
International Journal of Computer Science and Telecommunications [Volume 3, Issue 10, October 2012] 14

Journal Homepage: www.ijcst.org

Abstract— In this paper, a timed model called Resource

Allocation Timed Automata (RATA) is considered, this model is

constructed in compositional manner. Compared to the

operational construction, this approach improves the scheduling

in both time and memory space. We present two algorithms for

finding the shortest paths applied to the RATA model in the case

of job-shop problem. A set of benchmarks help us to experiment

the efficiency of our approach.

Index Terms— Scheduling, Maximality Semantics, Timed

Model, Job-Shop

I. INTRODUCTION

CHEDULING problem is a paradigm of optimization and
constraint satisfaction problems which has interested
researchers over the last decades. In this area, there are

well-studied methods where extensions of Timed Automata
(TA) are widely applied in many contexts, based on the
construction of scheduled system guided by some desired
properties. One can cite; the schedulability analysis of real
time distributed systems [1], timed automata with a task [2]
and the job-shop problem [3], [4], [5].

In this paper, we propose to capture job-shop scheduling
problems from a very intuitive and compact description model,
called Resource Allocation Timed Automata (RATA). This
model inherits from the DATA model which introduces true
concurrency semantics to deal with concurrent events [6].
Extensions are provided to explicitly represent the resource
requirements needed for scheduling analysis [7]. In this model,
the parallelism is implicitly expressed from the starting events
of actions (i.e. once started, the actions are assumed to behave
in parallel until their terminations). This avoids splitting the
description of running actions in start and end events, as this is
proposed in the TA dedicated to scheduling problems, e.g., [8].
As another interest, the RATA reachability graphs are
generally much smaller than the TA ones. However, both
suffer from the well-known combinatorial explosion problem.

A standard way to attack this explosion problem consists in
restraining the execution of actions by focusing on the

F. Arfi is with MISC Laboratory, Computer Science Dept., University of

Mentouri, 25000 Constantine, Algeria; (Email: arfi_f@hotmail.com).

J. M. Ilié is with LIP6 laboratory and with computer Science Dept.,

university Paris Descartes, France; (Email: jean-michel.ilie@lip6.fr).

D. E. Saidouni is with MISC Laboratory, Computer Science Dept.,

University of Mentouri, 25000 Constantine, Algeria; (e-mail: saidouni@misc-

umc.org).

immediate runs, to study the scheduling problems.
However in practice, other reduction techniques must be

exploited. The main contribution of this paper consists of
constructing the RATA model in a compositional manner,
avoiding the costly construction method based on the
operational semantics. The second contribution, consist of
using set of search space reduction techniques which can be
applied on the model of RATA.

The rest of the paper is organized as follows. In section II
we recall the job-shop scheduling problem. The RATA model
and the modeling of the job-shop problem with this model
using a compositional approach of construction are given
respectively in sections III and IV. Section V introduces the
metrics applied on the model able to perform the scheduling.
Algorithms with reduction techniques over the RATA model
are proposed in Section VI. In Section VII, experimental
studies are presented to highlight the efficiency of our
approach. We conclude on the benefit of the RATA approach
and outline some perspectives in Section VIII.

II. JOB-SHOP PROBLEM

Job-shop scheduling is an optimization problem in which

ideal jobs are assigned to resources (machines) at particular

times. It is NP-complete, meaning that there is probably no

efficient procedure for exactly finding shortest schedules for

arbitrary instances of the problem.

The job-shop problem is described as follows. Given a finite
set J={j1,j2,…,jn} of jobs to be processed on a finite set

M={m1,m2,…,mk} of machines. Each job ji is a finite sequence

of actions1 to be run one after the other, such that each action

is processed without preemption, on a dedicated machine m

and for a fixed time duration d, with m M and d N. Each
machine can process only one action at a time and due to

precedence constraints, at most one action of each job may be

processed at any time.

Definition 1: A problem instance P=(A,≺,M,,d) in job-
shop scheduling consists of a set A={a1,a2,…,am} of actions, a
strict partial-order precedence relation ≺ on A, a set

M={m1,m2,…,mk} of machines, a function : AM assigning

machines to actions and a duration function d: AN.

