
International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 42

Journal Homepage: www.ijcst.org

Mutua Stephen
1
, Wabwoba Franklin

1
, Ogao Patrick

2
, Anselmo Peter

1
 and Abenga Elizabeth

1

1
Masinde Muliro University of Science and Technology

2
Kenya Polytechnic University College

{stephen.makau, fwabwoba, ogaopj}@gmail.com, anselp04@yahoo.com, esabenga@gmail.com

Abstract– Program Visualization (PV) is a technique that has

been found useful in teaching computing programming. This has

seen proliferation in development of PV tools with an aim of

enhancing teaching/learning programming over the last two

decades. However, the tools usage has remained minimal.

Perhaps because it becomes challenging to ascertain the

appropriate tool for the right task. This paper presents a

classification of program visualization tools with the focus of

aiding teachers and students in choosing the most appropriate

tool for an interesting experience in the classroom. The paper is

based on six various PV tools evaluated over a period of two

consecutive academic years in a Kenyan public University. The

classification augments the Price’s taxonomy of software

visualization arm of PV by presenting four basic levels which are

further subdivided into lower levels.

Index Terms– Classification, Pedagogy, Program Visualization

and Taxonomy

I. INTRODUCTION

ROGRAMMING is a course/subject in Computer Science

and related fields, and some Engineering disciplines. It

plays a core role that is applicable in both academic and

career developments. However, learning how to program is a

challenging and complex process that requires support of

proper educational tools [1]. Teaching and learning

programming has over time proved to be a universal problem

not only to the students but also to teachers. This is clearly

evident on novices [2] learning the basics of programming, as

well as teaching advanced programming concepts like

algorithms and data structures. This may be attributed to its

abstractness [3] and that the students lack concrete models in

their everyday life to handle the concepts at hand [2].

Nevertheless, the pedagogical approaches used in teaching the

programming courses may be a contributing factor towards

the poor performance and understanding of this crucial

course.

Over the past three decades, several program visualization

(PV) tools have been developed to aid in teaching

introductory courses of programming. The trials of these tools

in varied Universities and other institutions have posted

positive results as various students have shown significant

improvement of performance [4] [5]. For instance, [6] found

that students who actively used the JEliot [7] PV tool

improved their learning results compared to a control group

that did not use it. The [8] showed that proper use of PV tools

increases the attention and enhances interest of students to the

concepts being taught. In their study, [9] assert that usage of

VILLE tool, enhanced students’ learning regardless of their

previous programming experience.

In spite of all these positive postings, they have not

attracted an extensive usage [10] as earlier anticipated despite

the mass resources consumed by researchers and developers.

It is however evident that teachers and students are not against

their usage, but are facing the challenge of choosing the right

tool for the right job, and the time required to study and

integrate the tool within the syllabus appropriately. Perhaps a

proper guideline can assist in choosing the right tool to use. In

this bid, several taxonomies have been developed but none is

comprehensive enough with a focus in pedagogy. The most

commonly known being Price’s principled taxonomy of

software visualization (SV) [11], it is relatively general and

the focus is not pedagogic. Karavita’s taxonomy [12] of

algorithm animation languages (AAL) is one such

comprehensive classification but does encompass the PV

tools.

In this paper, we present taxonomy of PV tools with focus

in pedagogy. The classification is developed on four

categories of Interface, Pedagogy, Visualization and Meta-

language. The Interface category describes the visual

representations used by the tool and how the user interacts

with it. Pedagogy details the various desirable educational

features that ought to be considered when choosing a tool;

while Visualization which is closely related to interface is

considered as independent as it is the core of any such tool.

Ultimately the last category is a collection of other

independent factors that go beyond the tool itself but are

crucial.

The rest of this paper is as follows; Section 2 entails some

previous related works. Section 3 describes the tools

evaluated in development of the classification. Section 4

presents that classification itself and finally, section 5 is the

conclusion and recommendations.

