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Abstract— In this paper, a timed model called Resource 

Allocation Timed Automata (RATA) is considered, this model is 

constructed in compositional manner. Compared to the 

operational construction, this approach improves the scheduling 

in both time and memory space. We present two algorithms for 

finding the shortest paths applied to the RATA model in the case 

of job-shop problem.  A set of benchmarks help us to experiment 

the efficiency of our approach. 

 

Index Terms— Scheduling, Maximality Semantics, Timed 

Model, Job-Shop 
 

I.  INTRODUCTION                    

CHEDULING problem is a paradigm of optimization and 
constraint satisfaction problems which has interested 
researchers over the last decades. In this area, there are 

well-studied methods where extensions of Timed Automata 
(TA) are widely applied in many contexts, based on the 
construction of scheduled system guided by some desired 
properties. One can cite; the schedulability analysis of real 
time distributed systems [1], timed automata with a task [2] 
and the job-shop problem [3], [4], [5]. 

In this paper, we propose to capture job-shop scheduling 
problems from a very intuitive and compact description model, 
called Resource Allocation Timed Automata (RATA). This 
model inherits from the DATA model which introduces true 
concurrency semantics to deal with concurrent events [6]. 
Extensions are provided to explicitly represent the resource 
requirements needed for scheduling analysis [7]. In this model, 
the parallelism is implicitly expressed from the starting events 
of actions (i.e. once started, the actions are assumed to behave 
in parallel until their terminations). This avoids splitting the 
description of running actions in start and end events, as this is 
proposed in the TA dedicated to scheduling problems, e.g., [8]. 
As another interest, the RATA reachability graphs are 
generally much smaller than the TA ones. However, both 
suffer from the well-known combinatorial explosion problem. 

A standard way to attack this explosion problem consists in 
restraining the execution of actions by focusing on the  
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immediate runs, to study the scheduling problems.  
However in practice, other reduction techniques must be 

exploited. The main contribution of this paper consists of 
constructing the RATA model in a compositional manner, 
avoiding the costly construction method based on the 
operational semantics. The second contribution, consist of 
using set of search space reduction techniques which can be 
applied on the model of RATA.  

The rest of the paper is organized as follows. In section II 
we recall the job-shop scheduling problem. The RATA model 
and the modeling of the job-shop problem with this model 
using a compositional approach of construction are given 
respectively in sections III and IV. Section V introduces the 
metrics applied on the model able to perform the scheduling. 
Algorithms with reduction techniques over the RATA model 
are proposed in Section VI. In Section VII, experimental 
studies are presented to highlight the efficiency of our 
approach. We conclude on the benefit of the RATA approach 
and outline some perspectives in Section VIII.  

II. JOB-SHOP PROBLEM 

Job-shop scheduling is an optimization problem in which 

ideal jobs are assigned to resources (machines) at particular 

times. It is NP-complete, meaning that there is probably no 

efficient procedure for exactly finding shortest schedules for 

arbitrary instances of the problem. 

The job-shop problem is described as follows. Given a finite 
set J={j1,j2,…,jn} of jobs to be processed on a finite set 

M={m1,m2,…,mk} of machines. Each job ji is a finite sequence 

of actions1 to be run one after the other, such that each action 

is processed without preemption, on a dedicated machine m 

and for a fixed time duration d, with m  M and d N. Each 
machine can process only one action at a time and due to 

precedence constraints, at most one action of each job may be 

processed at any time. 

 

Definition 1: A problem instance P=(A,≺,M,,d)  in job-
shop scheduling consists of a set A={a1,a2,…,am} of actions, a 
strict partial-order precedence relation ≺ on A, a set 

M={m1,m2,…,mk}  of machines, a function : AM assigning 

machines to actions and a duration function  d: AN. 

Definition 2: A schedule for a problem P=(A,≺,M,,d) is 

determined by the function st: AR+ indicating the start time 

                                                        
1
 In the context of job-shop problem, "action" means "task". 
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of each action. In a deterministic setting, the end time of an 
action is given by en(a)=st(a)+d(a). A schedule is feasible if it 
satisfies: 

 Precedence:  For every a,a’A, a≺ a’ en(a)  st(a’).  

 Mutual exclusion: For every a,a’A, (a)= (a’) 

[st(a),en(a)]  [st(a’),en(a’)]=. 

