
International Journal of Computer Science and Telecommunications [Volume 3, Issue 1, January 2012] 17

Journal Homepage: www.ijcst.org

Seyed Hossein Kamali, Maysam Hedayati, Reza Shakerian and Saber Ghasempour

Abstract—This paper presents a new approach that uses

neural networks to predict the performance of a number of

dynamic decentralized load balancing strategies. A distributed

multicomputer system using any distributed load balancing

strategy is represented by a unified analytical queuing model. A

large simulation data set is used to train a neural network using

the back–propagation learning algorithm based on gradient

descent. The performance model using the predicted data from

the neural network produces the average response time of

various load balancing algorithms under various system

parameters. The validation and comparison with simulation

data show that the neural network is very effective in

predicting the performance of dynamic load balancing

algorithms. Our work leads to interesting techniques for

designing load balancing schemes (for large distributed

systems) that are computationally very expensive to simulate.

One of the important findings is that performance is affected

least by the number of nodes and most by the number of links

at each node in a large distributed system.

Keywords— Load Balancing, Neural Network, Multi-

Computer System and Simulation

I. INTRODUCTION

DVANCES in accurate performance models and

appropriate measurement tools are driven by the

demands of multicomputer system designs.

Conventionally, these models and tools have been developed

using analytical and simulation techniques. Though

computationally inexpensive, analytical techniques alone do

not always accurately represent the behaviour of the system

under diverse conditions. In addition, the behaviour of

complex systems is difficult to capture analytically.

Simulations, on the other hand, are useful for analysing

complex systems but are both computationally expensive

and time consuming. Neural networks have been

successfully applied for modelling nonlinear phenomena [3],

[5], [8], [11], [12], [14], [20].

Application of neural networks for predicting the

performance of multicomputer systems is our contribution to

the search for new performance evaluation and prediction

techniques.

Seyed Hossein Kamali , Islamic Azad University, Qazvin Branch,

Qazvin,Iran (prjkamali@live.com)

Maysam Hedayati, Islamic Azad University, Ghaemshahr Branch,

Ghaemshahr, Iran (hedayati_maysam@yahoo.com)

Reza Shakerian ,Payame Noor University,PO BOX 19395-3697 ,Tehran

, Iran (r.shakerian@gmail.com)

 Saber Ghasempour, Department of Mathematics, Payame Noor

University,PO BOX 19395-3697 ,Tehran , Iran (s_ghasempor@mpnu.ac.ir)

The performance of multicomputer systems can be

measured in terms of throughput, utilization, average task

response time or inter-processor communication. The

performance measure in our context is the average task

response time which heavily depends on the underlying

scheduling and load balancing mechanisms. In a wide range

of environments, scheduling and load balancing cannot be

done statistically and has to be done on-the-fly. For example,

certain applications having dynamic structures can result in

the creation of tasks at run time [6] which cannot be

determined in advance. Furthermore, tasks initially assigned

to processors can spawn more sub-tasks as computation

proceeds [13], [18]. Fox et al. [6] show that on hypercube

multi-computers, dynamic load balancing is useful for a

number of problems such as event–driven simulations,

adaptive meshes, many particle dynamics, searching of game

trees in parallel chess programs, or simulation of neural

networks with time dependent non–uniform activity. The

response times of tasks can be considerably improved by

migrating load from busy processors to idle processors.

Dynamic load balancing is also essential for distributed

computing environments such as workstation–based

networks, where regular jobs can be migrated from a busy

workstation to an idle workstation [10], [19]. In a study

conducted for cluster of 70 Sun workstations, it was

observed that one third of the workstations were idle, even at

the busiest times of the day [21]. In a real–time environment,

where periodically generated tasks need to be migrated from

one node to another in order to meet critical deadlines,

dynamic load balancing can improve the deadline missing

probability.

As opposed to static scheduling techniques, dynamic

scheduling strategies do not assume availability of a priori

knowledge of tasks. Due to timing constraints, a dynamic

scheduling algorithm needs to be fast enough to cope with

time dependent fluctuations. The second feature that

distinguishes dynamic task scheduling from static

scheduling problems is that the notion of time is taken into

consideration, that is, dynamic task scheduling acts

according to the time dependent state of the system.

Dynamic load balancing strategies are centralized [9], de-

centralized [4], [11], [15], [19], or a combination of both [1].