Definition 2: A schedule for a problem P=(A,≺,M,,d) is

determined by the function st: AR+ indicating the start time

1
 In the context of job-shop problem, "action" means "task".

Farid Arfi, Jean-Michel Ilié and Djamel-Eddine Saidouni

S

Scheduling with RATA Model

 ISSN 2047-3338

http://www.google.fr/url?sa=t&rct=j&q=universit%C3%A9%20paris%20descart&source=web&cd=1&cad=rja&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.univ-paris5.fr%2F&ei=ZbdQUJ__NNHYsgaSqIHwDg&usg=AFQjCNEsOiLoXhke_v-TbnOAyp1qLCWyKQ

Farid Arfi et al. 15

of each action. In a deterministic setting, the end time of an
action is given by en(a)=st(a)+d(a). A schedule is feasible if it
satisfies:

 Precedence: For every a,a’A, a≺ a’ en(a) st(a’).

 Mutual exclusion: For every a,a’A, (a)= (a’)

[st(a),en(a)] [st(a’),en(a’)]=.

The length of a given schedule is defined by

Max{en(a):aA}. An optimal schedule is a schedule whose
length is minimal.

For sake of intuitiveness, we propose to specify job-shop
problems, by using an algebraic language like Basic LOTOS
[9]. The syntax of this language is defined as follows, where
"|||" is the parallel operator between jobs (J) and ";" is the
prefix operator expressing the sequentiality of actions, hence
the precedence relation. In the proposed language, the
allocation of some specific machine m for the execution of any
action a is specified as "a{m}" :

 E::= J | E|||E

 J::=stop | a{m};J

So, a system is seen as a set of parallel jobs, each one
composed of a sequence of actions. To comply with job-shop
specifications, Basic LOTOS is extended in such a way that
actions are mapped to specific machines. Then, if job ji is
defined by the sequence a1≺a2 ≺…≺ap, its behavior

expression is a1{(a1)};a2{(a2)};…;ak{(ap)};stop. In the
following, the duration of action a on the machine m (m=

(a)) is denoted τ(a,m), instead of d(a).

III. RATA MODEL

The RATA model re-uses DATA concepts, in particular the
non-atomicity of actions is captured by the fact that each
transition only corresponds to a start of an action. From state to
state, one or several independent actions can be launched,
therefore, each state can be associated with a set of launched
actions. In the model, each of these actions are represented by
means of a distinct clock, dynamically created and initialized
to 0 at the transition which starts the action. A set of temporal
constraints is also associated with each state, expressing the
conditions of ends concerning the launched actions in the state.
As an example, consider the DATA of Figure 1.a, modeling
the behavior of the process S already presented in the
introduction. Since the actions a and b can run concurrently, a
distinct clock is assigned to each one, x and y respectively.
Starting from the initial state s0, there are two possible

transitions:
 1

x,a

0 ss and
2

y,b

0 ss . A label (a,x) attached to a

transition indicates that the action has just been launched, and
that the clock x will give the time spent since the launching of
a. Similarly in the reached states, the following two transitions

3

y,b

1 ss and
3

x,a

2 ss
are possible.

In the initial state s0, the set of temporal constraints is
empty because none of the actions is running in this state. In

s1, {x10} specifies that the action a finishes its execution as

soon as x reaches 10. Similarly, s2 is labeled by {y12}. In the
state s3, actions a and b can continue their runs in parallel, and
each one can finish only if its proper clock reaches a value

equal to its duration, so the associated set of temporal

constraints is {x10,y12}.

Figure 1. Behaviors of two systems in terms of DATA

The precedence relation between actions implies to
annotate each transition with some additional guard, namely
Duration Condition (DC). This guard on a transition expresses
that the new launched action is possible provided the precedent
launched ones have been terminated. In the DATA model, this
is formally expressed as a subset of the set of temporal
constraints attached to the source state of the transition.
Consider for instance the system R wherein the action a is
followed by the action b. The behavior of R is shown in Figure
1.b. Since at most one action can run at a certain point, the
same clock x can be assigned to both actions a and b. from the
initial state, the unique transition expresses that a can be

launched without any duration constraint, hence DC=for
this transition (not represented in the figure since empty).

From the state s1 where the temporal constraints is {x10} for
a, the action b can obviously be run only if the action a
finishes its execution. This condition is expressed by the set

DC={x10} attached to the transition which launches the
action b. So, b can start at any time in the enabling open

interval x [10,[.

A. Intuition of the RATA model

The RATA model is an extension of the DATA one,
assuming an execution platform of (M) machines. An action is
executed on a predetermined machine, inducing a duration for
its execution. Since a machine cannot be allocated to several
actions at the same time (state), a mutual exclusion mechanism
must hold constraining the execution of actions.