P

Classifying Program Visualization Tools to Facilitate

Informed Choices: Teaching and Learning Computer

Programming
ISSN 2047-3338

Mutua Stephen et al. 43

II. RELATED WORK

Taxonomies have been used in different fields of natural

and social sciences over years. Taxonomies provide common

and generalized classifications which help in recognizing and

solving problems. They have also led to intensive researches

towards finding solution to certain problems.

Brad [13] present the taxonomy of PV using code,

algorithms and data, and their presentation as either being

static or dynamic. This taxonomy is unclear and it appears to

have been an early attempt to distinguish PV and visual

programming (VP). There is also an overlap of Algorithm

Visualization (AV) and PV tools an indication that these two

had not been clearly separated by the date of its publication.

Even though the focus is pedagogy, the taxonomy is not

comprehensive enough to aid one in choosing from several

tools aimed at teaching the same language.

Price’s [11] forms one of the most thorough taxonomies in

SV. It encompasses two broad fields of research in SV which

are AV and PV. Its framework is the work done earlier by

[13] and clarifies the concepts presented earlier. The

taxonomy is built on top of six features of scope, content,

form, method, interaction and effectiveness. Appreciating the

concerted efforts of Price and others, we notice that the

taxonomy needs specification and clarification with respect to

the various fields of SV. The taxonomy presents an overlap of

PV tools and VP languages. This is captured in the content

category of the taxonomy which is further broken into code

and data animation. The data sub-category also seems

misplaced since it focuses on the visualization of data

structures which do not form part of the PVs. Most of the

tools evaluated are for AV and this maybe explains why the

shallow end on PV.

Naps and others [14] provide engagement taxonomy of

learners with visualization tools. They use six different forms

of student interaction with the tools and classify the

effectiveness of each. The [21] extends this taxonomy to

make it more comprehensive.

Sensalire, Ogao and Telea [15] classify the desirable

features of a visualization tool into four categories namely

effectiveness, tasks supported, techniques used and

availability. Their classification is however for use in

corrective maintenance thus inappropriate for usage in

pedagogy.

Among the latest taxonomies in software visualization is

the comprehensive taxonomy of algorithm animation

languages [12]. Theirs is a well detailed taxonomy whose

focus is educational objectives and also technical. It is based

on the ITiCSE working group [16] which identifies six

fundamental elements to visualization systems as objects that

are the focus of visualization, graphical primitives (squares,

circles, lines, etc.), transformations on graphical primitives

(e.g., scaling, rotation), narration (text, graphics, audio),

questions and feedback inserted in an animation system, and

meta-data that describes the content of an animation. From

these, they develop a taxonomy consisting three building

blocks which include vocabulary which describes the amount

of supported object types, positioning which describes the

various means of positioning objects in the animation and

style which measures the variety of styling options available

in the language. It however only focuses on AV tools and they

are very categorical that PVs were not considered at all in

their study.

III. PROGRAM VISUALIZATION TOOLS EVALUATED

The key criteria that was used in identifying the tools was

their availability (freely available tools) which could be used

in teaching object oriented programming using the JAVA

and/or C++ language.

A. JELIOT3
1

JELIOT3 was developed at the University of Joensuu to aid

learning and teaching procedural and object oriented

programming (OOP) [7]. This tool is limited only to Java

programming language which is just one of the many OOP

languages. Even so, it does not recognize certain standard

Java keywords and functions and felt that this might be

confusing to students who are weak hence making it difficult

for them to switch to using an ideal Java Integrated

Development Environment (IDE). For instance consider the

following Java vs. JEliot’s statements;

Java

1. System.out.println(“x”);

2. System.out.print();

 JEliot

1. Output.println(“x”);

2. Output.print();

Both 1and 2 are statements that are used to print something

on the computer screen. Standard Java uses the keyword

System while JEliot3 contains an inbuilt class called Output

which defines the standard output stream. Not bad of course.