Decentralized load balancing strategies have been

classified into two categories: sender–initiated and receiver–

initiated [23]. In a sender–initiated algorithm, the requests to

transfer load are originated by heavily loaded nodes whereas

an algorithm is said to be server–initiated if the requests are

generated by lightly loaded nodes. Load balancing schemes

can be classified further depending upon the system ar-

chitecture: homogeneous or heterogeneous [17].

A

Performance Modeling of Distributed Load Balancing

Algorithm Using Neural Networks

ISSN 2047-3338

Seyed Hossein Kamali et al. 18

Given the diversity of load balancing strategies proposed

in the literature and their dependence on a number of

parameters, it is difficult to compare their effectiveness on a

unified basis. In a previous study [2], we proposed an

approach to predict and compare the performance (average

response time) of different load balancing schemes on a

unified basis, using simulation, statistics and analytical

models. This paper presents an approach to predict the

performance of different load balancing schemes using a

new technique. The proposed approach, which uses neural

networks, takes into account various system parameters such

as system load, task migration time, scheduling overhead

and system topology that can affect performance. We show

that load balancing strategies, belonging to the sender–

initiated class, can be modeled by a central-server queuing

network. Through extensive simulation, a large number of

values of the average queue length and the probability

associated with task migration have been obtained. A neural

network has been trained using the simulation data to model

the relation between the queuing parameters and the system

parameters. We have employed the back–propagation

learning algorithm based on gradient–descent, to train our

neural network. The network is then used to predict the

response time of a system with any set of parameters, for a

given load balancing strategy. Using the proposed

performance evaluation approach, six load balancing algo-

rithms have been modeled. We have compared the response

time predicted by the model with the response time produced

by simulation. The validation and comparison with

simulation data show that the neural network is very

effective in predicting the response time for dynamic load

balancing. The neural network is then used to predict the

response time for very large systems.

II. MODELING WITH NEURAL NETWORKS

Neural networks belong to the class of data–driven

approaches, as opposed to model– driven approaches. The

analysis depends on available data, with little rationalization

about possible interactions. Relationships between variables,

models, laws and predictions are constructed post facto after

building a machine whose behaviour simulates the data

being studied. The process of constructing such a machine

based on available data is addressed by certain general

purpose algorithms such as ‘back–propagation.

Artificial neural networks are computing systems

containing many simple non–linear computing units or

nodes interconnected by links. In a ‘feed-forward’ network,

the units can be partitioned into layers, with links from each

unit in the k–th layer being directed (only) to each unit in the

(k+ 1) j–th layer. Inputs from the environment enter the first

layer, and outputs from the network are manifested at the

last layer. A d-n-1 network, shown in Fig. 1, refers to a

network with d inputs, n units in a single intermediate

‘hidden’ layer, and one unit in the output layer [24]. As we

mention in the subsequent discussion, we train the neural

network for learning an output versus a number of input. For

example, if the neural network is trying to learn an output Y,

as a function of x1, x2, x3, then it would have 3 inputs and

one output. The number of hidden nodes to be chosen

depends on the application. We have varied them from 3 to 5

and found that best results are obtained for the number of

hidden nodes equal to 4. A weight or ‘connection strength’ is

associated with each link, and a network ‘learns’ or is

trained by modifying these weights, thereby modifying the

network function which maps inputs to outputs.

We use such d-n-1 networks to learn and then predict the

behaviour of dynamic load balancing algorithms. Each

hidden and output node realizes a non-linear function of the

form:

(1)
∑

+

=
≤≤

Θ+−
mi

ii xwm

e

xxxf
11

1
)...,,,(21

Where w’s denote real-valued weights of edges leading

into the node θ denotes the adjustable ‘threshold’ for that
node, and m denotes the number of inputs to that node from

nodes in the previous layer.

We use the error back-propagation algorithm of Rumelhart

et al. [16], based on gradient-descent, to train the networks,

with the goal of minimizing the mean squared deviation

between the desired target values and network outputs, and

averaged over all the training inputs. The training phase can

be described as follows. In each step in the training phase, a

J–tuple of inputs is presented to the network. The network is

asked to predict the output value. The error between the

value predicted (by the network) and the value actually

observed (known data) is then measured and propagated

backwards along the connections. The weights of links

between units are modified by different amounts, using a

technique which apportions ‘blame’ for the error to various

nodes and links. A single ‘epoch’ (cycle of presentations of

all training inputs) comprises applying all input patterns

once and modifying the weights after each step. If the mean

squared error exceeds some small predetermined value, a

new epoch is started after termination of the current epoch.

