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Abstract—This paper presents a new approach that uses 

neural networks to predict the performance of a number of 

dynamic decentralized load balancing strategies. A distributed 

multicomputer system using any distributed load balancing 

strategy is represented by a unified analytical queuing model. A 

large simulation data set is used to train a neural network using 

the back–propagation learning algorithm based on gradient 

descent. The performance model using the predicted data from 

the neural network produces the average response time of 

various load balancing algorithms under various system 

parameters. The validation and comparison with simulation 

data show that the neural network is very effective in 

predicting the performance of dynamic load balancing 

algorithms. Our work leads to interesting techniques for 

designing load balancing schemes (for large distributed 

systems) that are computationally very expensive to simulate. 

One of the important findings is that performance is affected 

least by the number of nodes and most by the number of links 

at each node in a large distributed system. 

 

Keywords— Load Balancing, Neural Network, Multi-

Computer System and Simulation 

 

I. INTRODUCTION 

DVANCES in accurate performance models and 

appropriate measurement tools are driven by the 

demands of multicomputer system designs. 

Conventionally, these models and tools have been developed 

using analytical and simulation techniques. Though 

computationally inexpensive, analytical techniques alone do 

not always accurately represent the behaviour of the system 

under diverse conditions. In addition, the behaviour of 

complex systems is difficult to capture analytically. 

Simulations, on the other hand, are useful for analysing 

complex systems but are both computationally expensive 

and time consuming. Neural networks have been 

successfully applied for modelling nonlinear phenomena [3], 

[5], [8], [11], [12], [14], [20]. 

Application of neural networks for predicting the 

performance of multicomputer systems is our contribution to 

the search for new performance evaluation and prediction 

techniques. 
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The performance of multicomputer systems can be 

measured in terms of throughput, utilization, average task 

response time or inter-processor communication. The 

performance measure in our context is the average task 

response time which heavily depends on the underlying 

scheduling and load balancing mechanisms. In a wide range 

of environments, scheduling and load balancing cannot be 

done statistically and has to be done on-the-fly. For example, 

certain applications having dynamic structures can result in 

the creation of tasks at run time [6] which cannot be 

determined in advance. Furthermore, tasks initially assigned 

to processors can spawn more sub-tasks as computation 

proceeds [13], [18]. Fox et al. [6] show that on hypercube 

multi-computers, dynamic load balancing is useful for a 

number of problems such as event–driven simulations, 

adaptive meshes, many particle dynamics, searching of game 

trees in parallel chess programs, or simulation of neural 

networks with time dependent non–uniform activity. The 

response times of tasks can be considerably improved by 

migrating load from busy processors to idle processors. 

Dynamic load balancing is also essential for distributed 

computing environments such as workstation–based 

networks, where regular jobs can be migrated from a busy 

workstation to an idle workstation [10], [19]. In a study 

conducted for cluster of 70 Sun workstations, it was 

observed that one third of the workstations were idle, even at 

the busiest times of the day [21]. In a real–time environment, 

where periodically generated tasks need to be migrated from 

one node to another in order to meet critical deadlines, 

dynamic load balancing can improve the deadline missing 

probability. 

As opposed to static scheduling techniques, dynamic 

scheduling strategies do not assume availability of a priori 

knowledge of tasks. Due to timing constraints, a dynamic 

scheduling algorithm needs to be fast enough to cope with 

time dependent fluctuations. The second feature that 

distinguishes dynamic task scheduling from static 

scheduling problems is that the notion of time is taken into 

consideration, that is, dynamic task scheduling acts 

according to the time dependent state of the system. 

Dynamic load balancing strategies are centralized [9], de-

centralized [4], [11], [15], [19], or a combination of both [1]. 

