
International Journal of Computer Science and Telecommunications [Volume 3, Issue 12, December 2012] 71

Journal Homepage: www.ijcst.org

Prerana B. Jaipurkar
1
 and Kapil N. Hande

2

1,2Department of Comp. Science & Engg. Smt. Bhagwati Chaturvedi College of Engg., Nagpur
1preranajai@gmail.com, 2kapilhande@gmail.com

Abstract– In real-time systems, a task needs to be performed

correctly and timely. The correctness of each computation

depends on both the logical results of the computation and the

time at which results are produced. So “time” is most important

in real-time application systems. Multicore and multithreaded

CPUs becomes the new approach in real time system to achieve

system performance, power efficiency, and software concerns in

relation to application and workload characteristics.

Multiprocessor Real time system requires an efficient algorithm

to determine when and on which processor a given task should

execute. The proposed work presents a comparative study of

different customized Multiprocessor scheduling algorithms

which maximizes system performance and decides the real time

tasks that can be processed without violating timing constraints.

A major advantage of the simulation is that it provides a fast and

easy way to evaluate the system performance in Real-time system

and consider tasks priorities which cause higher system

utilization and lowers deadline miss time. To overcome the run-

time scheduling and the prioritized-partitioned problems,

accomplish a multiprocessor system on chip simulator which is

capable of accurately simulating a variety of processor, memory,

multiprocessor system on chip configurations and evaluate their

effect on real-time system to improve the system performance

with the help of different algorithms i.e. FPZL (Fixed Priority

until Zero Laxity) & DPZL (Dynamic Priority until Zero

Laxity).

Index Terms– Real Time Operating System, Multi-Processor,

Scheduling Algorithm, FPZL and DPZL

I. INTRODUCTION

EAL-TIME (computing, communication, and

information) systems have become increasingly

important in everyday life. A real-time system is required

to complete its work and deliver its services on a timely basis.
Examples of real-time systems include digital control,

authority and control, signal processing, and

telecommunication systems. A real time - system provides a

support on which to build and organize the features of the

system. A real time system should provide services such as

1
Prerana B. Jaipurkar, III Semester M.Tech, Department of Computer

Science & Engineering, Smt. Bhagwati Chaturvedi College of Engineering,

Nagpur University, India, (Email: preranajai@gmail.com)
2
Assistant Professor Kapil N. Hande, Department of Computer Science &

Engineering, Assistant Professor Smt. Bhagwati Chaturvedi College of

Engineering, Nagpur University, India (Email: kapilhande@gmail.com)

inter-task communication and time management and can solve

a variety of problems that can occur in application code,

logical correctness, and execution of various tasks delivered
by the user since it provides multitasking capability and

allows the application to be broken down into smaller pieces.

Each task is assigned its own priority based on its importance,

and pre-emptive scheduling tries to ensure that the CPU runs

the task that has the highest priority among those that are

ready-to-run. Real time systems are required to provide

results within a specific time period. The correctness of the

system depends not only on the logical results of the

computations but also on physical instants at which these

results are produced. Scheduling of tasks in a multiprocessor

is to execute no of tasks for effective scheduling and high

performance. The multiprocessing scheduling is done to
minimize total time of program execution and also maximize

processors utilization at the same time. The performance of

each and every scheduling algorithm depends on performance

parameters. The following are some performance parameters

of the Scheduling algorithms.

 CPU Utilization

 Task Migration

 Number of Preemption

 Less Execution Time

 Resource Utilization
In addition to the CPU Utilization, there should be the best

possible use of system resources in multi-processor

environment. The rest of this paper is organized as follows.

Section II describes related work and scheduling algorithms.

Section III describes literature survey and existing

methodologies. Section IV introduces the problem definition

and proposed work. Finally section V concludes the paper.

II. RELATED WORK

In real-time systems, produced output is equally important

as the logical correctness. That is, real-time systems must not

only perform correct operations, but also perform them at

correct time. A logically correct operation performed by a
system can result in either an invalid, completely a waste of

time, or degraded output depending upon the strictness of

time constraints. Based on the level of strictness of timing

constraints, real-time systems can be classified into three

broad categories: hard real-time, soft real-time, and firm real-

time systems.