Let us consider the system S again, but assume that the
execution platform is either P1 or P2. The first one contains
two machines m1 and m2, used for executing the actions a and
b respectively, whereas the second contains a single machine
m used for executing any action. The corresponding behaviors
for S are represented by the RATA of Figures 2.a and 2.b,
respectively.

It appears that DATA and RATA have the same structure,
however the duration of the launched actions are now
expressed by using the function τ such that τ(a,m) yields the
duration of any action a executed on a machine m. In addition
to DC, each transition will be labeled by another guard,
namely Availability Condition (AC), expressing the mutual
exclusion constraints on shared machines. As for DC, The
condition AC for a transition is a subset of the temporal
constraints of the source state, however concern the ones
related to the machine of the transition. As usual, AC is not
displayed when empty.

{ x10,y12}

{y12}

s0

s1

s2

a,x

G=()

 DC={ x10}
 b,x

{x 12}

R

(b)

{x10}
a,x

a,x

b,y

b,y

 s0

s1

s2

s3

S

(a)

{x10}

International Journal of Computer Science and Telecommunications [Volume 3, Issue 10, October 2012] 16

Figure 2. System S executed on platforms P1 and P2

In Figure 2.a, all the transitions have an empty AC since
there is no shared machine on P1. In Figure 2.b, the transition

starting from the state s1 is labeled by AC={x(a,m)}. Indeed,

the temporal constraint x(a,m) in the source state relates to
the shared machine m of the platform P2. So in the state s1, the
action a is possibly in execution on m and the launching of the

action b is enabled only if the temporal constraint x(a,m)
holds (i.e. the machine m has finished the execution of a and
can start b). Observe that similar reason implies the label of the
transition starting from s2.

It is worth noting that in the RATA model, the set of
temporal constraints attached to a state does not necessarily
represent the parallelism of actions in the state. For instance,
the state s3 of Figure 2.b represents different situations of
execution where at most one action can be running in s3, with
regard to the set of temporal constraints associated with s3.

Further, DC and AC set are removed from the figures since
they can be easily deduced from the clock and machine used in
the label of transitions, together with the information of the
temporal constraints of the source and target states.

B. Formalization

Definition 3: Let H={x,y...} be a set of clocks whose values
are defined in a time domain R+ and M a set of machines. The

set (H) of temporal constraints γ over H is defined by the

syntax γ::=x≥t, and t given by τ:A×M→N is the duration

function, such that τ(a,m) represents the duration of action a

of A, running on a machine m of M. Given F a set of

constraints, its subset Fx and Fm respectively represent the

constraint to the clock x and the different constraints related to

the machine m.

A valuation v (of the clocks) of H is a mapping which

assigns each clock of H to a value in R+. The set of all

valuations for H is denoted (H). A valuation v(H)

satisfies a temporal constraint =(x≥t) with xH, which is
denoted v|=x≥t, iff v(x) ≥t. Further, this satisfaction is linearly

extended to set of temporal constraints. W.r.t. xH, [x0]v

denotes the valuation of H which assigns the value 0 to the

clock x and accords with v over the clocks of H\{x}.

Definition 4: A RATA model RM is a tuple (S, s0, H, M, L, T)
where:

 S is a finite set of states,

 s0S is the initial state,

 H is a finite set of clocks,

 M is a finite set of machines,

 L: S 2(H) is a mapping that associated with each
state s, a set of temporal constraints F=L(s),
representing the set of actions possibly in execution in
s, and

 T S A H M S is the set of transitions. A

transition (s,a,x,m,s’) also denoted
'm,x,a

ss
represents a switch from the state s to the state s’,
involving to start the action a on the machine m and
define a clock x initialized to 0 to be associated with
the action a.

Definition 5: W.r.t. a transition (s,a,x,m,s’)T, the sets DC and
AC of constraints are defined a follows:

 DC=L(s)\(L(s’)\ L(s’)x)

 AC= L(s)m

The first equation comes from L(s')= (L(s)\ DC)
{x(a,m)}, where DC can be regarded as the precedence
constraints to be satisfied between the actions of a job. For the
first action, DC is empty, otherwise it is reduced to a singleton
which relates to the precedent action of a within the same job.
The cardinality of AC can be larger than one, since there may
be in s several actions which share the same machine.

The launching of transition (s, a, x, m, s') for a given
valuation v is constrained by the following two conditions:

 v |= DC. The specification of a system directly
corresponds to the properties of precedence over the
action executions.

 v | = AC. Thus, any action executed in s on a machine
m must be completed to allow the firing of the
transition by the same machine.

