
International Journal of Computer Science and Telecommunications [Volume 3, Issue 12, December 2012] 7

Journal Homepage: www.ijcst.org

Farhan M Al Obisat

Department of Mathematics and Information Technology, Tafila Technical University

Abstract– This study is concerned with the developing criteria

for learning the semantics of UML models in an intelligent

tutorial system. This is achieved by going through literature and

studying the current approaches for checking the semantics of

UML diagrams. This paper concerns with the ability of learning

the semantics of UML models using formal methods, For this

reason this research enhance an existing system for grading

UML models called MUML. The result of this work is an

enhanced environment for teaching and checking UML behavior

using the means of formal methods. Evaluation results on

diagram-based learning do its expectations compared to the

traditional learning techniques of the students’ assignments.

Index Terms– UML Semantics, Learning, Formal

Representation, Model Transformation, Spin and Hugo/RT

I. INTRODUCTION

ODEL checking [4] is a formal method for analyzing

and verifying hardware and software systems. It is used

generally for formal verification as it takes an

automaton based model of a system and temporal logic

properties as input then explores the entire state space of the

model to determine whether it violates the given properties or

not. Model checkers returned a counter example to confirm

the violation to the analyzer. Both desired and unwanted

properties of the model can be logically formulated.

Therefore, both the model and its properties are presented in
an acceptable format to be used as an input to a specific

model checker, which tests the model and gives a feedback

and reports conditions such as unreachable states, deadlocks,

and conditions where the properties are violated. Later on, the

results obtained by the model checker can be used to improve

and refine the model until it becomes free of errors.

Model checkers can be classified into two main types:

Symbolic and explicit. Symbolic model checkers are mostly

used to check the hardware where the states of the system are

encoded. On the other hand explicit state model checkers are

used typically to check the software systems. They also
examine the states that are stored explicitly, each in turn.

Models which are designed using UML need to be

transformed into a formal notation in order to be examined

using model checkers. There are a lot of work and efforts that

describe how to convert a UML model into a Promela

specification. Promela is the input language of the SPIN

model checker [4].

II. METHODOLOGY

Going through literature review could make a good insight

about approaches that are used for verifying the formal

transformation of UML models. Current verification systems

and tools have been reviewed and some of them have been

installed and tested, such as TABU approach [2]. In this study

Hugo/RT is used to transform UML models for model

checking and code generation, as UML models can contain

active classes either with state machines or collaborations,

then these active classes could be mapped into the system
language of Spin model checker for performing formal

verification [8].

To determine which model checker to be used for verifying

the semantics of UML diagrams a review of literature was

done in this stage. For verification purpose, the most used

model checkers are SPIN model checker [5], SAL model

checker which can support both bounded and symbolic model

checking [9], and SMV model checker as well as its derived

NuSMV [1].

Based on the study of the available formalization

approaches and model checking systems, a list of possible
systems that can be used for verifying UML models are

selected. Some of these systems are installed and tested and

based on that the reasonable systems are then selected. In this

study Hugo/RT is selected for achieving the formalization

process for the UML models, and Spin model checker is

selected to check and verify the generated formal model.

A framework for checking and verifying the semantics of

UML models is developed by following processes:

1. Identify steps required for verifying semantics of UML
models and this is done by mapping UML model

elements into the formal notation using the verification

systems that are chosen, and then identify a technique

for measuring the semantic correctness of UML models.

This process is done by analyzing the output from the

model checker output result, while in this study we use

the TRAIL file of SPIN model checker that contains the

result of semantics check.

2. Developing and building the framework; the framework

for handling this method is to use Hugo/RT formal

M

Using Spin Model Checker for Learning the Semantics of

UML Models

ISSN 2047-3338

http://www.uml.org/
http://spinroot.com/spin/whatispin.html

Farhan M Al Obisat 8

transformation technique that transform student model

into a temporal logic format to catch the properties and

convert them again into Promela language file. Promela,

which contains the elements and properties of the

original UML model is used as an input for the Spin

model checker, whereas a result of Spin execution is
stored in a file which's called a Trail file.

3. Test and evaluate the proposed framework; the test of

the framework is done by doing the conversion process

manually by experts (it takes more time, especially if the

state space of the model is huge). The evaluation is

made by doing the conversion for some sample models,
once by using the systems and the second time is

manually by experts in order to compare the outcomes.

All these processes mentioned above are used for the

evaluation process to guarantee the verification of UML

model semantics. Figure 1 shows an example of an actual

case for a question given to students via MUML [7]. The
question contains obvious names for active actors or classes

which would make it easy for student to pick them from the

given text. Furthermore, a description for the system behavior

is described in details. The example in Figure 1 is written in a

way that makes it easy for students to identify the elements of

the model. For example, it is clear that the answer should

have at least one ATM class and one Customer class. It is also

clear that the behavior of the system should include some

operations based on some conditions, such as (Enter code,

Abort operation, Enter amount, Print receipt and

Withdrawal).