Decentralized load balancing strategies have been 

classified into two categories: sender–initiated and receiver–

initiated [23]. In a sender–initiated algorithm, the requests to 

transfer load are originated by heavily loaded nodes whereas 

an algorithm is said to be server–initiated if the requests are 

generated by lightly loaded nodes. Load balancing schemes 

can be classified further depending upon the system ar-

chitecture: homogeneous or heterogeneous [17]. 
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Given the diversity of load balancing strategies proposed 

in the literature and their dependence on a number of 

parameters, it is difficult to compare their effectiveness on a 

unified basis. In a previous study [2], we proposed an 

approach to predict and compare the performance (average 

response time) of different load balancing schemes on a 

unified basis, using simulation, statistics and analytical 

models. This paper presents an approach to predict the 

performance of different load balancing schemes using a 

new technique. The proposed approach, which uses neural 

networks, takes into account various system parameters such 

as system load, task migration time, scheduling overhead 

and system topology that can affect performance. We show 

that load balancing strategies, belonging to the sender–

initiated class, can be modeled by a central-server queuing 

network. Through extensive simulation, a large number of 

values of the average queue length and the probability 

associated with task migration have been obtained. A neural 

network has been trained using the simulation data to model 

the relation between the queuing parameters and the system 

parameters. We have employed the back–propagation 

learning algorithm based on gradient–descent, to train our 

neural network. The network is then used to predict the 

response time of a system with any set of parameters, for a 

given load balancing strategy. Using the proposed 

performance evaluation approach, six load balancing algo-

rithms have been modeled. We have compared the response 

time predicted by the model with the response time produced 

by simulation. The validation and comparison with 

simulation data show that the neural network is very 

effective in predicting the response time for dynamic load 

balancing. The neural network is then used to predict the 

response time for very large systems. 

II.  MODELING WITH NEURAL NETWORKS 

Neural networks belong to the class of data–driven 

approaches, as opposed to model– driven approaches. The 

analysis depends on available data, with little rationalization 

about possible interactions. Relationships between variables, 

models, laws and predictions are constructed post facto after 

building a machine whose behaviour simulates the data 

being studied. The process of constructing such a machine 

based on available data is addressed by certain general 

purpose algorithms such as ‘back–propagation. 

Artificial neural networks are computing systems 

containing many simple non–linear computing units or 

nodes interconnected by links. In a ‘feed-forward’ network, 

the units can be partitioned into layers, with links from each 

unit in the k–th layer being directed (only) to each unit in the 

(k+ 1) j–th layer. Inputs from the environment enter the first 

layer, and outputs from the network are manifested at the 

last layer. A d-n-1 network, shown in Fig. 1, refers to a 

network with d inputs, n units in a single intermediate 

‘hidden’ layer, and one unit in the output layer [24]. As we 

mention in the subsequent discussion, we train the neural 

network for learning an output versus a number of input. For 

example, if the neural network is trying to learn an output Y, 

as a function of x1, x2, x3, then it would have 3 inputs and 

one output. The number of hidden nodes to be chosen 

depends on the application. We have varied them from 3 to 5 

and found that best results are obtained for the number of 

hidden nodes equal to 4. A weight or ‘connection strength’ is 

associated with each link, and a network ‘learns’ or is 

trained by modifying these weights, thereby modifying the 

network function which maps inputs to outputs. 

We use such d-n-1 networks to learn and then predict the 

behaviour of dynamic load balancing algorithms. Each 

hidden and output node realizes a non-linear function of the 

form: 
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Where w’s denote real-valued weights of edges leading 

into the node θ  denotes the adjustable ‘threshold’ for that 
node, and m denotes the number of inputs to that node from 

nodes in the previous layer. 

We use the error back-propagation algorithm of Rumelhart 

et al. [16], based on gradient-descent, to train the networks, 

with the goal of minimizing the mean squared deviation 

between the desired target values and network outputs, and 

averaged over all the training inputs. The training phase can 

be described as follows. In each step in the training phase, a 

J–tuple of inputs is presented to the network. The network is 

asked to predict the output value. The error between the 

value predicted (by the network) and the value actually 

observed (known data) is then measured and propagated 

backwards along the connections. The weights of links 

between units are modified by different amounts, using a 

technique which apportions ‘blame’ for the error to various 

nodes and links. A single ‘epoch’ (cycle of presentations of 

all training inputs) comprises applying all input patterns 

once and modifying the weights after each step. If the mean 

squared error exceeds some small predetermined value, a 

new epoch is started after termination of the current epoch. 

 

Fig 1. A d–n–1 feed forward neural network. 

 

Learning is accomplished by the following rule that 

indicates how the weight of each connection is modified. 