Definition 6: The semantics of a RATA RM =(S, s0, H, M, L,
T) is defined by associating with RM, an infinite transition

system SA on the alphabet AR+. A state of SA, also called a
configuration, is a pair <s,v> where s is a state of RM and v a
clock valuation for H. A configuration <s0,v0> is initial iff s0

is initial in RM and xH, v0(x)=0. The two following rules
express that two types of transitions can link the SA
configurations, corresponding to an elapsing of time (RA) and
an execution of an action of A (RD), respectively :

)RD(

v0x,sv,s

vTs,m,x,a,s
)RA(

dv,sv,s

d

'
a

'

d

DCAC

 R

According to the model semantics, the label a in the RD rule
implies the start of an action a and not the whole execution of
a. This rule can be applied only in case both sets DC and AC
are satisfied. Otherwise, the time step rule RA is applied.

{x(a,m1)}

a,x,m1

s0

s1

s2

s3 { x(a,m1),y(b,m2)}

b,y,m2

S/P1

(a)

{y(b,m2)}

b,y,m2
a,x,m1

G=()

AC={y(b,m)}

G=()

{x(a,m)}

a,x,m

s0

s1

s2

s3 {x(a,m),y(b,m)}

b,y,m

S/P2

(b)

{y(b,m)}

b,y,m
a,x,m

G=()

AC={x(a,m)}

G=()

Farid Arfi et al. 17

By applying the above rules from the initial configurations,
we are able to compute the set of reachable configurations.
Further, a run is a path of reachable configurations, by
application of the two former rules. A possible run denoted
(s0,v0)

d (s0,v1)
a (s1,v2), where d represents the time

spent in (s0,v0) and a the action to be started from (s0,v1),
induces that v1=v0+d and there are a machine m and a clock x
such that (s0,a,x,m,s1) is a transition of the RATA, moreover,

v2=[x0]v1.

IV. MODELING WITH RATA MODEL

Unlike the approach presented in [7], [10] where the model
is based on a purely operational manner of generation from its
specification, we propose in this work a process of generation
given in two steps. The first step is given from the operational
semantics on the behavior expression of each job, which leads
to generate for each job its RATA model. Then, to obtain the
RATA model representing the whole system we need to
compose the RATA model for the individual jobs. The major
benefit of this approach is both in time and memory during the
generation process compared to the first approach. This is due
to the fact that once the sub-models are generated; the
remaining process is related to symbolic states codifying
behavior expressions.

Definition 7 (RATA model for a job): For every job

j=a1{m1
j};a2{ m2

j };…;an{ mn
j };stop J its associated a linear

RATA model RMj=(Sj,s0
j, {hj}, M, Lj,Tj) such that:

 S={ s0
j, s1

j,…, sn
j }

 s0
j is the initial state

 {hj} is a singleton of clocks

 M is the finite set of shared machines where

mi
jM for(i=1,…,n),

 Lj(si
j)= if i=0 , Lj(si

j)= { hj (ai, mji)}

otherwise, and

 Tj = {(si
j,ai+1, h

j ,mji+1, si+1
j)} for(i=0,…,n-1).

Note that one action may be in execution at any time due to

the sequentiality, so at most one temporal constraint is given

at any state, and one clock hj is sufficient to measure the time.

As a generating example, consider a job-shop system R

running over the set of machines M={m1,m2} and consider

the two jobs: j1=a≺b and j2=c, such that μ(a)=μ(c)=m1,

μ(b)=m2, (a,m1)=4, (b,m2)=5 and (c,m1)=3. The system is
specified in our language by a parallel composition of two jobs

j1 and j2: a{m1};b{m2};stop|||c{m1};stop. The behavior of the

two jobs is concisely represented by the RATAs of Fig. 3.

Figure 3. RATAs of jobs j1 and j2.

Definition 8 (parallel composition) : Let RMj=(Sj, s0
j, {hj},

M, Lj, Tj) be the RATA model corresponding to each job ji
(i=1…n). Their parallel composition is the automaton RM=(S,
s0, H, M, L, T) such that:

 S=S1S2…Sn,

 s0=(s0
1
, s0

2
,…, s0

n
),

 H= {h1}{h2}…{hn},

 M is the finite set of shared machines,

 L(s)= L1(s1) L2(s2) … Ln(sn) the staying
condition for a global state s=(s1,s2,…,sn) and,

 T the set of transitions contains all the tuples of
the form ((s1,…, sj,…,sn),a,x,m,(s1,…,rj,…,sn))

such that (sj,a,x,m,rj) Tj for some job j.