A. Semantics Checking

There are so many approaches for checking the semantics

of UML model [6]. The approach in this research is slightly

Figure 1: An example of a Question Set by an Instructor

similar to the one proposed by [2] which is called TABU and

also similar to STAIRS approach [10]. The similarity is that

the semantics of the UML model is checked using model

checking techniques. Approach in this work differs from

TABU by using sequence diagrams instead of activity

diagrams for representing the model behavior.

B. Formal Model Verification

Formal UML models are verified using model checking

techniques. Many model checkers can be used for semantic

verification. The Spin model checker is chosen for this study.

The reason for this choice is that it specifically verifies

software. For instance, the target of SMV model checker is

the verification of hardware circuits, where the target of

UPPAAL model checker is the verification of real-time
systems.

Secondly, Spin is an open source and multi-platform,

distributed for free as a research system [3]. Spin model

checker has a user friendly graphical user interface that allows

the user to write directly the system specifications using

Promela the C like language. Promela is the input language

for SPIN where it can be edited inside the system or imported

from the file location. Figure 1 shows an example of Promela

code written in jSpin which is a version of Spin model

checker. The interface of jSpin is divided into three parts, one

for showing and editing the code, and one part for the
command line option and the third part for the output. The

output is therefore saved in a TRAIL file which is empty if

there are no execution errors. Figure 2 shows the interface of

jSPIN model checker.

Since the input for Spin is Promela therefore, UML model

needs to be translated to Promela. Hugo/RT is used in this

work for mapping the UML model to Promela language. It is

used to transform UML models for model checking, theorem

proving, and code generation. Since UML models can contain

active classes either with state machines, collaborations or

with both, then these active classes can be mapped into the

system language of Spin model checker and some other
Theorem Proves [8].

Figure 2: An Example of jSpin Model Checker GUI

Pro

mel

a

Out

put

Comman

d line

options

http://www.uml.org/
http://spinroot.com/spin/whatispin.html

International Journal of Computer Science and Telecommunications [Volume 3, Issue 12, December 2012] 9

C. Semantics Checking

This section describes the process for the semantics check.

The input for this particular part of the learning systems is

achieved by verifying some Linear Tree Logic properties

(LTL). Instructors can insert these properties directly along

with the given assignments, or by inserting them in the
specific panel in jSpin editor. The learning system stores them

in a file called property.txt.

For the example described in Figure 1, some properties

could be chosen s to verify the semantics of the ATM

machine student's model. Table 2 describes these properties

and the correspondent specifications.

The semantics elements that are normally checked include:

 The relations between classes

 The states of each class object

 The activities of the model

 The sequences of model behavior or messaging

 The LTL properties given by instructors, if any

The task of checking the semantics of UML models is done
by verifying the submitted answer and checking it against the

properties given by instructors. The semantics check is to be

performed based on the following algorithm shown in Figure

3 [7]:

Table 2: Formal properties and their representation in LTL

No Property Specification Rechecking

1

The ATM cannot allow
the user to request
an operation if either
the card or the PIN is

invalid

_ (x → ￢ _

y)

x = (start ∧ (￢

cardOK ∨ ￢

PINok))

y = (proc1 user∧

receive ∧ msg

waitAccount)

2

ATM must first debit
the amount in the bank,
And then give the

money to
 the user. In other

words,
the user does not receive
pickCash until the bank
 receives debit

￢ x U y

x = (proc1 user∧

receive∧ msg

pickCash

y = (proc1 bank ∧

receive ∧ msg debit)

3

If the ATM receives

insufficient funds, it

should allow the user to

choose other operation

before finishing the

session

_ (x → (￢ y

U w))

x = (proc1 user ∧

receive ∧ msg

insufficientFunds

y = (end), and w =

(proc1 atm ∧ send ∧

msg waitOperation)

4

Ensure the correct end

of the session between

the ATM and the user. It

says that, after the user

receives ejectCard, the

ATM cannot send

anything to the user

_(x → ￢_y)

x = (proc1 user ∧

receive ∧ msg

ejectCard)

y = (porc1 atm ∧

send ∧ proc2 user)

Figure 3: The Semantics Check Algorithm (adopted from [7])

The process of converting a UML file (zargo file) into

Promela is to be done by using Hugo/RT. Hugo/RT is a

message exchanging system for UML state machines. It

generates an automaton representing a UML interaction for

observing message traces.

The summary of the output from the Spin model checker
for the four properties given by the instructor in Figure 1 is

shown below in Table 3.