Fig 1. A d–n–1 feed forward neural network.

Learning is accomplished by the following rule that

indicates how the weight of each connection is modified.

(2))()()1(nWOnW jipjpjji ∆+=+∆ αδη

The parameters of the back–propagation algorithm are the

‘learning rate’)(η and ‘momentum’)(α , which roughly

describes the relative importance given to the current and

past error values in modifying connection strengths. Here, n

is the time index, Wji is the weight from unit i to unit j, p is

an index over the cases (input samples), and pjδ is the

propagated error signal seen at unit j in case p, and Opj is the

output of the corresponding unit. For the sigmoid activation

function:

International Journal of Computer Science and Telecommunications [Volume 3, Issue 1, January 2012] 19

(3)
∑ −−+

=

i

jji

pj
Ow

O
)(exp1

1

θπ

The error signal is given by

(4))1()(pjpjpjpjpj OOOt −−=δ

For an output unit, we have

(5) ∑−=
k

kjpkpjpjpj wOO δδ)1(

For a hidden unit where pjt is the j–th element of the

target for p–th input pattern.

III. CHARACTERIZING DISTRIBUTED LOAD BALANCING

We consider multicomputer systems that consist of

homogeneous processing nodes connected with each other

through a symmetric topology, i.e., each node is linked to

the same number of nodes. The number of links per node, L,

is called the degree of the network. We assume that the task

arrival process is Poisson and tasks are submitted to each

node with an average arrival rate of λ tasks per time-unit at
each node. When a task arrives at a node, it is either

scheduled to the local execution queue or migrated to one of

the neighbours connected with it via a communication

channel. Information gathering and scheduling takes a

certain amount of time, which is assumed to be

exponentially distributed with an average of
sµ/1 time-units.

A communication server at each link of a node transfers a

task from one node to another with an average of cµ/1

time-units. The task communication time is also assumed to

be exponentially distributed. At each node, incoming traffic

from other nodes joins locally generated traffic, and all

traffic is handled with equal priority. Each node maintains

an execution queue in which locally scheduled tasks are

served by a CPU on the FCFS basis. The load of a node is

expressed in terms of the length of the execution queue.

Execution time is also assumed to be exponentially

distributed with an average of Eµ/1 time-units. Table 1

describes the meanings of a number of symbols used in this

paper.

TABLE I. SYMBOLS AND THEIR MEANINGS

A. Load Balancing Strategies

In general, a load balancing strategy consists of three

policies [4]: transfer policy, location policy and information

collection policy. A transfer policy determines whether a

task should be migrated or not. A location policy sets a

criterion to select a node if the task is to be migrated.

An information policy decides how information exchange

among different nodes is carried out. We have analysed six

sender–initiated distributed load balancing schemes using

different transfer, location and information exchange

policies. In the first three load balancing strategies,

information about the load and the status of other nodes is

collected at the time a task is scheduled for execution or

migration. In the last three strategies, nodes exchange load

information with their neighbours after every (fixed) period

of time. The names of strategies are prefixed by F and P,

denoting fresh and Periodic information exchanges,

respectively; these strategies are explained below.

FRandom: In this strategy, the task scheduler

calculates the average of the local load and the load of all

neighbors. If the local load exceeds the average, the task is

sent to a randomly selected neighbour.

FMin: In this strategy, the task scheduler first selects

the neighbour with the least load. The task is transferred to

that neighbour if the difference between the local load and

load of that neighbour exceeds a certain threshold (threshold

is 1 in our experiments). The local node is given priority,

since migrating a task to a neighbour incurs communication

and scheduling delays.

FAverage: In this strategy, the task scheduler

calculates the average of all neighbours’ load and its own

load. If the local load exceeds the average, the task is sent to

the neighbor with the minimum load. Otherwise, the task is

sent to the local execution queue.

PRandom: This strategy is similar to FRandom except

that information is exchanged periodically.

PMin: This strategy is similar to FMin except that

information is exchanged periodically.