Note that the firing conditions AC and DC which preserve
the mutual exclusion of machines and the precedence relation
of actions are expressed as usual from the source state, target
state and the clock of the corresponding transition but over the
generated model.

Take again the previous example of two jobs j1 and j2, the
global automaton obtained by composing j1 and j2 is depicted
in Fig. 4 (for conciseness, notice the renaming of states in the
resulting model).

Figure 4. The global RATA model for two jobs

V. SCHEDULING USING RATA MODEL

 In the RATA model, a run is complete if it starts from the

initial state and leads to a final one, wherein the actions

potentially running are considered as terminated. From every

complete run CR, a schedule can be straightforwardly derived,

where st(ai) is the time corresponding to the start of the

transition ai in CR. The length of the schedule coincides with

the metric length of CR. In order to compute the length of a

run and the start times of the actions, one can augment the

considered RATA with some additional clock used to

measure the elapsed time from the beginning of the run,

therefore this clock is never reset to zero. Further, its
valuation is denoted tA. Clearly, a configuration (s,v) is

reachable within the time tA iff (s,v,tA) is reachable in the

augmented RATA.

 Because the time spent on states is left unrestricted by the

rule RA in Definition 6, it appears that each qualitative path in

a RATA features an infinite number of runs. This can be

enhanced through the restricted notion of immediate runs.

Definition 9: (Immediate Run) an immediate run is a run in

which whenever a transition is taken in a configuration, it is

s0

s1

c, x,m1

{y (a, m1)}

s0

s1

s5

a, y,m1

b, y,m2

{y (b, m2)}

(j1)

{x (c, m1)}

(j2)

c, x,m1

{x (c, m1), y (a, m1)}

s00

s01

s02

 s10

s11

s12

c, x,m1

c, x,m1

a, y,m1 a, y,m1

b, y,m2 b, y,m2

{x (c, m1), y (b, m2)} {y (b, m2)}

{y (a, m1)}

{x (c,m1)}

International Journal of Computer Science and Telecommunications [Volume 3, Issue 10, October 2012] 18

taken as soon as it is enabled. A non-immediate run is defined

as a run with the fragment: (s,v) t

(s,v+t) a

 (s’,v’),

where transition taken at (s,v+t) is already enabled at (s,v+t’)

with t’<t.
Clearly a schedule derived from a non-immediate run

exhibits laziness, therefore in order to find an optimal schedule
for a given path, it is sufficient to explore the corresponding
unique immediate run w.r.t. this path. The restriction to
immediate runs transforms the RATA semantics into a discrete
directed acyclic graph of configurations.

Corollary (Job-Shop Scheduling and RATA model): The

optimal job-shop scheduling problem can be reduced to the

problem of finding the shortest immediate run from the path
of a RATA.

Let us consider a job-shop system of Figure 4. Starting

from the initial configuration, the immediate runs are directly

obtained from the paths of the RATA, by evaluating the

satisfaction of the sets DC and AC in each reached

configuration, in order to start the next actions as soon as

possible (immediate execution). These evaluations require

replacing each occurrence of the function τ by its

corresponding value, in order to compare with the values

taken by the clocks.
Figure 5 shows the derivation tree obtained by the

immediate runs for the system of Figure 4, the optimal
schedule is of length 9 and corresponds to the two left
immediate runs of the Figure 5. In this figure, Each
configuration is of the form (s,v(x),v(y),tA), where s represents

a reachable state; v(x) and v(y) are respectively the valuation of
the used clocks x and y in the configuration; tA is the value of
the additional clock, hence corresponds at each reachable
configuration w.r.t. some run, to the time spent to reach the
configuration. For sake of concision since immediate runs are
concerned, there is no explicit representation of time transition.
In fact, from a given configuration, the elapsing of time to start
an action is implicitly considered by the evolution of clocks in
the target configuration. This elapsing time is calculated
according to the minimum time necessary to satisfy the set of
enabled condition (for clarity this set is explicitly represented
in the graph). Finally, observe that the last additional transition
to an additional state f in every run corresponds to a hidden

action, clock and machine (A, and), with an
enabled condition used to terminate the execution of all of the
actions not yet finished. So, the value of tA in the final
configuration of a run represents the total duration of the run,
hence the length (time) of the schedule.

VI. SHORTEST IMMEDIATE PATHS IN RATA

We now describe how to improve the forward reachability
algorithm to compute the shortest path in a job-shop RATA
model. Since we are only interested in optimal runs, we can
apply reductions mechanism in the algorithm that do not
preserve all runs, but still preserve the optimal ones. We use a
variant of the standard forward reachability algorithm
specialized for acyclic graphs with two possible
improvements.