However, it is evident in statement 2 that this class is not as

comprehensive as System is, and does not encompass all the

output Java output functions. If written in JEliot3.7.2 as it is

(Output.print()), it generates an error which is corrected as

Output.print(‘’ ’’); implying that the print() and println()

functions which are well defined and commonly used in Java

are lacking.

B. JEROO
2

It was designed to help students in beginning programming

courses learn the semantics of fundamental control structures,

learn the basic notions of using objects to solve problems, and

learn how to write methods that support a functional

decomposition of the task [2].

The tool is designed in such a way that it provides a smooth

changeover between JAVA, C++ and C#. However, this tool

requires some deeper understanding for its efficient use. This

is because it is developed metaphorically from the behavior of

Jeroo which is a rare Kangaroo-like animal found in Pacific

1
 http://cs.joensuu.fi/jeliot/downloads/jeliot372.php

2
 http://www.nwmissouri.edu/~sanders/Jeroo/Jeroo.html

International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 44

Islands [2]. It thus limits its users to the people around the

Pacific Islands who know the behavior of a Jeroo.

C. BlueJ
3

BlueJ [17] has received a wide acceptance also in teaching

JAVA object-oriented features to novice students. It is

developed to gradually introduce OO concepts. It uses the

UML standard representation hence forming a very good tool

to introduce OOP concepts like data abstraction and

encapsulation, inheritance and polymorphism, message

passing among others which are normally difficult for

students to grasp. However, it does not contain the animations

of the source code but generates sample JAVA code from the

classes developed by the user which can as well be modified

using the editor.

D. VILLE
4

VILLE [9] is a program visualization tool, used to create

and edit programming examples and to observe events in the

examples during their execution. Its intention is to support

novice programmers’ learning process. It is a well featured

tool that can visualize JAVA, Visual Basic, Python, C++ and

Pseudo-code. Due to its multiple support of programming

languages, it provides a parallel view of code in the languages

chosen. This is a very strong feature since one can write a

program in the language is well informed and the tool

converts the same to another language of choice.

E. JGRASP
5

Developed by [18], JGRASP is more of a Java IDE

(Integrated development Environment) but with visualization

capabilities. Though Java based, it has the capability of

visualizing other languages like C, C++ and Ada, all to which

it can generate Control Structure Diagrams (CSDs) which are

used to visualize a program source code and design. It also

generates UML (Unified Modeling Language) diagrams and

complexity profile graphs (CPG) for Java code as well as

multiple views of source code, low-level objects, and high-

level visualizations. Its visualizations are static hence it is not

very interactive. It also does not provide code highlighting

and thus requires one to have some considerable knowledge

of programming. It is thus probably not a very appropriate

tool for novices.

F. ALICE
6

This is a tool that was developed with the objective of

making the first programming experience hilarious and

attractive. This was done with the goal of attracting more girls

into the computer science field. Developed by [19], Alice is

3
 http://www.bluej.org/download/

4
 http://ville.cs.utu.fi/

5
 http://www.jgrasp.org/

6
 http://www.alice.org/

focused on introducing object oriented programming concepts

using the syntax of Java, C++ and C#. Though an interesting

environment, Alice is too basic to be used in a tertiary

institution for teaching. This is because it does not provide a

smooth transition to a real programming environment and

thus may be a point of confusion.

IV. METHODOLOGY

The study was conducted within a Kenyan public

University in Western province of Kenya. It was undertaken

in a span of eight months in which two classes were taught

computer programming. Since the focus was an introductory

programming course, it involved first and second year

computer science and information technology (IT) students.

In their first year of study, students were taught procedural

programming and object oriented programming using C++;

while in their second year the students were taught Java. An

initial seminar was conducted to orient students to the various

PV tools. The students were then provided with various tools

and then given the liberty to choose one. Afterwards, they

were issued with questionnaires which mainly sought to

ascertain the factors they considered in the choice. In addition

to this, five lecturers who teach computer programming in the

University were interviewed and the results used to

complement the results collected from the students; all which

were used in formulating the classification considering the

various existing ones.