R

Efficient Thread Mapping in Multicore Architecture with

Laxity Based Algorithms

ISSN 2047-3338

Prerana B. Jaipurkar and Kapil N. Hande 72

In Hard Real-Time System requires that fixed deadlines

must be met otherwise disastrous situation may arise whereas

in Soft Real-Time System, missing an occasional deadline is

undesirable, but nevertheless tolerable. System in which

performance is degraded but not destroyed by failure to meet

response time constraints is called soft real time systems.
Such systems must be predictable and temporally correct. The

designer must verify that the system is correct prior to runtime

–i.e., for instance, for any possible execution of a hard real-

time system, each execution results in all deadlines being met.

Even for the simplest systems, the number of possible

execution scenarios is either infinite or prohibitively large.

Therefore, simulation or testing can be used to verify the

temporal correctness of such systems. In the proposed work,

following are the standard parameters that characterize tasks

of real-time applications.

A Processor: A processor performs the major number of
critical situation that drives any computer’s operation.

Processor plays such an important role that computers are

often defined and described exclusively on the type of

processor. Processors work by performing calculations based

on specific instructions that software running on the

computer. These instructions, which are loaded into the
processor when an application runs, tell the processor how to

manipulate amount of data stored in the computer’s memory

(RAM).In other words, processors are constantly merged

through instructions and data that are loaded into it from the

computer’s memory.

A Multiprocessor: Multiprocessor system contains more
than one such CPU, allowing them to work in parallel. This is

called SMP, or Simultaneous Multiprocessing. As the

multiprocessor architectures are already widely used, it

becomes more and more clear that future real-time systems

will be deployed on multiprocessor architectures.

Multiprocessor architectures have certain new features that

must be taken into consideration. For that application

programs executing on different cores usually shared caches,

interconnect networks, and shared memory bandwidth,

making the conventional design practices not suitable to

multi-core systems.

Cache: A small amount of high-speed memory residing on

or close to the CPU as shown in Figure-1. In addition to

working with the main memory, processors also work with a

special type of high-speed memory referred to as cache. In

fact, most of the time processors work directly with various

types of cache memory and this cache memory, in turn, works
with the main memory. Essentially, the cache memory acts as

a high-speed buffer in between the processor and main

memory, shuffling data into the processor as it needs it, or

requests it. As a result, the processor takes advantage of the

high-speed cache memory and therefore works faster, which,

in turn, makes the computer that the processor drives, operate

faster.

Cache memory supplies the processor with the most

frequently requested data and instructions. Level 1 cache

(primary cache) and Level 2 cache (secondary cache) is the

cache second closest to the processor and is usually on the

system board.

Fig. 1: Cache memory

Multitasking: In computing, multitasking is a method by
which multiple tasks, shares common processing resources

such as a CPU. Multitasking refers to the ability of the OS to

quickly switch between each computing task to give the

impression that different applications are executing

simultaneously. As CPU clock speeds have increased steadily

over time, not only do applications run faster, but OSs can

switch between applications more quickly. This provides

better overall performance. Many actions can happen at once

on a computer, and individual applications can run faster.

Single Core: In a single CPU core, as shown in Fig. 2 tasks

runs at any point in time, meaning that the CPU is actively

executing instructions for that task. Multitasking solves this

problem by scheduling which task may run at any given time

and when another waiting task gets a turn.

Fig. 2: Single-core systems schedule tasks on 1 CPU to multitask

Multicore: When running on a multicore system,

multitasking OSs can truly execute multiple tasks

concurrently. The multiple computing engines work
independently on different tasks. For example, on a dual-core

system, as shown in Figure-3,four applications - such as word

processing, e-mail, Web browsing, and antivirus software -

can each access a separate processor core at the same time and

can multitask by checking e-mail and typing a letter

simultaneously, thus improving overall performance for

applications.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 12, December 2012] 73

Fig. 3: Dual-core systems to execute two tasks simultaneously

The OS executes multiple applications more efficiently by

splitting the different applications, or processes, between the

separate CPU cores which shown in Fig. 4. The computer can

spread the work - each core is managing and switching

through half as many applications as before - and deliver
better overall throughput and performance. In effect, the

applications are running in parallel.