A. Domination test

This test is used to avoid exploring identical configurations
or configurations that are obviously worse than already

computed ones. The domination test is based on the following
definition:

Figure 5. The immediate runs of the RATA of Figure 5

Definition 10: Let (s,v,tA) and (s,v’,tA’) be two reachable

configurations. We say that (s,v,tA) dominates (s,v’,tA’) if

' ' vvtt AA .

Clearly if (s,v,tA) dominates (s,v’,tA’) then for every
complete run going through (s,v’,tA’) there is a run through
(s,v,tA) which leads to a better solution (i.e. with a lower
execution time).

We now propose a finer dominance relation based on a
weaker relation between the clocks used in the compared
configurations, e.g. (s,v,tA) and (s,v’,tA’). For each clock x, we

consider its duration denoted (a,m).

Definition 11 (D2) : (s,v,tA) dominates (s,v’,tA’) if :

). m)(a,) '()(())(') '()((,

'

AAAA

AA

ttxvxvttxvHx

tt

So, we admit that v could be less than v’ for some clocks x in
two cases.

 Either the clock difference v’(x)-v(x) is compensated by

the value t= tA
’
 -tA which means that if the same

sequence of transitions is fired from (s,v,tA) and

(s’,v’,tA’), reaching (sr,vr,tAr) and (sr’,vr’,tAr’)

respectively, then the above dominance rules globally
still hold for the reached configurations. In case where

the reached states are final, we have tAr’ tAr .

 In the 2nd term of the or clause, the action a associated

with x is terminated within the duration tA’-tA . In this

case, the valuation vx must be excluded out of the
dominance test since it cannot influence the future firing

of transitions.
For sake of concision in this paper, the proof is not reported.
In Figure 5, we can now make a dominance reduction

between the configurations (s12,0,0,4) and (s12,7,0,7). Here,
each configuration is of the form (s,v(x),v(y),tA), and the
actions associated with the clocks x and y are c and b, with
respective durations 3 and 5. The first configuration dominates
the second since the 3 following conditions hold:

s00

s01

s02

s10

s11

s12

c, x,m1

b, y,m2

f

s11

s12

f

s12

f

a, y,m1

(3,0,3)

(0,0,0)

(7,0,7)

(12,5,12)

(0,4,4)

(0,0,4)

(5,5,9)

(0,0,0)

(4,0,4)

(0,0,4)

(5,5,9)

c, x,m1

a, y,m1

b, y,m2

b, y,m2

c, x,m1

{x3, y5}

{y4}

{y4}

{y4}

{x3}

{y4}

{x3, y5}

{x3, y5}

(0,0,0)

Farid Arfi et al. 19

 tA = 4 is less than tA’=7.

 The action c terminates in time v(x)+(tA’-tA)

=0+3=3, then the condition v(x)+ (tA’-tA) (c,m) is

satisfied.

 v(y)+ (tA’-tA)= 0+3 is greater than v’(y)=0.

Algorithm 1 (Forward Reachability)

Waiting {(s,v0,0)}

Best

While (Waiting ≠) do

 Pick (s,v,tA)Waiting

 Succ {(s,v’,tA’) | (s,v,tA) → (s,v’,tA’)}

 Waiting dominate(Succ,Waiting)

 If Succ = then

 Best min{ Best,Remains(v)+ tA }

 Endif
 remove (s,v,tA) from Waiting
Endwhile
End

The algorithm is a breadth-first search construction over
the set of reachable configuration. It is based on a Waiting list
used to store the configurations to be treated. The successor
configurations are computed from the first element of the
Waiting list. Each of these new configurations are tested by the
dominate function with regards to the elements of the waiting
list. A new configuration dominated by a waiting configuration
is simply discarded. A waiting configuration which is
dominated by a new configuration is replaced by the new one.
A final configuration is reached if it currently treated
configuration does not have any successor. In this case, we
first calculate the remaining time needed to terminate all of the
actions potentially running in this final configuration, by using
the function Remains. Then, we add to Remains the access
time tA in order to obtain the total execution time of the run.
This time is compared with the best time solution previously
computed in order to update the best solution.