(2) )()()1( nWOnW jipjpjji ∆+=+∆ αδη 

The parameters of the back–propagation algorithm are the 

‘learning rate’  )(η  and ‘momentum’ )(α , which roughly 

describes the relative importance given to the current and 

past error values in modifying connection strengths. Here, n 

is the time index, Wji is the weight from unit i to unit j, p is 

an index over the cases (input samples), and pjδ  is the 

propagated error signal seen at unit j in case p, and Opj is the 

output of the corresponding unit. For the sigmoid activation 

function: 
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The error signal is given by 

(4) )1()( pjpjpjpjpj OOOt −−=δ 

For an output unit, we have  

(5) ∑−=
k
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For a hidden unit where pjt  is the j–th element of the 

target for p–th input pattern. 

III.  CHARACTERIZING DISTRIBUTED LOAD BALANCING 

We consider multicomputer systems that consist of 

homogeneous processing nodes connected with each other 

through a symmetric topology, i.e., each node is linked to 

the same number of nodes. The number of links per node, L, 

is called the degree of the network. We assume that the task 

arrival process is Poisson and tasks are submitted to each 

node with an average arrival rate of λ  tasks per time-unit at 
each node. When a task arrives at a node, it is either 

scheduled to the local execution queue or migrated to one of 

the neighbours connected with it via a communication 

channel. Information gathering and scheduling takes a 

certain amount of time, which is assumed to be 

exponentially distributed with an average of 
sµ/1 time-units. 

A communication server at each link of a node transfers a 

task from one node to another with an average of cµ/1  

time-units. The task communication time is also assumed to 

be exponentially distributed. At each node, incoming traffic 

from other nodes joins locally generated traffic, and all 

traffic is handled with equal priority. Each node maintains 

an execution queue in which locally scheduled tasks are 

served by a CPU on the FCFS basis. The load of a node is 

expressed in terms of the length of the execution queue. 

Execution time is also assumed to be exponentially 

distributed with an average of Eµ/1  time-units. Table 1 

describes the meanings of a number of symbols used in this 

paper. 

TABLE I. SYMBOLS AND THEIR MEANINGS 

 

A.  Load Balancing Strategies 

In general, a load balancing strategy consists of three 

policies [4]: transfer policy, location policy and information 

collection policy. A transfer policy determines whether a 

task should be migrated or not. A location policy sets a 

criterion to select a node if the task is to be migrated. 

An information policy decides how information exchange 

among different nodes is carried out. We have analysed six 

sender–initiated distributed load balancing schemes using 

different transfer, location and information exchange 

policies. In the first three load balancing strategies, 

information about the load and the status of other nodes is 

collected at the time a task is scheduled for execution or 

migration. In the last three strategies, nodes exchange load 

information with their neighbours after every (fixed) period 

of time. The names of strategies are prefixed by F and P, 

denoting fresh and Periodic information exchanges, 

respectively; these strategies are explained below. 

FRandom: In this strategy, the task scheduler 

calculates the average of the local load and the load of all 

neighbors. If the local load exceeds the average, the task is 

sent to a randomly selected neighbour. 

FMin: In this strategy, the task scheduler first selects 

the neighbour with the least load. The task is transferred to 

that neighbour if the difference between the local load and 

load of that neighbour exceeds a certain threshold (threshold 

is 1 in our experiments). The local node is given priority, 

since migrating a task to a neighbour incurs communication 

and scheduling delays. 

FAverage: In this strategy, the task scheduler 

calculates the average of all neighbours’ load and its own 

load. If the local load exceeds the average, the task is sent to 

the neighbor with the minimum load. Otherwise, the task is 

sent to the local execution queue. 

PRandom: This strategy is similar to FRandom except 

that information is exchanged periodically. 

PMin: This strategy is similar to FMin except that 

information is exchanged periodically. 

PAverage: This strategy is similar t o FAverage except 

that information exchange is periodic. 