The length of a given schedule is defined by 

Max{en(a):aA}. An optimal schedule is a schedule whose 
length is minimal.  

For sake of intuitiveness, we propose to specify job-shop 
problems, by using an algebraic language like Basic LOTOS 
[9]. The syntax of this language is defined as follows, where 
"|||" is the parallel operator between jobs (J) and ";" is the 
prefix operator expressing the sequentiality of actions, hence 
the precedence relation. In the proposed language, the 
allocation of some specific machine m for the execution of any 
action a is specified as "a{m}" : 

    E::= J |  E|||E         

    J::=stop |  a{m};J 

So, a system is seen as a set of parallel jobs, each one 
composed of a sequence of actions. To comply with job-shop 
specifications, Basic LOTOS is extended in such a way that 
actions are mapped to specific machines. Then, if job ji is 
defined by the sequence a1≺a2 ≺…≺ap, its behavior 

expression is a1{(a1)};a2{(a2)};…;ak{(ap)};stop. In the 
following, the duration of action a on the machine m (m= 

(a)) is denoted τ(a,m), instead of d(a). 

III. RATA MODEL 

The RATA model re-uses DATA concepts, in particular the 
non-atomicity of actions is captured by the fact that each 
transition only corresponds to a start of an action. From state to 
state, one or several independent actions can be launched, 
therefore, each state can be associated with a set of launched 
actions. In the model, each of these actions are represented by 
means of a distinct clock, dynamically created and initialized 
to 0 at the transition which starts the action. A set of temporal 
constraints is also associated with each state, expressing the 
conditions of ends concerning the launched actions in the state. 
As an example, consider the DATA of Figure 1.a, modeling 
the behavior of the process S already presented in the 
introduction. Since the actions a and b can run concurrently, a 
distinct clock is assigned to each one, x and y respectively. 
Starting from the initial state s0, there are two possible 

transitions:
 1

x,a

0 ss   and
2

y,b

0 ss  . A label (a,x) attached to a 

transition indicates that the action has just been launched, and 
that the clock x will give the time spent since the launching of 
a. Similarly in the reached states, the following two transitions 

3

y,b

1 ss  and
3

x,a

2 ss   
are possible. 

In the initial state s0, the set of temporal constraints is 
empty because none of the actions is running in this state. In 

s1, {x10} specifies that the action a finishes its execution as 

soon as x reaches 10. Similarly, s2 is labeled by {y12}. In the 
state s3, actions a and b can continue their runs in parallel, and 
each one can finish only if its proper clock reaches a value 

equal to its duration, so the associated set of temporal 

constraints is {x10,y12}. 
  

 

Figure 1.  Behaviors of two systems in terms of DATA 

The precedence relation between actions implies to 
annotate each transition with some additional guard, namely 
Duration Condition (DC). This guard on a transition expresses 
that the new launched action is possible provided the precedent 
launched ones have been terminated. In the DATA model, this 
is formally expressed as a subset of the set of temporal 
constraints attached to the source state of the transition. 
Consider for instance the system R wherein the action a is 
followed by the action b. The behavior of R is shown in Figure 
1.b. Since at most one action can run at a certain point, the 
same clock x can be assigned to both actions a and b. from the 
initial state, the unique transition expresses that a can be 

launched without any duration constraint, hence DC=for 
this transition (not represented in the figure since empty). 

From the state s1 where the temporal constraints is {x10} for 
a, the action b can obviously be run only if the action a 
finishes its execution. This condition is expressed by the set 

DC={x10} attached to the transition which launches the 
action b.  So, b can start at any time in the enabling open 

interval x [10,[. 

A.  Intuition of the RATA model 

The RATA model is an extension of the DATA one, 
assuming an execution platform of (M) machines. An action is 
executed on a predetermined machine, inducing a duration for 
its execution. Since a machine cannot be allocated to several 
actions at the same time (state), a mutual exclusion mechanism 
must hold constraining the execution of actions. 

Let us consider the system S again, but assume that the 
execution platform is either P1 or P2. The first one contains 
two machines m1 and m2, used for executing the actions a and 
b respectively, whereas the second contains a single machine 
m used for executing any action. The corresponding behaviors 
for S are represented by the RATA of Figures 2.a and 2.b, 
respectively. 