A thread is a basic unit of CPU utilization, consisting of a

program counter, a stack, and a set of registers. Traditional

processes have a single thread of control - There is one

program counter, and one sequence of instructions that can be

carried out at any given time. Multi-threaded applications

have multiple threads within a single process, each having

their own program counter, stack and set of registers, but

sharing common code, data, and certain structures such as

open files. Multithreading extends the idea of multitasking

into applications, so subdivide specific operations within a
single application into individual threads. Each of the threads

can run in parallel. The OS divides processing time not only

among different applications, but also among each thread

within an application.

Fig. 4: Parallel Execution on Multicore System

In a multithreaded, an example that application might be

divided into four threads - a user interface thread, a data

acquisition thread, network communication, and a logging

thread. All can prioritize each of these so that they operate

independently which shown in Fig. 5. Thus, in multithreaded

applications, multiple tasks can progress in parallel with other

applications that are running on the system.

Fig. 5: Dual-core system enables multithreading

Applications that take advantage of multithreading have

numerous benefits, including the following:

 More efficient CPU use

 Better system reliability

 Improved performance on multiprocessor computers

In many applications, a single-threaded request, a

synchronous call effectively blocks, or prevents, any other

task within the application from executing until the operation

completes. Multithreading prevents this blocking.

While the synchronous call runs on one thread, other parts
of the program that do not depend on this call run on different

threads. Execution of the application progresses instead of

stalling until the synchronous call completes. In this way, a

multithreaded application maximizes the efficiency of the

CPU because it does not idle if any thread of the application is

ready to run.

A. Scheduling Algorithms

Earliest Deadline First Scheduling (EDF) algorithm

assigned the highest priority if it is having the shortest

deadline. The highest priority belongs to the task with the
closest deadline while the task with the longest deadline has

the lowest priority. Deadline of a task plays an important role

in earliest deadline first scheduling and schedule the number

of tasks on the processor.

Earliest Deadline First until zero laxity (EDZL) Scheduling

algorithms is a hybrid preemptive priority scheduling scheme

in which jobs with zero laxity are given highest priority and

other jobs are ranked by their respective deadlines that a

number of jobs missing their deadline are significantly

reduced if scheduled by EDZL on m identical processors.

III. LITERATURE SURVEY

Jian Chen and Lizy K.John [1] proposed a scheduling

model that heterogeneous multicore processors promise high

execution efficiency under diverse workloads, and program

scheduling is critical in exploiting this efficiency. This work

presents a novel method to leverage the inherent

characteristics of a program for scheduling decisions in

heterogeneous Multicore processors. The method projects the

core’s configuration and the program’s resource demand to a
unified multi-dimensional space.

Prerana B. Jaipurkar and Kapil N. Hande 74

Zheng Wang Michael F.P.O’Boyle [2] describes that the

thread mapping has been extensively used as a technique to

efficiently exploit memory hierarchy on modern chip-

multiprocessors. It places threads on cores in order to

amortize memory latency and/or to reduce memory

contention.
Kumar et al. [3] proposed a straightforward scheduling

policy uses trial-and-error approach to find the match between

programs and cores and a dynamic program scheduling

approach.

Julian Bui, Chenguang Xu [4] states that cache memories

are widely used in microprocessors to improve the system

performance and several works have been done in cache

fields. Cache size, cache protocols, associate numbers, etc. are

all important parameters for performance.

Sherry Joy Alvionne [5] proposed a technique which to be

used in multiple processors executing in parallel. Also,

because of embedded systems have limited memory size,
adding more functions in the system will limit the data that

can be stored in the memory.

Chen and John [6] employ fuzzy logic to calculate the

program-core suitability, and use that to guide the program

scheduling. However, their method is not scalable since the

complexity of fuzzy logic increases exponentially as the

number of characteristics increases.