B.  Analytical Modeling 

First, we show how the class of distributed load balancing 

strategies described above can be modeled by an open 

network central server queuing model. When a task migrates 

from one node to another, it enters a statistically identical 

node. Therefore, the steady–state behaviour of nearest 

neighbour load balancing can be approximated by the 

central-server open queuing model. A distributed 

multicomputer system consisting of 16–node hypercube 

topology, with distributed load balancing, is illustrated in 

Figure 2. Here, each node of the system can be represented 

by a central-server open queuing network. As described in 

the next section, simulation results obtained on actual 

network topologies are very close to the analytical results 

determined from this model, validating that the proposed 

model of Figure 2 indeed represents the task scheduling and 

migration process. The model consists of a waiting queue, L 

communication queues and an execution queue. 

The duration of a task’s residence time in the system 

consists of two phases. In the first phase, the task may 

repeatedly migrate: it waits in the waiting queue, gets 

service from the scheduler, waits in the communication 

queue, and then transfers to another node. At that point, the 
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Fig 2. A multicomputer system connected in a 16–node hypercube topology 

 

same cycle may start all over again. In the first phase, each 

task can be viewed as occupying either the task scheduler or 

one of the communication links. 

Each node is represented by open network central-server 

queuing model. Once the task is scheduled at the execution 

queue of a node, the second phase starts, which includes the 

queuing and service time at the CPU. It follows that the open 

central server model can be solved by the Jacksonian net-

work [22], which has the product form solution; the joint 

probability of jk  tasks at queue  
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For the J–th component, the average utilization jρ  is 

equal to jj µλ / the equation implies that the lengths of all 

queues are mutually independent in a steady state. The 

average queue length and the average response time are 

given by: 
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The average number of tasks at a node is the sum of the 

average number of tasks at each component of a node and is 

given by: 
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From which the average response time before the task is 

scheduled in the execution queue can be computed as: 

 

∑∑
=

−

−

=
−

−

−
+

−
=

−
=

L

j jj

jj
L

j j

j

phase
PP

PP

P

P
RE

1
1

0

1

0

0
1

0

1

0

)(1

)(

)(1

)(

1

1
][

µλ

µ

µλ

µ

ρ

ρ

λ
    

                                                                                           (10) 

 

Where 0λ  is replaced by 0/ pλ and )1( ≥jλ  is 

replaced by 0/ PPjλ . Once a task is scheduled at a local 

execution queue, the response time is given by: 
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Where E [NE] is the average execution queue length. The 

complete response time, therefore, is: 

 

][][][ 21 phasephase RERERE +=                         (12) 

 

The above equation implies that, for a given 

load, )/( Eµλρ = , 0µ and sj 'µ , the response time yielded 

by a load balancing strategy can be calculated if 0P  and E 

[NE] are known. Here, 0P , is the probability with which a 

load balancing strategy schedules the tasks locally, and E 

[NE] is the average execution queue length. For clarity, we 

replace 0µ  by Sµ , representing the average task scheduling 

rate. We also assume that sj 'µ for each link is the same and 

the average communication rate is represented by Cµ . 

C. Simulation Environment 

The above mentioned load balancing strategies were 

simulated. Our simulator, which is of discrete-event type, 

takes as input the topology of the network along with 

ECSS µµµµλ ,,,,  length of simulation run, and choice of 

load balancing strategies and their associated parameters. 

Simulation can be run by using different sets of random 

number streams. Initial transients in the simulation are 

removed by ignoring the initial outputs until the system 

enters into a steady state. Each data point is produced by 

taking the average of a large number of independent sim-

ulation runs and then by taking their means. The confidence 

interval for each data point has been obtained with 99% 

confidence interval and the width of the interval is within 

5% of the mean values. 

A number of simulations were conducted to obtain 500 

data values for P0 and E [NE], for each strategy. Three 

different topologies have been selected, including the ring (L 

= 2), the 16-node hypercube (L = 4) and the 16-node folded 

hypercube (L = 5) [7]. Points for one particular strategy are 

obtained for each topology by fixing one parameter and 

varying the rest. In most cases, λ  is varied from 0.3 to 0.9 

tasks per time-unit, and Cµ  is varied from 8 to 16 tasks per 
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time-unit. We assume that the average task execution rate 

Eµ  is 1 task per time unit. In-stead of the actual 

load )/( Eµλρ = , this enables us to consider λ  as the 

parameter representing load per node. For strategies that 

require periodic information update, the update time period, 

Tu, is varied from 0.5 to 1.5 time units. The scheduling 

overhead includes the exchange of state information and the 

execution of the scheduling algorithm itself. We have 

assumed an average scheduling time,
Sµ/1  which in turn, 

can be normalized with respect to the execution time Eµ/1 . 