PAverage: This strategy is similar t o FAverage except

that information exchange is periodic.

B. Analytical Modeling

First, we show how the class of distributed load balancing

strategies described above can be modeled by an open

network central server queuing model. When a task migrates

from one node to another, it enters a statistically identical

node. Therefore, the steady–state behaviour of nearest

neighbour load balancing can be approximated by the

central-server open queuing model. A distributed

multicomputer system consisting of 16–node hypercube

topology, with distributed load balancing, is illustrated in

Figure 2. Here, each node of the system can be represented

by a central-server open queuing network. As described in

the next section, simulation results obtained on actual

network topologies are very close to the analytical results

determined from this model, validating that the proposed

model of Figure 2 indeed represents the task scheduling and

migration process. The model consists of a waiting queue, L

communication queues and an execution queue.

The duration of a task’s residence time in the system

consists of two phases. In the first phase, the task may

repeatedly migrate: it waits in the waiting queue, gets

service from the scheduler, waits in the communication

queue, and then transfers to another node. At that point, the

Seyed Hossein Kamali et al. 20

Fig 2. A multicomputer system connected in a 16–node hypercube topology

same cycle may start all over again. In the first phase, each

task can be viewed as occupying either the task scheduler or

one of the communication links.

Each node is represented by open network central-server

queuing model. Once the task is scheduled at the execution

queue of a node, the second phase starts, which includes the

queuing and service time at the CPU. It follows that the open

central server model can be solved by the Jacksonian net-

work [22], which has the product form solution; the joint

probability of jk tasks at queue

j(j =0, 1, . . ., L) is given by the product:

(6) ∏
=

=
L

j

jjL kpkkkp
0

21)()...,,,(

Where)(jj kp is the probability that jk tasks are at the

j–th queue, given by:

(7)
jk

jjkp ρρ)1()(−=

For the J–th component, the average utilization jρ is

equal to jj µλ / the equation implies that the lengths of all

queues are mutually independent in a steady state. The

average queue length and the average response time are

given by:

(8)
)1(

][
1

][
jj

j

j

j

j

j NEandNE
ρλ

ρ

ρ

ρ

−
=

−
=

The average number of tasks at a node is the sum of the

average number of tasks at each component of a node and is

given by:

∑ ∑
= = −

==
L

j

L

j j

j
NENE

0 01
][][

ρ

ρ
 (9)

From which the average response time before the task is

scheduled in the execution queue can be computed as:

∑∑
=

−

−

=
−

−

−
+

−
=

−
=

L

j jj

jj
L

j j

j

phase
PP

PP

P

P
RE

1
1

0

1

0

0
1

0

1

0

)(1

)(

)(1

)(

1

1
][

µλ

µ

µλ

µ

ρ

ρ

λ

 (10)

Where 0λ is replaced by 0/ pλ and)1(≥jλ is

replaced by 0/ PPjλ . Once a task is scheduled at a local

execution queue, the response time is given by:

0.1
][

][2 ≤=
λ

E
phase

NE
RE (11)

Where E [NE] is the average execution queue length. The

complete response time, therefore, is:

][][][21 phasephase RERERE += (12)

The above equation implies that, for a given

load,)/(Eµλρ = , 0µ and sj 'µ , the response time yielded

by a load balancing strategy can be calculated if 0P and E

[NE] are known. Here, 0P , is the probability with which a

load balancing strategy schedules the tasks locally, and E

[NE] is the average execution queue length. For clarity, we

replace 0µ by Sµ , representing the average task scheduling

rate. We also assume that sj 'µ for each link is the same and

the average communication rate is represented by Cµ .

C. Simulation Environment

The above mentioned load balancing strategies were

simulated. Our simulator, which is of discrete-event type,

takes as input the topology of the network along with

ECSS µµµµλ ,,,, length of simulation run, and choice of

load balancing strategies and their associated parameters.

Simulation can be run by using different sets of random

number streams. Initial transients in the simulation are

removed by ignoring the initial outputs until the system

enters into a steady state. Each data point is produced by

taking the average of a large number of independent sim-

ulation runs and then by taking their means. The confidence

interval for each data point has been obtained with 99%

confidence interval and the width of the interval is within

5% of the mean values.