It appears that DATA and RATA have the same structure, 
however the duration of the launched actions are now 
expressed by using the function τ such that τ(a,m) yields the 
duration of any action a executed on a machine m. In addition 
to DC, each transition will be labeled by another guard, 
namely Availability Condition (AC), expressing the mutual 
exclusion constraints on shared machines. As for DC, The 
condition AC for a transition is a subset of the temporal 
constraints of the source state, however concern the ones 
related to the machine of the transition. As usual, AC is not 
displayed when empty. 
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Figure 2.  System S executed on platforms P1 and P2 

In Figure 2.a, all the transitions have an empty AC since 
there is no shared machine on P1. In Figure 2.b, the transition 

starting from the state s1 is labeled by AC={x(a,m)}. Indeed, 

the temporal constraint x(a,m) in the source state relates to 
the shared machine m of the platform P2. So in the state s1, the 
action a is possibly in execution on m and the launching of the 

action b is enabled only if the temporal constraint x(a,m) 
holds (i.e. the machine m has finished the execution of a and 
can start b). Observe that similar reason implies the label of the 
transition starting from s2.  

It is worth noting that in the RATA model, the set of 
temporal constraints attached to a state does not necessarily 
represent the parallelism of actions in the state. For instance, 
the state s3 of Figure 2.b represents different situations of 
execution where at most one action can be running in s3, with 
regard to the set of temporal constraints associated with s3.  

Further, DC and AC set are removed from the figures since 
they can be easily deduced from the clock and machine used in 
the label of transitions, together with the information of the 
temporal constraints of the source and target states. 

B. Formalization 

Definition 3: Let H={x,y...} be a set of clocks whose values 
are defined in a time domain R+ and M a set of machines. The 

set (H) of temporal constraints γ over H is defined by the 

syntax γ::=x≥t, and t given by τ:A×M→N is the duration 

function, such that τ(a,m) represents the duration of action a 

of A, running on a machine m of M. Given F a set of 

constraints, its subset Fx and Fm respectively represent the 

constraint to the clock x and the different constraints related to 

the machine m. 

A valuation v (of the clocks) of H is a mapping which 

assigns each clock of H to a value in R+. The set of all 

valuations for H is denoted (H). A valuation v(H) 

satisfies a temporal constraint =(x≥t) with xH, which is 
denoted v|=x≥t, iff v(x) ≥t. Further, this satisfaction is linearly 

extended to set of temporal constraints. W.r.t. xH, [x0]v 

denotes the valuation of H which assigns the value 0 to the 

clock x and accords with v over the clocks of H\{x}.  

 

Definition 4: A RATA model RM is a tuple (S, s0, H, M, L, T) 
where: 

 S is a finite set of states, 

 s0S  is the initial state, 

 H  is a finite set of clocks, 

 M  is a finite set of machines,  

 L: S 2(H)  is a mapping that associated with each 
state s, a set of temporal constraints F=L(s), 
representing the set of actions possibly in execution in 
s, and 

 T    S A  H  M  S is the set of transitions. A 

transition (s,a,x,m,s’) also denoted 
'm,x,a

ss    
represents a switch from the state s to the state s’, 
involving to start the action a on the machine m and 
define a clock x initialized to 0 to be associated with 
the action a. 

Definition 5: W.r.t. a transition (s,a,x,m,s’)T, the sets DC and 
AC of constraints are defined a follows:  

 DC=L(s)\(L(s’)\ L(s’)x) 

 AC= L(s)m 

The first equation comes from L(s')= (L(s)\ DC) 
{x(a,m)}, where DC can be regarded as the precedence 
constraints to be satisfied between the actions of a job. For the 
first action, DC is empty, otherwise it is reduced to a singleton 
which relates to the precedent action of a within the same job. 
The cardinality of AC can be larger than one, since there may 
be in s several actions which share the same machine.  

The launching of transition (s, a, x, m, s') for a given 
valuation v is constrained by the following two conditions: 

 v |= DC. The specification of a system directly 
corresponds to the properties of precedence over the 
action executions. 

  v | = AC. Thus, any action executed in s on a machine 
m must be completed to allow the firing of the 
transition by the same machine. 