In other words, when Sµ  is 10 tasks/time-unit and Eµ , is 1 

task/time-unit, the average task scheduling time is 1/10 of 

the execution time. For the simulation data, lic is varied 

from 8 to 16 tasks per time unit. Since we simulated the 

actual interconnection network topologies, mentioned above, 

and not the central server model shown in Figure 2, P0 and E 

[NE] were observed from the simulation data. The 

probability, P0, is estimated by dividing the average number 

of locally scheduled tasks by the total number of tasks 

arrived, at each node. 

IV.  RESULTS 

In this section, we present the results showing the average 

response time predicted by the analytical model based on the 

values of P0 and E [NE] predicted by the neural network. For 

the experiments described in this paper, the learning rate and 

momentum were varied to train the network to give small 

mean squared error. For the modeling of probability, we 

used a network with no hidden layer. For the estimation of 

queue length a network with one hidden layer was used. The 

number of hidden nodes was varied; the best results were 

obtained for 4 hidden nodes. TableII gives the root mean 

square errors in P0 and E [NE] between neural networks. 

 

TABLE II. THE ROOT MEAN SQUARE ERROR BETWEEN SIMULATION AND 

NEURAL NETWORK IN MODELING P0 AND E [NE] 

Strategy P0 E [NE] 

FRandom 0.4705 3.6200 

FMin 0.0654 0.9355 

FAverage 0.1486 0.7733 

PRandom 0.1358 0.3139 

PMin 0.1354 0.5357 

PAverage 0.3636 0.4053 

 

Results and simulation data as can be seen the error 

yielded by the neural network is less than 0.5 for P0 and less 

than 0.1, in most cases, for E [NE]. 

Using the values of P0 and E [NE] predicted by the neural 

network, the average response time is calculated through the 

queuing model and is compared with the observed 

simulation results. We have divided these results in three 

parts: training, testing and prediction (Table III). 

V. CONCLUSION 

We presented a new approach to model the performance 

of several distributed dynamic load balancing algorithms in 

a multicomputer environment. The response time predicted  

TABLE III. AVERAGE RESPONSE TIMES OBTAINED BY THE NEURAL NETWORK 

FOR THE SIX STRATEGIES, AT LOW, MEDIUM, AND HIGH LOADING 
CONDITIONS, ON A 16–NODE HYPERCUBE TOPOLOGY 

Load Strategy Simulation 
Neural 

Net. 

Difference

% 

λ  = 0.4 

(Low) 

FRandom 1.243 1.277 2.73 

FMin 1.403 1.403 0.03 

FAverage 1.186 1.193 0.62 

PRandom 1.239 1.259 -1.61 

PMin 1.412 1.480 4.82 

PAverage 1.214 1.292 6.35 

λ  = 0.6 

(Medium

) 

FRandom 1.515 1.545 4.40 

FMin 1.585 1.534 -3.25 

FAverage 1.378 1.348 -2.19 

PRandom 1.514 1.496 -1.15 

PMin 1.624 1.598 -1.62 

PAverage 1.475 1.401 -4.97 

λ  = 0.8 

(High) 

FRandom 2.056 2.165 5.35 

FMin 1.965 2.083 6.04 

FAverage 1.802 1.929 7.04 

PRandom 2.048 2.085 1.82 

PMin 2.080 2.123 2.09 

PAverage 1.974 1.986 -0.64 

 

by the neural network closely approximates the response 

time obtained through simulation. Our performance 

evaluation methodology accurately determines the variations 

in performance of all algorithms with a wide range of system 

parameters. Generalization ability of the neural networks 

helps in successfully analyzing the performance of very 

large systems. The neural network model is an effective tool 

for modeling the performance of dynamic load balancing 

algorithms. The study has also revealed a number of future 

research problems. For example, one can consider the nodes 

in the system to be heterogeneous instead of homogeneous. 

Furthermore, one can consider an environment where tasks 

are initially submitted to a node from L different links rather 

than a single queue. However, this assumption will require 

new analysis of the central-server queuing model. 
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