V. CLASSIFICATION OF PROGRAM VISUALIZATION

TOOLS

The proposed classification is build on top of four

categories of Interface, pedagogy, Visualization and Meta-

Language.

A. Interface

In this classification, interface refers to the elements and

objects displayed by the PV system to facilitate the user to

interact with the tool. This term is borrowed from Gruia-

Catalin’s taxonomy [20], but with modification and

regrouping to reflect the current situation of PV tools. This

category contains two other sub-categories;

1) Visual Representations: These are the types of visual

cues that have been utilized in the system to provide

visualization. They may include any of the following or a

combination;

Primitive Representation: These can further be grouped

into simple or composite objects, and worlds as described by

[20].

Standardized Representation: This refers to those visual

cues within a program that are universally acceptable. An

example is the use of UML diagrams or flow charts to

visualize the program.

Mutua Stephen et al. 45

Fig. 1: Program Visualization Classification

Metaphorized Representation: If a PV tool uses this type of

approach, it mimics the behavior of a certain animal, human

processes or any character the designer wishes to utilize. For

instance, the JEROO tool uses this representation by

mimicking the Kangaroo like animal (Jeroo).

2) User Interaction: Since most of the PV tools are using

the graphical user interface (GUI), it is by default that they are

using some predefined controls and icons (images). Sub-

categories within this category are;

Pre-defined: This is where the user has to follow a pre-

defined sequence of steps within the PV system in order to

achieve the visualization failure to which an error message is

issued. This can be compared to extended engagement

taxonomy (EET) [21] category of viewing where there is no

interaction with the tool. Alice is one tool that mostly uses

this approach.

User-defined: Unlike in pre-defined, the program to be

visualized is usually written by the user and has control over

it. The system may include built-in examples, but the user has

the discretion of not running any by developing his’/her’s.

This can be compared to controlled view and modification

levels of EET. Controlled viewing is where the student

chooses what to visualize the speed of operation and can

pause, replay and stop; while modification refers to the ability

to modify the code before visualization

Enhanced Interactivity: This is in event where the system

provides further interaction modes with the user in addition to

allowing definition by user. For instance, the system may

generate some questions that require the user to respond to

gauge his/her understanding.

Table 1: Tools’ Evaluation on Programming constructs & Platform

 B. Pedagogy

This category comprises the various elements that are

crucial for any teaching objective. It explains the factor(s) that

should be considered when choosing any PV tool that is

intended to be used in the classroom. The various sub-

categories defined under pedagogy include;

1) Programming Paradigm: The focus here is the

programming style that a tool supports. A programming

paradigm is an elementary style of computer programming

which can be compared to a methodology and defines

semantics of the language. A PV tool thus is designed to

visualize some language(s) which obey a certain paradigm.

The paradigms to which the tool can belong to include but not

limited to are;

Procedural programming: The language makes use of the

mathematical concepts of procedures or functions in which a

problem is organized to be solved from these.

Object Oriented programming: This is a current approach

to computer programming which seeks to mimic the real

world environment. The focus is the use of objects containing

both actions and data. These objects communicate by passing

messages.

Logic Programming: This is an approach which uses

mathematical relations and logical inferences; where various

logical statements are stored in a database and used for

decision making.

An evaluation and simple survey showed that most PV

tools are being developed to visualize OOP and very few to

visualize logic programming.

Fig. 2: Pedagogy Category

2) Platform: In this classification, the platform refers to the

operating system within which the tool can run. A tool can be

platform specific or cross-platform. If platform specific, this

becomes a key factor for any learner or teacher to consider.