The Remains function for a set of actions {a1,a2,…,ak}
potentially running in a configuration is given by:

 km

1ma
)v(R)v(

m

 MaxRemains , where)v(R

ma represents the

remaining time to terminate the action am. This time is
calculated by comparing the duration dm and the valuation of
the clock x associated with this launched action:

m

mmm

d)x(v0

d)x(v)x(vda
)v(R

 if

 if

B. Best first

The second improvement consists in applying a best-first

search mechanism in order to explore the “most promising”
configurations first. To this end, we need an estimation

function over the configurations.

Consider any configuration (s,v) in the generated model,

Rm(s,v) is a lower-bound on the time remaining until the

machine m completes the execution of the remaining of its

actions from this configuration. Assume that in the

configuration (s,v), we find through the temporal constraints

of L(s) that the action am is potentially running on the machine

m.

Algorithm 2 (Best-first Forward Reachability)

Waiting {(s,v0,0)}

Best

(s,v,tA) first in Waiting

While (Best > E(s,v,tA)) do

 Succ {(s,v’,tA’) | (s,v,tA) → (s,v’,tA’)}

 If Succ = then

 Best E(s,v,tA)

 Else

 Waiting dominate(Succ,Waiting)

 Endif
 Remove (s,v,tA) from Waiting

 (s,v,tA) first in waiting

 Endwhile
 End

 The remaining time is given by:

ri

i

m

ia

m dvRvsR
m 1

)(),(, where the last term represents

the minimum remaining time necessary to achieve the actions
that will be executed under the machine m.

From some configuration (At,v,s), the global estimation of

the execution time, w.r.t. all the machines, is defined as:

 km

m

m

AA vsRttvsE

1
),(Max),,(, where the last term

yields the most optimistic estimation of the remaining time,
with regards to all the machines.

The Best First Search algorithm maintains the waiting list
sorted according to E and applies the domination test upon
insertion in the list. It guarantees to produce the optimal path
because the exploration is stopped when it is clear that the
waiting configurations cannot lead to schedule better than
those configurations found so far. Observe that in final
configurations, tA+Remains(v) is equivalent to E(s,v,tA).

VII. EXPERIMENTAL RESULTS

We have implemented a tool in C++ to generate RATAs
from our specification language, and have implemented the
proposed techniques of scheduling. We test on a family of
problems consisting of a number of independent jobs, each one
with 4 actions. Table I summarizes the results obtained by
comparing the size of the RATA with the approach of [3]
proposed from (standard) timed automata. The column #j gives
the number of jobs and #ds informs on the number of discrete
states for each model. The columns #dom and #bf bring out the
performance in terms of number of explored configurations,
employing progressively the domination test and the best-first
search mechanism.

As the number of jobs grows, we observe a drastic size
reduction by using the RATA approach. In particular with
regard to the domination test, the gain can rapidly reaches
orders of magnitude.

TABLE I. THE RESULTS FOR N JOBS WITH 4 ACTIONS

#j Timed automata RATA

#ds #dom #bf #ds #dom #bf

2 77 100 38 25 28 22

3 629 1143 384 125 180 105

4 4929 11383 1561 625 1251 306

5 37225 116975 2810 3125 9775 714

6 272125 1105981 32423 15625 59213 2520

International Journal of Computer Science and Telecommunications [Volume 3, Issue 10, October 2012] 20

We have considered also three sets of small and medium
benchmarks taken from the known OR-library. Firstly three
instances of size 10*5 (10 jobs and 5 machines): LA01, LA03
and LA05. Then, we considered the set of instances of size
15*5 (15 jobs and 5 machines): LA06, LA08 and LA10. As
the previous instances are easily solved, we finally considered
a medium instances of size 20*5 (20 jobs and 5 machines):
LA11, LA13 and LA15. The latter is not resolved by our
algorithm of best-first within a time limit of five minutes. The
computational equipment for the experiments was a Pentium
machine with 3 GHz and a Windows7 operating system.

TABLE II. THE RESULTS FOR LA PROBLEMS

instance #bf #time Opt

LA01 176 0.1 666

LA03 3025 2.1 597

LA05 400 0.0 593

LA06 32460 11.2 926

 LA08 17461 4.3 863

LA10 2851 0.4 958

LA11 13327 3.7 1222

LA13 3744 1.5 1150

LA15 / / /

Note that in the results given in the second table, we have

used an improved version of heuristic function that calculates

remaining time E in best-first algorithm. This heuristic is
obtained by a simple modification of the Jackson’s

preemptive schedule [11].

VIII. CONCLUSIONS AND PERSPECTIVES

Exploiting the RATA model in order to solve optimal job-
shop scheduling problems is a novel application of models
based maximality-semantics, in addition to verification
purpose [12], [13].