Definition 6: The semantics of a RATA RM =(S, s0, H, M, L, 
T) is defined by associating with RM, an infinite transition 

system SA on the alphabet AR+. A state of SA, also called a 
configuration, is a pair <s,v> where s is a state of RM and v a 
clock valuation for H. A configuration <s0,v0> is initial iff s0  

is initial in RM and xH, v0(x)=0. The two following rules 
express that two types of transitions can link the SA 
configurations, corresponding to an elapsing of time (RA) and 
an execution of an action of A (RD), respectively : 

 

 
)RD(

v0x,sv,s
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d
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     R
 

According to the model semantics, the label a in the RD rule 
implies the start of an action a and not the whole execution of 
a. This rule can be applied only in case both sets DC and AC 
are satisfied. Otherwise, the time step rule RA is applied.  
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By applying the above rules from the initial configurations, 
we are able to compute the set of reachable configurations. 
Further, a run is a path of reachable configurations, by 
application of the two former rules. A possible run denoted  
(s0,v0) 

d  (s0,v1) 
a  (s1,v2), where d represents the time 

spent in  (s0,v0) and a the action to be started from (s0,v1), 
induces that v1=v0+d and there are a machine m and a clock x 
such that (s0,a,x,m,s1) is a transition of the RATA, moreover, 

v2=[x0]v1. 

IV. MODELING WITH RATA MODEL 

Unlike the approach presented in [7], [10] where the model 
is based on a purely operational manner of generation from its 
specification, we propose in this work a process of generation 
given in two steps. The first step is given from the operational 
semantics on the behavior expression of each job, which leads 
to generate for each job its RATA model. Then, to obtain the 
RATA model representing the whole system we need to 
compose the RATA model for the individual jobs. The major 
benefit of this approach is both in time and memory during the 
generation process compared to the first approach. This is due 
to the fact that once the sub-models are generated; the 
remaining process is related to symbolic states codifying 
behavior expressions. 

Definition 7 (RATA model for a job): For every job 

j=a1{m1
j};a2{ m2

j };…;an{ mn
j };stop  J its associated a linear 

RATA model RMj=(Sj,s0
j, {hj}, M, Lj,Tj) such that: 

 S={ s0
j, s1

j,…, sn
j } 

 s0
j is the initial state 

 {hj} is a singleton of clocks  

 M  is the finite set of shared machines where 

mi
jM for(i=1,…,n), 

 Lj(si
j)=  if i=0 , Lj(si

j)= { hj  (ai, mji)} 

otherwise, and  

 Tj = {(si
j,ai+1, h

j ,mji+1, si+1
j)} for(i=0,…,n-1). 

Note that one action may be in execution at any time due to 

the sequentiality, so at most one temporal constraint is given 

at any state, and one clock hj is sufficient to measure the time. 

As a generating example, consider a job-shop system R 

running over the set of  machines M={m1,m2} and consider 

the two jobs: j1=a≺b and j2=c, such that μ(a)=μ(c)=m1, 

μ(b)=m2, (a,m1)=4, (b,m2)=5 and (c,m1)=3. The system is 
specified in our language by a parallel composition of two jobs 

j1 and j2: a{m1};b{m2};stop|||c{m1};stop. The behavior of the 

two jobs is concisely represented by the RATAs of Fig. 3. 

 

Figure 3.   RATAs of jobs j1 and j2. 

Definition 8 (parallel composition) : Let RMj=(Sj, s0
j, {hj}, 

M, Lj, Tj) be the RATA model corresponding to each job ji 
(i=1…n). Their parallel composition is the automaton RM=(S, 
s0, H, M, L, T) such that: 

 S=S1S2…Sn, 

 s0=( s0
1
, s0

2
,…, s0

n
), 

 H= {h1}{h2}…{hn}, 

 M  is the finite set of shared machines, 

 L(s)= L1(s1)  L2(s2) … Ln(sn) the staying 
condition for a global state s=(s1,s2,…,sn) and,  

 T the set of transitions contains all the tuples of 
the form  ((s1,…, sj,…,sn),a,x,m,(s1,…,rj,…,sn)) 

such that (sj,a,x,m,rj) Tj for some job j. 

Note that the firing conditions AC and DC which preserve 
the mutual exclusion of machines and the precedence relation 
of actions are expressed as usual from the source state, target 
state and the clock of the corresponding transition but over the 
generated model. 

Take again the previous example of two jobs j1 and j2, the 
global automaton obtained by composing j1 and j2 is depicted 
in Fig. 4 (for conciseness, notice the renaming of states in the 
resulting model). 