C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun [7]

specifies that, the problem of reliability that is a serious threat

to the current computer industry. While recent advances have

embraced low-cost reliability solutions as a replacement for
traditional high-cost full redundancy techniques, focused on

single threaded workloads running on a single core.

Gulati et al. [8] uses efficiency threshold to dynamically

allocate processor for the given task. All of these methods

exploit intra-program diversity, and could adapt to program

phase changes. In scheduling scheme exploits inter-program

diversity and statically allocates programs to cores by

analyzing inherent program characteristics.

M. Diener, F. Madruga, E. Rodrigues, M. Alves [9] in this,

focused on how to improve barrier performance by either

reducing memory contentions introduced by accessing shared

flags within a barrier or by reducing the critical path of a
barrier.

M. Bertogna, M. Cirinei, G. Lipari [10] presents the Fixed

Priority until Zero Laxity (FPZL) scheduling algorithm for

multiprocessor real-time systems. FPZL is similar to global

fixed priority preemptive scheduling; however, whenever a

task reaches a state of zero laxity it is given the highest

priority.

A. Existing Methodologies

1) A Semi-Partitioned Fixed-Priority Scheduling (SPFPS)

The multiprocessor platform consists of M identical
processors and N independent tasks. Each task is

characterized by its Worst Case Execution Time (WCET),

period and deadline. Tasks are sorted in non decreasing order.

Task indices are used to represent the task priorities. A Semi-

Partitioned Fixed-Priority Scheduling (SPFPS) algorithm with

a linear utilization, selects the processor with the least

workload assigned so far, among all processors to assign the

next task. It applies Rate Monitoring Scheduling (RMS)

algorithm on each processor to schedule the tasks. The

constraint on the utilization of each task is removed by

introducing an extra task pre-assigning mechanism.

2) Extended Boundary Fair (E-BFAIR)

Extended Boundary fair (E-Bfair) scheduler has best

possible periodic tasks to examine in boundary fair (Bfair)

scheduling algorithm. The next boundary time is determined

by considering the irregular arrivals of sporadic tasks, to
minimize the scheduling points. Since a periodic real-time

task can only miss its deadline at its period boundary, an

optimal discrete time based boundary fair (Bfair) scheduling

algorithm which makes scheduling decisions and ensures

fairness for tasks only at their period boundaries. A set of n

sporadic real-time task is used where each task is

characterized by its worst case computation requirement and

minimum inter-arrival time with implicit deadlines. The

allocation of processors to tasks should satisfy the following

two constraints: a processor is allocated to only one task at

any time and a task is allocated to at most one processor at
any time.

3) Ant Colony Optimization (ACO)

ACO is a branch of Swarm Intelligence. The advantages of

ant-based systems are inherent parallelism, robustness &

scalability along with simplicity of individual agent.

ACO Based Scheduling Algorithm: The ACO based

algorithms are computational models motivated by the

collective foraging behavior of ants. Each ant is an

autonomous agent that constructs a path. There might be one

or more ants concurrently active at the same time. Ants do not

need synchronization. Forward ant moves to the good-looking

neighbor from the current node, probabilistically. A

probabilistic choice is biased by Pheromone trails previously

deposited and heuristic function. Without heuristics
information, the algorithm tends to converge towards initial

random solution. In backward mode, ants lay down the

pheromone. Pheromone intensity of all the paths decreases

with time, called pheromone evaporation. It helps in

unlearning poor quality solution. ACO based scheduling

algorithm is given as per following:

• Construct the tour of different ants

• Analyze the results of ant’s journeys

• Update the value of Pheromone and find probability of

 each task and select the task for execution.