The RATA model appears to be syntactically close from the
standard timed automata approach, taking into account action
duration and shared resources. One of its major distinguishing
features its behavioral compact representation that
concentrates on the starts of the actions.

Our perspectives should be to extend the proposed
algorithms in order to treat large size problems. To tackle the
exponential blow up of configurations, we can reuse the ideas
of [14], [15], which argue that one should minimize the length
of the schedules without necessarily obtaining the optimal
solution.

REFERENCES

[1] M. M. Jaghoori, F. S. de Boer, and M. Sirjani, “Schedulability
of asynchronous real-time concurrent objects,” Logic and
Algebraic Programming, vol. 78(5), 2010, pp. 402-416.

[2] E. Fersman, P. Krcal, P. Pettersson, and W. Yi,” Task
automata: Schedulability, decidability and undecidability,”
Journal Information and Computation, vol. 205(8), 2007, pp.
1149-1172.

[3] Y. Abdeddaim, E. Asarin, and O. Maler, “Scheduling with
timed automata,” Theoretical Computer Science, vol. 354(2),
2006, 272–300.

[4] Y. Abdeddaim, and O. Maler, “Preemptive job-shop
scheduling using stopwatch automata,” in: Proc. TACAS’02,
2002, pp. 113–126.

[5] P. Sebastian, S. Olaf and, E. Sebastian, “Efficient synthesis of
production schedules by optimization of timed automata,”

Journal of Control engineering practice, vol. 14(10), 2006, pp.
1183-1197.

[6] N. Belala and D.E. Saïdouni, “Non-Atomicity in Timed
Models,” in Proceedings of ACIT’2005, Al-Isra Private
University, Jordan, December 2005.

[7] D.E. Saïdouni, F. Arfi, and J.M. Ilié, “ Hétérogénéité dans les
modèles temps-réel, ” in Proceedings of Information Systems
and Technologies: (ICIST'11), Tebessa, Algeria, 2011, pp.

553-561, ISBN: 978-9931-9004-0-5.
[8] R. Alur and, D. Dill, “A Theory of Timed Automata,” TCS,

vol. 126, 1994, pp. 183-235.
[9] T. Bolognesi, and E. Brinksma, “Introduction to the ISO

Specification Language LOTOS,” Computer Networks and
ISDN Systems, vol. 14, 1987, pp. 25-59.

[10] F. Arfi, D.E. Saïdouni and J.M. Ilié,”A model for job-shop
problem”, International Conference on Information

Technology and e-Services (ICITeS'12), Sousse (Tunisia),
24,25 and 26 March., ISBN: 978-9938-9511-1-0, 2012, pp.
640-645.

[11] J. Carlier and E. pinson .”An algorithm for solving the job-
shop problem”. Management Science, 35(2),1989,164-176.

[12] D.E. Saïdouni, A. Benamira, N. Belala, and F. Arfi,
“FOCOVE: Formal Concurrency Verification Environment for
Complex Systems,” in Proceedings of Intelligent Systems and

Automation (CISA'08), Annaba, Algeria, Vol. 1019 (1) of
American Institute of Physics Conference Proceedings, 2008,
pp. 375-380, ISBN:978-0-7354-0540-0.

[13] D.E. Saïdouni, and A. Ghenaï, “Intégration des Refus
Temporaires dans les Graphes de Refus,” in Proceedings of
NOTERE’2006, Hermes, Toulouse, France, 2006.

[14] S. Yang, D. Wang, T. Chai, and G. Kendall, “An improved
constraint satisfaction adaptive neural network for job-shop
scheduling,” Journal of scheduling, vol. 13(1), 2010, pp. 17-38.

[15] C.R. Vela, R. Varela, and M. A. González, “ Local search and
genetic algorithm for the job shop scheduling problem with
sequence dependent setup times,” Journal of Heuristics, vol.
16(2), 2010, pp. 139-165.

http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=auteursNom:%20(PANEK)
http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=auteursNom:%20(STURSBERG)
http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=auteursNom:%20(ENGELL)
http://www.refdoc.fr/?traduire=en&FormRechercher=submit&FormRechercher_Txt_Recherche_name_attr=listeTitreSerie:%20(Control%20engineering%20practice)
http://www.springerlink.com/content/?Author=Camino+R.+Vela
http://www.springerlink.com/content/?Author=Ramiro+Varela
http://www.springerlink.com/content/?Author=Miguel+A.+Gonz%c3%a1lez
http://www.springerlink.com/content/1381-1231/