 

 

Figure 4.  The global RATA model for two jobs 

V. SCHEDULING USING RATA MODEL 

 In the RATA model, a run is complete if it starts from the 

initial state and leads to a final one, wherein the actions 

potentially running are considered as terminated. From every 

complete run CR, a schedule can be straightforwardly derived, 

where st(ai) is the time corresponding to the start of the 

transition ai in CR. The length of the schedule coincides with 

the metric length of CR. In order to compute the length of a 

run and the start times of the actions, one can augment the 

considered RATA with some additional clock used to 

measure the elapsed time from the beginning of the run, 

therefore this clock is never reset to zero. Further, its 
valuation is denoted tA. Clearly, a configuration (s,v) is 

reachable within the time tA iff (s,v,tA) is reachable in the 

augmented RATA.  

 Because the time spent on states is left unrestricted by the 

rule RA in Definition 6, it appears that each qualitative path in 

a RATA features an infinite number of runs. This can be 

enhanced through the restricted notion of immediate runs. 

 

Definition 9: (Immediate Run) an immediate run is a run in 

which whenever  a transition is taken in a configuration, it is 
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taken as soon as it is enabled. A non-immediate run is defined 

as a run with the fragment: (s,v) t

(s,v+t) a

 (s’,v’), 

where transition taken at (s,v+t) is already enabled at (s,v+t’) 

with t’<t.  
Clearly a schedule derived from a non-immediate run 

exhibits laziness, therefore in order to find an optimal schedule 
for a given path, it is sufficient to explore the corresponding 
unique immediate run w.r.t. this path. The restriction to 
immediate runs transforms the RATA semantics into a discrete 
directed acyclic graph of configurations.  

Corollary (Job-Shop Scheduling and RATA model): The 

optimal job-shop scheduling problem can be reduced to the 

problem of finding the shortest immediate run from the path 
of a RATA. 

Let us consider a job-shop system of Figure 4. Starting 

from the initial configuration, the immediate runs are directly 

obtained from the paths of the RATA, by evaluating the 

satisfaction of the sets DC and AC in each reached 

configuration, in order to start the next actions as soon as 

possible (immediate execution). These evaluations require 

replacing each occurrence of the function τ by its 

corresponding value, in order to compare with the values 

taken by the clocks. 
Figure 5 shows the derivation tree obtained by the 

immediate runs for the system of Figure 4, the optimal 
schedule is of length 9 and corresponds to the two left 
immediate runs of the Figure 5. In this figure, Each 
configuration is of the form (s,v(x),v(y),tA), where s represents 

a reachable state; v(x) and v(y) are respectively the valuation of 
the used clocks x and y in the configuration; tA is the value of 
the additional clock, hence corresponds at each reachable 
configuration w.r.t. some run, to the time spent to reach the 
configuration. For sake of concision since immediate runs are 
concerned, there is no explicit representation of time transition. 
In fact, from a given configuration, the elapsing of time to start 
an action is implicitly considered by the evolution of clocks in 
the target configuration. This elapsing time is calculated 
according to the minimum time necessary to satisfy the set of 
enabled condition (for clarity this set is explicitly represented 
in the graph). Finally, observe that the last additional transition 
to an additional state f in every run corresponds to a hidden 

action, clock and machine (A, and ), with an 
enabled condition used to terminate the execution of all of the 
actions not yet finished. So, the value of tA in the final 
configuration of a run represents the total duration of the run, 
hence the length (time) of the schedule. 

VI. SHORTEST IMMEDIATE PATHS IN RATA 

We now describe how to improve the forward reachability 
algorithm to compute the shortest path in a job-shop RATA 
model. Since we are only interested in optimal runs, we can 
apply reductions mechanism in the algorithm that do not 
preserve all runs, but still preserve the optimal ones. We use a 
variant of the standard forward reachability algorithm 
specialized for acyclic graphs with two possible 
improvements. 

A. Domination test  

This test is used to avoid exploring identical configurations 
or configurations that are obviously worse than already 

computed ones. The domination test is based on the following 
definition: 

 

 

Figure 5.  The immediate runs of the RATA of Figure 5 

 
Definition 10: Let (s,v,tA) and (s,v’,tA’) be two reachable 

configurations. We say that (s,v,tA) dominates (s,v’,tA’) if 

'  ' vvtt AA  . 