In ACO based scheduling algorithm, each schedulable task

is considered as a node and all the ants will start their journey

from different nodes. Number of ants are taken same as

number of schedulable tasks at that time. The ants will

traverse depending on the value of pheromone and some

heuristic function. Pheromone value will be updated on each

node depending on the performance of the journey and finally
the task is selected with maximum probability of the best

performance.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 12, December 2012] 75

IV. PROBLEM DEFINITION AND PROPOSED WORK

A Real-Time System responds in a (timely) predictable way
to unpredictable external inspiration arrivals. In short, a Real-

Time System has to fulfill under extreme load conditions that

is required to finish certain tasks within the time boundaries it

has to respect. Also simultaneous processing that is more than

one event may happen simultaneously, all deadlines should be

met. For a given task set it is useful to know what changes can

be made to complete a task that will result in a system which

beneficial to know the speed of a processor that delivers a

schedulable system. For scheduled systems on a uniprocessor:

task execution time, speed of the processor, and also the

performance does not satisfactory. So, proposed a scheduling

approach to arrange real-time periodic and non-periodic tasks
in Multiprocessor systems with static and dynamic optimal

scheduling algorithms. In contrast, main approach is to

balances task loads of the processors successfully and higher

priority tasks running properly and overcome the following

problems with multiprocessor system.

• The run-time scheduling problem: a set of tasks with real-
time, find a schedule that meets simultaneous execution of

multiple processes.

• The prioritized-partitioned problem: For a program to
run on processor that must be split in a series of tasks which

depends on each another or can be interdependent. The split

implies partitioning and mapping, that distributes to each

processor and can be static or dynamic.

A. Algorithms

To overcome multiprocessor run-time scheduling and
prioritized-partitioned problems the following algorithms can

be employed: 1) FPZL, 2) DPZL

 FPZL (Fixed Priority until Zero Laxity)

FPZL is based on the state of zero laxity. Zero laxity is the

state where execution time is equal to its deadline. In this

algorithm the task reaches a state of zero laxity it is given the

highest priority. The priorities of all the tasks are considered

as fixed until it reaches to a state of zero laxity.

Phase-1: This phase defines the fixed priorities. These
priorities should not be changed any further.

1) Tasks are ordered in the increasing order of user priority
that is from highest user priority to least user priority.

2) The first N task is added to the critical set such that the
CPU load factor does not exceed maximum utilization & for

the tasks present in the critical set critical priority is assigned

1 else critical priority is 0.

3) The tasks present in the critical set must be scheduled
before the tasks in the non-critical set. This concept of

scheduling reduces the irregularity of the system.

 DPZL (Dynamic Priority until Zero Laxity)

DPZL is a preemptive priority scheduling scheme in which

jobs with zero laxity are given highest priority and other jobs

are ranked by their respective deadlines.

Phase-2: This phase defines the dynamic priority. Dynamic

priority is calculated at each clock cycle. Dynamic priorities

are set according to the following steps;

1) When there is only one critical task, schedule it at any
free processor without pre-emption.

2) When more than one critical task is present in the ready
queue, schedule the tasks which assigns a higher priority to a

task with a smaller laxity also split task is constrained to have

a deadline equal to its computation time. The second part of

the task has the maximum time available to complete its

execution on a different processor.

3) Laxity at each clock cycle is computed for all the
remaining processes in the ready queue as laxity= deadline -

(execution time + current clock cycle)

4) Processes with zero laxity are available then these
processes are assigned with higher priority over other process

having non-zero laxity.

5) The process with zero laxity is scheduled at any
available free processor without preemption.

6) When no free processor is available, and zero laxity
process is present in the ready queue then preemption occurs.

The process with the longest deadline is preempted and the

zero laxity process is assigned to that processor.

7) After the execution of all zero laxity processes the
remaining processes in the ready queue are assigned to the

processor as per EDF scheduling policy.

B. Proposed Model

Fig. 6: Proposed Architecture

Prerana B. Jaipurkar and Kapil N. Hande 76

As shown in Fig. 6, the major factors considered in

approach to determine the scheduling of task priority,

deadline, required computation time, and used CPU time. The

notion of laxity is used in the proposed approach to facilitate

the computation. Laxity is the maximum time that a task can

wait before being executed (i.e., laxity = deadline -
computation time). A task’s priority shows the importance of

the task. The inputs of these parameters are justified and

represented to compute the level value for deciding which

task to select to schedule next.