For instance, if a tool is developed to run in the Windows

platform and the platform intended to be used in the

classroom is Linux; the tool will definitely not suit the

objective however good it may be. Most tools are cross

 Programming Paradigm Platform

Tool OOP Procedural Logic Specific Cross

ALICE × ×

BLUEJ ×

JELIOT3 × ×

JEROO × ×

JGRASP × ×

VILLE × × ×

Program Visualization

System

Interface Pedagogy Visualization Meta-

Language

Language

Support

Pedagogy

Procedural

Logic

OOP

Programming

Constructs

OOP

Concepts

Language

Compatibility

Multi-

Language

Support

 Paradigm Platform Scope

International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 46

platform in which various formats of the same tool are

developed to be run in various operating systems. For instance

a version for JEliot3 can be downloaded for Linux systems,

Windows and Apple systems. Generally, a good tool should

support multiple platforms.

3) Scope: This is a feature that occurs in most taxonomies

discussed. It however changes with the focus of the

classification. In this classification, it refers to the

comprehensibility of the PV tool in covering the language it

visualizes. It encompasses such features as;

Fig. 3: Interface Category

Programming Constructs: Borrowed from [12] it refers to

the tool’s support of the programming buildng blocks. These

include support of the basic programming elements like

declarations, expressions, assignments and data types; and

control constructs support. The control constructs are looping

structures, decision making structures and recursion.

OOP Concepts: The focus in this feature is the tools

support for object oriented features. This will affect the

systems designed to visualize OOP languages. A good tool is

expected to support all the feaures of inheritance,

polymorphism and encapsulation in a manner that can be

easily understood.

The scope category is dynamic and it can be extended to

cover other pedagogical features that may be deemed

necessary to meet the objectives of the course.

4) Language Support: This sub-category describes the

systems ability to support the specific programming

language(s) the tool visualizes. A tool that has been developed

to aid one in learning computer programming should reflect

the proper syntax of the programming language. It should be

able to provide a scenario similar to the one required when

partaking the real programming exercise.

Language Compatibility: How well a visualization system

is compatible with programming languages syntax? This is

critical since it facilitates the ease at which a learner can

switch from a PV tool to a real programming environment. If

certain features are not in line with the real language, then this

may be a point of confusion to students mostly novices. The

developers of any tool should thus strive to ensure total

compatibility and if not so inform their users that thei tool

offers partial language support and possibly detail what.

Multi lingual Support: This subcategory of language

support describes whether a PV tool is developed to visualize

only a single language or a multiple of them. Most tools

support only a single language, but there are some which

support more than one and therefore the user can write a

program in one language, and the tool converts the code into

its equivalent in another language. This a feature that is not

only good for novices, but also to advanced learners who wish

to learn another language.

The evaluation of the tools against the categories of scope

and language-support are shown in Table 2. The results sow

that most tools are fully compatible with the languages they

support but do not support multiple programming languages.

Table 2: Tools’ Evaluation with respect to scope and language-support

C. Visualization

Visualization refers to the manner in which the system

presents the visual and audio cues. This category is divided

into three sub-categories as illustrated in Fig. 4.

Fig. 4: Visualization Category

1) Dynamic: This sub-category refers to the ability of a

system to offer animated visualization. The animations may

be controlled or uncontrolled where once the user executes a

program code, it continues to completion without the option

to stop.

2) Static: In this level, the system does not offer any

animation and the visual cues are fixed on the screen with no

movements.

3) Multimedia: In this sub-category, the system may not

offer access to the code and includes such things like audio

(voice) or video and probably some textual information that

gives some explanations.

D. Meta-Language

In this classification, this describes all other elements that

are beyond the PV system itself. It however may be

 Scope Language-Support

Tool OOP

Concepts

Programming

Constructs

Language

Compatibility

Multi-

Lingual

Partial Full

ALICE ALL ALL

BLUEJ ALL ALL ×

JELIOT3 ALL ALL ×

JEROO ALL ALL × ×

JGRASP ALL ALL ×

JIVE ALL ALL

VILLE ALL ALL × ×

Dynamic Static Multimedia

Visualization

Pre-defined

User-defined

Enhanced

Interactivity

Primitive

Standardize

Metaphoriz

Interface

Visual Representation User-Interaction

Mutua Stephen et al. 47

controllable by the system developers. This has the sub-

categories;

1) Availability: How can the tool be acquired by the

intended users? A tool can be made obtainable to users either

as open source software, freeware or as proprietary software.