Clearly if (s,v,tA) dominates (s,v’,tA’) then for every 
complete run going through (s,v’,tA’) there is a run through 
(s,v,tA) which leads to a better solution (i.e. with a lower 
execution time). 

We now propose a finer dominance relation based on a 
weaker relation between the clocks used in the compared 
configurations, e.g. (s,v,tA) and (s,v’,tA’). For each clock x, we 

consider its duration denoted (a,m). 

Definition 11 (D2) : (s,v,tA) dominates (s,v’,tA’) if :  

). m)(a,) '()(())(') '()((,
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So, we admit that v could be less than v’ for some clocks x in 
two cases.  

 Either the clock difference v’(x)-v(x) is compensated by 

the value t= tA
’
 -tA which means that if the same 

sequence of transitions is fired from (s,v,tA) and 

(s’,v’,tA’), reaching (sr,vr,tAr) and (sr’,vr’,tAr’) 

respectively, then the above dominance rules globally 
still hold for the reached configurations. In case where 

the reached states are final, we have tAr’ tAr  .  

 In the 2nd term of the or clause, the action a associated 

with x is terminated within the duration  tA’-tA . In this 

case, the valuation vx must be excluded out of the 
dominance test since it cannot influence the future firing 

of transitions.  
For sake of concision in this paper, the proof is not reported.  
In Figure 5, we can now make a dominance reduction 

between the configurations (s12,0,0,4) and (s12,7,0,7). Here, 
each configuration is of the form (s,v(x),v(y),tA), and the 
actions associated with the clocks x and y are c and b, with 
respective durations 3 and 5. The first configuration dominates 
the second since the 3 following conditions hold: 
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 tA = 4 is less than tA’=7. 

 The action c terminates in time v(x)+(tA’-tA) 

=0+3=3, then the condition v(x)+ (tA’-tA) (c,m) is 

satisfied. 

 v(y)+ (tA’-tA)= 0+3 is greater than v’(y)=0. 
 

Algorithm 1 (Forward Reachability) 

Waiting  {(s,v0,0)} 

Best   

While (Waiting ≠ ) do  

   Pick (s,v,tA)Waiting  

   Succ  {(s,v’,tA’) |  (s,v,tA) → (s,v’,tA’)} 

   Waiting   dominate(Succ,Waiting)  

   If Succ =   then 

          Best min{ Best,Remains(v)+ tA } 

   Endif 
   remove (s,v,tA) from Waiting 
Endwhile 
End 

The algorithm is a breadth-first search construction over 
the set of reachable configuration. It is based on a Waiting list 
used to store the configurations to be treated. The successor 
configurations are computed from the first element of the 
Waiting list. Each of these new configurations are tested by the 
dominate function with regards to the elements of the waiting 
list. A new configuration dominated by a waiting configuration 
is simply discarded. A waiting configuration which is 
dominated by a new configuration is replaced by the new one. 
A final configuration is reached if it currently treated 
configuration does not have any successor. In this case, we 
first calculate the remaining time needed to terminate all of the 
actions potentially running in this final configuration, by using 
the function Remains. Then, we add to Remains the access 
time tA in order to obtain the total execution time of the run. 
This time is compared with the best time solution previously 
computed in order to update the best solution.  

The Remains function for a set of actions {a1,a2,…,ak}  
potentially running in a configuration is given by: 

  km

1ma
)v(R)v(

m




 MaxRemains , where )v(R

ma  represents the 

remaining time to terminate the action am. This time is 
calculated by comparing the duration dm and the valuation of 
the clock x associated with this launched action: 
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B. Best first 

The second improvement consists in applying a best-first 

search mechanism in order to explore the “most promising” 
configurations first. To this end, we need an estimation 

function over the configurations.  

Consider any configuration (s,v) in the generated model, 

Rm(s,v) is a lower-bound on the time remaining until the 

machine m completes the execution of the remaining of its 

actions from this configuration. Assume that in the 

configuration (s,v), we find through the temporal constraints 

of L(s) that the action am is potentially running on the machine 

m.  