C. Simulation Approach for the System

A simulation of a system is the operation of a model of the

system. Generally, a model proposed for a simulation study

for that a mathematical model developed with the help of
simulation software. The operation of the model can be

studied, and hence, properties concerning the behavior of the

actual system or its subsystem can be secondary. Simulation

is a tool to evaluate the performance of a system, existing or

proposed, under different configurations of interest over long

periods of time. The steps involved in developing a simulation

model.

 Identify the problem.

 Formulate the problem.

 Collect and process real system data.

 Formulate and develop a model.

 Document model for future use.

 Select appropriate experimental design.

 Establish experimental conditions for runs.

 Perform simulation runs and present results.

D. Simulation Model

Simulation models consist of the following components:

system entities, input variables, performance measures, and

functional relationships. For instance in a simulation model ,

the server and the queue are system entities, arrival rate and

service rate are input variables, mean wait time and maximum

queue length are performance measures, and 'time in system =

wait time + service time' is an example of a functional

relationship.

Real-time system (RTS) simulator for modeling task

1. Task creation module

2. Processor creation module

3. Task allocation module

4. Priority estimation module

5. System module to combine 1, 2, 3 & 4

E. Steps for the Working of Simulator

The working of simulator follows the steps shown in Fig. 7:

 Initially values for the tasks are assigned.

 Then information about number of processors is fed to the

simulator.

 On the basis of number of tasks arrived divides the load

among different processors.

 When tasks are divided among processors, starts to give

response and at run time choose the scheduling algorithm.

 Run-time measures performance of the completion time as

well as average completion time during run-time at regular

intervals.

 Then start the simulation where jobs start running and get

the response time, waiting time and computation time.

 When there is only one critical task, schedule it at any free

processor without pre-emption.

 When more than one critical task, schedule the tasks which

assigns a higher priority to a task with a smaller laxity and
split tasks which is controlled to have a deadline equal to its

computation time.

 The process with zero laxity is scheduled at any available

free processor without preemption.

 The process with the longest deadline is preempted and the

zero laxity process is assigned to that processor and the

executions of all zero laxity processes in the ready queue

are assigned to the processor.

Fig. 7: Simulation Model

In modern operating systems, a Scheduling is a key concept

to schedule no of tasks and running them on available CPUs

for maximum utilization, which is carried out by a scheduler.
Performance of scheduling algorithms in simulated condition

deals with the best possible assignment of a set of tasks to the

multiprocessor system and inform to their execution for

minimizing the total completion time. When submits the no of

tasks to the multiprocessors systems then really want to know

how well such tasks are performing. So that switches towards

a simulation and proposed work provides a simulated

multiprocessor environment for the performance measurement

and analysis of scheduling algorithms in Simulated Parallel

environment. With this improve processor utilization,

decrease the total system cost and power consumption, as well
as improve fault tolerance. The proposed system, design and

develop a simulated multiprocessor environment so as to

virtualize the actual Scheduling system and to facilitate the

study of multiprocessor systems as well as performance

measurement of scheduling algorithms.

International Journal of Computer Science and Telecommunications [Volume 3, Issue 12, December 2012] 77

V. CONCLUSION

In real-time system, to overcome the run-time scheduling
problem and the prioritized-partitioned problem implement a

multiprocessor system on chip simulator which is capable of

accurately simulating a variety of processor, memory,

multiprocessor system on chip configurations and evaluate

their effect on real-time system to improve the system

performance with the help of different algorithms i.e. FPZL

(Fixed Priority until Zero Laxity) & DPZL (Dynamic Priority

until Zero Laxity). The main objectives of the proposed

system to Simulate and evaluate effect of algorithm on real

time system to improve performance and to increase

efficiency and maximum utilization of the processor.

REFERENCES

[1] Jian Chen and Lizy K. John”Efficient Program Scheduling for
Heterogeneous Multi-core Processors”, IEEE Micro, pp 17-25,
May 2008.

[2] M´arcio Castro, Lu ı́s Fabr ı́cio Wanderley G´oesy, Christiane

Pousa Ribeiro, “A Machine Learning-Based Approach for
Thread Mapping on Transactional Memory Applications”,
IEEE, pp. 978-1-4577-1950-2011.

