMENT

A. Software Development for Sensor Nodes

Sensor node software in particular lends itself well to an

iterative form of development. As with any real-time

embedded system, the code must be optimized to perform

within certain parameters. Due to the sensitivity of the

performance, efficiency, and lifetime of a WSN to the

algorithms controlling network configuration, an iterative

design, implementation, and test phase is required. Since the

applications of WSNs vary so greatly, the algorithms involved

in a specific type of WSN must be optimized through a large

amount of calculation and design. The development pattern

for node applications suggested in [1] favors the highly

iterative design pattern show in Fig. 6. The design method

closely follows standard software engineering practices. Of

note, component interface optimization is performed during

the design stage as mentioned in Section III.A of this paper

[1]. Evaluation through the monitoring of results leads to

additional iterations. The development pattern results in a

specific application for the node comprised of specially tailed

parts. Due to the presumption of generic middleware

interfaces mentioned in Section III.A of this paper, the design

process of the distributed middleware for either of the

architectures mentioned conforms to the applicable processes

used in software engineering.

Fig. 6: Proposed Node Software Development Process [1]

VI. CONCLUSION

As described above, wireless sensor networks possess the

potential for many applications. The advance of technology

enabled the creation of prototype WSNs, but the hardware and

software both have a ways to go before WSNs are practical,

cost-effective, and usefully. Numerous software difficulties

must be solved before wireless sensor networks may be

considered a mature technology. Chief among these problems

stands the formation, creation, and testing of a robust,

efficient software architecture that can fulfill all of the goals

and requirements needed. Despite (or because of) the work

still to be done, wireless sensor networks are a great example

of the unique challenges in software engineering produced by

the advance of technology.

REFERENCES

[1] Blumenthal, Jan; Handy, Matthias; Golatowski, Frank; Hasse,

Marc; Timmermann, Dirk. Wireless Sensor Networks – New

Challenges in Software Engineering. Emerging Technologies and

Factory Automation, 2003. Proceedings. ETFA '03. IEEE

Conference , Volume: 1 , 16-19 Sept. 2003

[2] Hill, Jason; Szewczyk, Robert; Woo, Alec; Hollar, Seth; Culler,

David; Pister; Kristofer. System Architecture Directions for

Networked Sensors. ASPLOS 2000.

[3] Yu, Yang; Krishnamachari, Bhaskar; Prasanna, Viktor K. Issues in

Designing Middleware for Wireless Sensor Networks. IEEE

Network, Volume: 18, Issue: 1, Jan/Feb 2004

Pages: 15 – 21. Copyright 2004 IEEE.

[4] Gupta, G.; Younis, M. Fault-Tolerant Clustering of Wireless Sensor

Networks Wireless Communications and Networking, 2003.

WCNC 2003. 2003 IEEE, Volume: 3, 16-20 March 2003. Pages:

1579 - 1584 vol. Copyright 2003 IEEE.

[5] Liu, J.; Li, B., Distributed Topology Control in Wireless Sensor

Networks with Asymmetric Links, Global Telecommunications

Conference, 2003. GLOBECOM '03. IEEE, Volume: 3, 1-5 Dec.

2003, Pages: 1257 - 1262 vol.3, Copyright IEEE 2003.