Algorithm 2 (Best-first Forward Reachability) 

Waiting  {(s,v0,0)} 

Best   

(s,v,tA) first in Waiting  

While (Best > E(s,v,tA)) do  

     Succ  {(s,v’,tA’) |  (s,v,tA) → (s,v’,tA’)} 

     If Succ =   then 

           Best  E(s,v,tA) 

     Else 

           Waiting  dominate(Succ,Waiting) 

     Endif 
     Remove (s,v,tA) from Waiting 

     (s,v,tA)  first in waiting 

 Endwhile 
 End 

 The remaining time is given by:  
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m dvRvsR
m 1

)(),(  , where the last term represents 

the minimum remaining time necessary to achieve the actions 
that will be executed under the machine m. 

From some configuration ( At,v,s ), the global estimation of 

the execution time, w.r.t. all the machines, is defined as:  

  km

m

m

AA vsRttvsE





1
),(Max),,( , where the last term 

yields the most optimistic estimation of the remaining time, 
with regards to all the machines. 

The Best First Search algorithm maintains the waiting list 
sorted according to E and applies the domination test upon 
insertion in the list. It guarantees to produce the optimal path 
because the exploration is stopped when it is clear that the 
waiting configurations cannot lead to schedule better than 
those configurations found so far. Observe that in final 
configurations, tA+Remains(v) is equivalent to E(s,v,tA). 

VII. EXPERIMENTAL RESULTS 

We have implemented a tool in C++ to generate RATAs 
from our specification language, and have implemented the 
proposed techniques of scheduling. We test on a family of 
problems consisting of a number of independent jobs, each one 
with 4 actions. Table I summarizes the results obtained by 
comparing the size of the RATA with the approach of [3] 
proposed from (standard) timed automata. The column #j gives 
the number of jobs and #ds informs on the number of discrete 
states for each model. The columns #dom and #bf bring out the 
performance in terms of number of explored configurations, 
employing progressively the domination test and the best-first 
search mechanism. 

As the number of jobs grows, we observe a drastic size 
reduction by using the RATA approach. In particular with 
regard to the domination test, the gain can rapidly reaches 
orders of magnitude.  

TABLE I.  THE RESULTS FOR N JOBS WITH 4 ACTIONS 

#j Timed automata RATA 

#ds #dom #bf #ds #dom #bf 

2 77 100 38 25 28 22 

3 629 1143 384 125 180 105 

4 4929 11383 1561 625 1251 306 

5 37225 116975 2810 3125 9775 714 

6 272125 1105981 32423 15625 59213 2520 
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We have considered also three sets of small and medium 
benchmarks taken from the known OR-library. Firstly three 
instances of size 10*5 (10 jobs and 5 machines): LA01, LA03 
and LA05. Then, we considered the set of instances of size 
15*5 (15 jobs and 5 machines): LA06, LA08 and LA10. As 
the previous instances are easily solved, we finally considered 
a medium instances of size 20*5 (20 jobs and 5 machines): 
LA11, LA13 and LA15. The latter is not resolved by our 
algorithm of best-first within a time limit of five minutes. The 
computational equipment for the experiments was a Pentium 
machine with 3 GHz and a Windows7 operating system. 

 

TABLE II.  THE RESULTS FOR LA PROBLEMS 

instance #bf #time Opt 

LA01 176 0.1 666 

LA03 3025 2.1 597 

LA05 400 0.0 593 

LA06 32460 11.2 926 

   LA08 17461 4.3 863 

LA10 2851 0.4 958 

LA11 13327 3.7 1222 

LA13 3744 1.5 1150 

LA15 / / / 

 

 

Note that in the results given in the second table, we have 

used an improved version of heuristic function that calculates 

remaining time E in best-first algorithm. This heuristic is 
obtained by a simple modification of the Jackson’s 

preemptive schedule [11].  

VIII. CONCLUSIONS AND PERSPECTIVES 

Exploiting the RATA model in order to solve optimal job-
shop scheduling problems is a novel application of models 
based maximality-semantics, in addition to verification 
purpose [12], [13].  

The RATA model appears to be syntactically close from the 
standard timed automata approach, taking into account action 
duration and shared resources. One of its major distinguishing 
features its behavioral compact representation that 
concentrates on the starts of the actions.   

Our perspectives should be to extend the proposed 
algorithms in order to treat large size problems. To tackle the 
exponential blow up of configurations, we can reuse the ideas 
of [14], [15], which argue that one should minimize the length 
of the schedules without necessarily obtaining the optimal 
solution. 
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