[3] R. Kumar, et al, “Single-ISA heterogeneous multi-core
architectures: the potential for processor power reduction”,
Micro-36, pp. 81-92, Dec. 2009.

[4] Julian Bui, Chenguang Xu” Understanding Performance Issues
on both Single Core and Multi-core Architecture” IEEE

Transaction Parallel Distribution System, pp. 599–611, 2009.
[5] Jinkyu Lee, Arvind Easwaran, Insik Shin, Insup Lee, 2011.

"Zero-Laxity based Real-Time Multiprocessor Scheduling",
Journal of Parallel and distributed computing, 84, pp. 2324-
2333.

[6] J. Chen and L. K. John,“Energy aware program scheduling in
a heterogeneous multicore system”, IISWC’08, pp.1-9, Sept.
2008.

[7] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun,
“Stamp: Stanford transactional applications for multi-
processing,” in IEEE International Symposium on Workload
Characterization, 2008.

[8] D.P.Gulati et al., “Multitasking Workload Scheduling on
Flexible Core Chip Multiprocessors”, PACT’08, pp187-196,
Oct. 2008.

[9] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J. Schneider,

P. Navaux, and H.-U. Heiss, “Evaluating thread placement

based on memory access patterns for multi-core processors,”
in IEEE International Conference on High Performance
Computing and Communications,sept., pp. 491–496, 2010.

[10] M. Bertogna, M. Cirinei, G. Lipari. “FPZL Schedulability
analysis of global scheduling algorithms on multiprocessor

platforms”. IEEE Transactions on parallel and distributed
systems, 20(4): 553-566.April 2009.

[11] H. S. Behera, Naziya Raffat, Minarva Mallik “A Modified
Maximum Urgency First Scheduling Algorithm with EDZL
for Multiprocessors in Real Time Applications” International
Journal of Advanced Research In Computer Science and
Software Engineering, Volume 2, Issue 4, April 2012.

[12] Komal S. Bhalotiya “Customized Multiprocessor Scheduling

Algori for Real time Systems” Proceedings published by
International Journal of computer Applications, 7-8 April,
2012.

[13] Sumedh.S.Jadhav & C.N. Bhoyar, “FPGA Based Embedded
Multiprocessor Architecture”, International Journal of
Electrical and Electronics Engineering (IJEEE) ISSN
(PRINT): 2231 – 5284, Vol-1, Issue-3, 2012.

[14] Parisa Razaghi, Andreas Gerstlauer, “Host-Compiled

Multicore RTOS Simulator for Embedded Real-Time Software
Development,” Software Engineering, IEEE Transactions on,
978-3-9810801-7-9, 2011.

[15] Sherry Joy Alvionne V. Sebastian,” Implementation of
Phase-II Compiler for ARM7TDMI-S Dual-Core processor”
In Proc. RTSS, pp. 398-409, 2011.

[16] I-Yao Chuang,Tso-Yi Fan, Chi-Hung Lin, Chun-Nan &Jen-
Chieh Yeh”, HW/SW Co-design for Multi-core System on

ESL Virtual Platform”, pp.978-1-4244-8499-7, 2011.
[17] Abhinandan Majumdar, Srihari Cadambi, and Srimat T.

Chakradhar,” An Energy-Efficient Heterogeneous System for
Embedded Learning and Classification” IEEE embedded
systems letters, Vol. 3, No. 1, March 2011.

[18] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J.
Schneider,P. Navaux, & H.-U. Heiss, “Evaluating thread
placement based on memory access patterns for multi-core
processors,” in IEEE International Conference on High

Performance Computing and Communications,sept., pp. 491–
496, 2010.

[19] Julian Nita, Adrian Rapan, Vasile Lazarescu, “Efficient
Program Scheduling for Heterogeneous Multi-core
Processors”, IEEE Micro, pp 17-25, May 2010.

[20] Antonino, Tumeo, Marco, “A Dual-Priority Real-Time
Multiprocessor System on FPGA for Automotive
Applications”, 2008.