Table 3: Summary of Semantic checking and feedback

Properties Output
Message
produced

Feedback

1 ok
0 errors, 2

warnings

No errors regarding to the

PIN and card validity

2
Produced

TRAIL
5 errors

Please check the model for

the sequence of getting cash

and debit the balance.

3 ok No errors

The ATM can allow the

user to do anther operation

if he has insufficient

balance

4
Produced

TRAIL

7 errors, 8

warnings

Seems to be some active

secessions after the user

gets back his card

From the result in Table 3, it is clear that a total of 12 errors

and 10 warnings have occurred. The feedback will be saved in

the feedback file and will be able to be presented to user to

guide him/her to go back to the assignment and refine the

model.

1. Convert the zargo file produced by the student

using ArgoUML into Promela

2. Add TLT properties if necessary

3. Execute the Promela file and the properties using

Spin model checker

4. Analyze the output TRAIL file from Spin

execution

5. Count the number of errors and warnings
6. Multiply the sum of errors by one

7. Multiply the sum of warnings by half

8. Add the multiplication results of errors and

warnings

9. If the result is less than or equals zero then the

semantic checking is zero

10. Subtract the result from the checking assigned for

semantic in the checking file and divide it by 100

11. Subtract the new result from the assigned checking

12. The result is the semantic checking for the given

question

Farhan M Al Obisat 10

As a result, Spin model checker could execute Promela with

an empty TRAIL file. That means the checking for semantics

will be 100% free of errors and no feedback is generate. On

the other hand SPIN will generate a TRAIL file that contains

the model errors and violations.

III. CONCLUSION

The development of a framework for learning the semantics

of UML models helps students as well as instructors to learn

how to model with UML and how to focus on the behavior of

systems in a learning environment. The paper also described

how to benefit from the output of certain model checkers to

determine to which degree students understand this critical

part of the system design, since applying some properties to

the model can’t be checked manually.
The approach in this study make use of the above described

software systems and combine all of them i.e., ArgoUML,

Hugo/RT, Spin model checker under one interface for

checking the relevancy, syntax and semantics of UML models

submitted by UML course students and to obtain feedback for

this particular part of the overall learning system. The paper

also described the framework for checking the semantics of

the given answer, by applying some formal rules. Based on

these rules the checking for this part is obtained. The formal

representation of the model answer allowed us to use the

model checkers to be run on the transformed model. Finally,
the paper described how to obtain the weakness of student's

assignments for each part of the learning aspects and how to

obtain the feedback for the given model.

REFERENCES

[1] Alessandro, M. Fernandez, M., Cittolin, Gand, R. 1999. Manual
on hatchery production of seabass and gilthead seabream. Vol
1. FAO, Rome. 194p.

[2] Beato, M. Barrio, S. and Cuesta, C. 2004. UML automatic
verification tool (TABU). Proc. Specification & Verification of

Component Based Systems (SAVCBS) 2004, SIGSOFT
2004/FSE-12 12th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 106-109.

[3] Daniel, A., and Guido, W. 2008. Prototyping visual interpreters
and debuggers for domain-specific modelling languages. In Ina
Schieferdecker and Alan Hartman, editors, 4th European
Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA’08), volume 5095 of Lecture Notes

in Computer Science, pages 63–78. Springer-Verlag.
[4] Gerard, J. 2002. Software analysis and model checking. In Ed

Brinksma and Kim Guldstrand Larsen, editors, CAV, volume
2404 of Lecture Notes in Computer Science, pages 1–16.
Springer.

[5] Gerard, J. 2003. The Spin Model Checker, Primer and
Reference Manual. Addison-Wesley, Reading, Massachusetts.

[6] Harel, D. and Politi, M. 1997. Modeling Reactive Systems with

Statecharts: The STATEM- ATE Approach. McGraw-Hill.
[7] Hazim, R. Sufian, I. Abdullah, Z. 2011. The design and

implementation of MUML, Proceeding of the IETEC'11
conference, Kuala Lumpur, Malaysia,
Copyright@H.Rawashdeh, et al, 2011.

[8] Knapp, A. and Merz, S. 2002. Model checking and code
generation for UML state machines and collaborations. in
Proceedings of 5th Workshop on Tools for System Design and

Verification (FM-TOOLS'02).

[9] Leonardo, M., Sam, O., Harald, R., John, R., and Shankar N.
2004. The ICS decision procedures for embedded deduction. In
David Basin and Micha l̈ e Rusinowitch, editors, 2nd
International Joint Conference on Automated Reasoning
(IJCAR), Volume 3097 of Springer-Verlag Lecture Notes in

Computer Science, pages 218–222, Cork, Ireland, July 2004.
[10] Seehusen, F., Solhaug, B., and Stølen, K. 2009. Adherence

preserving refinement of trace-set properties in STAIRS:
exemplified for information flow properties and policies.
Journal of Software and Systems Modeling, 8(1):45–65.