2) Installation: This concerns how the PV system will be

installed in a computer for usage and its requirements. This is

vital especially for novice users who may be in the process of

learning various concepts of computing. For instance during

the study we demonstrated the Ville tool to novice students

and several of them came asking for the same which we

gladly offered to them. However, after sometime, they came

arguing that the installation files were not functional. Why?

Most of the students had not learned Java and could not

understand the issue of the JDK (Java Development kit)

desired by the tools to run effectively. It is thus crucial for

developers to find a means in which all the desired files can

be packaged together with system for ease of installation.

3) Extensibility: As the novices continue using the tool and

the skill slowly sets in, they become critical of the current

features offered by the tool and desire to widen or customize

them. Extensibility is thus such a vital feature that any PV

tool that is intended for pedagogy should bear. This can be

made possible by ensuring that the tool is open source hence

the tool’s source code is available.

4) Integration: In this classification, integration refers to the

ability of a tool to interwork or support features of another PV

system. A good system for pedagogy should be able to

incorporate or be incorporated in another PV system or IDE,

either as an imported file or as a plug-in.

VI. CONCLUSION

Programming is an important subject in computing and

engineering fields. To ensure proper realization of the

pedagogical objectives, PV tools are inevitable. This

classification is hereby proposed with the hope that teachers

and students will find it useful in aiding them to choose the

right tool for learning/teaching. The classification is available

for extension and more categories and sub-categories can be

included to promote the usage of these vital tools.

We therefore recommend the usage of this classification by

both learners and instructors alike. We further recommend the

development of a number of PV tools to visualize logic

programming.

REFERENCES

[1] Bednarick, R., Moreno, A., Myller, N., & E, Sutinen (2005),

Smart Program Visualization Technologies: Planning a Next

Step, Proceedings of the Fifth IEEE International Conference on

Advanced Learning Technologies (ICALT’05)

[2] Dean, S & Dorn, B. (2003), Using JEROO to Introduce Object-

Oriented Programming, 33rd ASEE/IEEE Frontiers in

Education Conference, November 5-8, 2003

[3] Lahtinen, S. P, Sutinen, E. & J. Tarhio (1998), Automated

Animation of Algorithms with Eliot, Journal of Visual

Languages and Computing, 9(3): pp.337–349

[4] Kouznetsova S, (2007), Using Bluej and Blackjack to Teach

Object-oriented Design Concepts In CS, Journal of Consortium

for Computing Sciences in Colleges, April 2007 (pp. 49 -55)

[5] Kasurinen, J., Mika, P. & Uolevi, N. (2008), A Study of

Visualization in Introductory Programming, PPIG, Lancaster

2008.

[6] Bassat Levy, R., Ben-Ari, M., & Uronen, P. A. (2003), The

Jeliot 2000 program animation system, Computing Ed. 40,Vol.

1, pp. 15–21

[7] Moreno, A, Myller N, & Sutinen, E. (2004), Visualizing

Programs with Jeliot, ACM AVI '04, May 25-28, 2004

[8] Ebel, G. & Ben-Ari, M. (2006), “Affective effects of program

visualization”, In Proceedings of the 2nd International

Computing Education Research Workshop (ICER’06)., pp. 1-5

[9] Rajala, T., L. Mikko-Jussi, K. Erkki, Salakoski, P. (2007),

VILLE – A Language-Independent Program Visualization Tool,

Seventh Baltic Sea Conference on Computing Education

Research, Koli National Park, Finland, Vol. 88 November 15-

18, 2007

[10] Bassat, L. & Mordechai, B. (2007), “We Work So Hard and

They Don’t Use It: Acceptance of Software Tools by Teachers”,

ITiCSE’07, June 23–27, 2007, Dundee, Scotland, United

Kingdom Copyright 2007

[11] Price, B.A., Baecker, R.M., & Small, I.S (1998), A Principled

Taxonomy of Software Visualization, Journal of Visual

Languages and Computing 4(3), pp. 211-266

[12] Karavirta, V.’ Ari Korhonen, Lauri Malmi and Thomas Naps

(2010), A comprehensive taxonomy of algorithm animation

languages, Journal of Visual Languages & Computing Volume

21, Issue 1, February 2010, Pages 1-22

[13] Myers, B., Taxonomies of Visual Programming and Program

Visualization, In Journal of Visual Languages and Computing,

Vol. 1, No. 1, S. 97-123, 1990

[14] Naps, T. L., Rossling, B, G., Almstrum, V., Dann, W.,

Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,

Mcnally, M., Rodger, S., & Vel´A Zquez-Iturbide, J. ´A.

(2002), Exploring the role of visualization and engagement in

computer science education., In ITiCSE on Innovation and

Technology in Computer Science Education (ITiCSE’02),

Working Groups Report pp. 131–152

[15] Sensalire, M., Ogao, P., & Telea, A. (2008), Classifying

Desirable Features of Software Visualization Tools for

Corrective Maintenance,. SOFTVIS 2008, September 16–17,

2008

[16] Naps, T. L., JHAVE: Supporting Algorithm Visualization,

Computer Graphics and Applications, IEEE 25(5) (2005,) pp.

49–55

[17] Kolling, M., & Rosenberg, J. (1996), An Object-Oriented

Program Development Environment for the First Programming

Course, SIGSE Bulletin 28 (1), pp. 83-87, 1996

[18] Cross II J., H. & Hendrix D., T., (2007), JGrasp: An Integrated

Development Environment with Visualizations for Teaching

Java in CS1, CS2, And Beyond, Journal of Consortium for

Computing Sciences in Colleges October 2007

[19] Kelleher, C. and R. Pausch. Lessons Learned from Designing a

Programming System to Support Middle School Girls Creating

Animated Stories, 2006 IEEE Symposium on Visual Languages

and Human-Centric Computing.

[20] Gruia-catalin, R. C & Cox, C. K., A Taxonomy of Program

Visualization Systems, IEEE 1993, pp. 11-24

[21] Myler, N., Bednarik, R., Sutinen, E. and B, Mordechai (2009),

Extending the Engagement Taxonomy: Software Visualization

and Collaborative Learning, ACM Transactions on Computing

Education, Vol. 9, No. 1, Article 7, March 2009

[22] Robins A, Rountree, J. & Rountree, N. (2003), Learning and

teaching programming: A review and Discussion, Journal of

Computer Science Education, Vol. 13-No. 2, pp. 137–172, 2003

International Journal of Computer Science and Telecommunications [Volume 3, Issue 2, February 2012] 48

Fig. 5: Comprehensive Taxonomy of Program Visualization Systems for Pedagogy

Installation

Integration

Availability

Proprietary

Open-source

Freeware

Extensibility

Dynamic

Static

Multimedia

Video

Audio

Textual

Pre-defined

Tutorial

Example

Visual Representation

Primitive

Standardized

Metaphorized

Simple

Composite

World

User-Interaction

Enhanced

Interactivity

Responding

User-defined

Control

Modification

Platform

Specific

Cross

Procedural

Logic

OOP

Programming Paradigm

Programming

Constructs

Basics

Control Structures

OOP Concepts

Polymorphism

Inheritance

Encapsulation

Scope

Language

Language

Compatibility

Multi-Lingual

Interface Pedagogy Visualization Meta-Language

Program Visualization System