A number of simulations were conducted to obtain 500

data values for P0 and E [NE], for each strategy. Three

different topologies have been selected, including the ring (L

= 2), the 16-node hypercube (L = 4) and the 16-node folded

hypercube (L = 5) [7]. Points for one particular strategy are

obtained for each topology by fixing one parameter and

varying the rest. In most cases, λ is varied from 0.3 to 0.9

tasks per time-unit, and Cµ is varied from 8 to 16 tasks per

International Journal of Computer Science and Telecommunications [Volume 3, Issue 1, January 2012] 21

time-unit. We assume that the average task execution rate

Eµ is 1 task per time unit. In-stead of the actual

load)/(Eµλρ = , this enables us to consider λ as the

parameter representing load per node. For strategies that

require periodic information update, the update time period,

Tu, is varied from 0.5 to 1.5 time units. The scheduling

overhead includes the exchange of state information and the

execution of the scheduling algorithm itself. We have

assumed an average scheduling time,
Sµ/1 which in turn,

can be normalized with respect to the execution time Eµ/1 .

In other words, when Sµ is 10 tasks/time-unit and Eµ , is 1

task/time-unit, the average task scheduling time is 1/10 of

the execution time. For the simulation data, lic is varied

from 8 to 16 tasks per time unit. Since we simulated the

actual interconnection network topologies, mentioned above,

and not the central server model shown in Figure 2, P0 and E

[NE] were observed from the simulation data. The

probability, P0, is estimated by dividing the average number

of locally scheduled tasks by the total number of tasks

arrived, at each node.

IV. RESULTS

In this section, we present the results showing the average

response time predicted by the analytical model based on the

values of P0 and E [NE] predicted by the neural network. For

the experiments described in this paper, the learning rate and

momentum were varied to train the network to give small

mean squared error. For the modeling of probability, we

used a network with no hidden layer. For the estimation of

queue length a network with one hidden layer was used. The

number of hidden nodes was varied; the best results were

obtained for 4 hidden nodes. TableII gives the root mean

square errors in P0 and E [NE] between neural networks.

TABLE II. THE ROOT MEAN SQUARE ERROR BETWEEN SIMULATION AND

NEURAL NETWORK IN MODELING P0 AND E [NE]

Strategy P0 E [NE]

FRandom 0.4705 3.6200

FMin 0.0654 0.9355

FAverage 0.1486 0.7733

PRandom 0.1358 0.3139

PMin 0.1354 0.5357

PAverage 0.3636 0.4053

Results and simulation data as can be seen the error

yielded by the neural network is less than 0.5 for P0 and less

than 0.1, in most cases, for E [NE].

Using the values of P0 and E [NE] predicted by the neural

network, the average response time is calculated through the

queuing model and is compared with the observed

simulation results. We have divided these results in three

parts: training, testing and prediction (Table III).

V. CONCLUSION

We presented a new approach to model the performance

of several distributed dynamic load balancing algorithms in

a multicomputer environment. The response time predicted

TABLE III. AVERAGE RESPONSE TIMES OBTAINED BY THE NEURAL NETWORK

FOR THE SIX STRATEGIES, AT LOW, MEDIUM, AND HIGH LOADING
CONDITIONS, ON A 16–NODE HYPERCUBE TOPOLOGY

Load Strategy Simulation
Neural

Net.

Difference

%

λ = 0.4

(Low)

FRandom 1.243 1.277 2.73

FMin 1.403 1.403 0.03

FAverage 1.186 1.193 0.62

PRandom 1.239 1.259 -1.61

PMin 1.412 1.480 4.82

PAverage 1.214 1.292 6.35

λ = 0.6

(Medium

)

FRandom 1.515 1.545 4.40

FMin 1.585 1.534 -3.25

FAverage 1.378 1.348 -2.19

PRandom 1.514 1.496 -1.15

PMin 1.624 1.598 -1.62

PAverage 1.475 1.401 -4.97

λ = 0.8

(High)

FRandom 2.056 2.165 5.35

FMin 1.965 2.083 6.04

FAverage 1.802 1.929 7.04

PRandom 2.048 2.085 1.82

PMin 2.080 2.123 2.09

PAverage 1.974 1.986 -0.64

by the neural network closely approximates the response

time obtained through simulation. Our performance

evaluation methodology accurately determines the variations

in performance of all algorithms with a wide range of system

parameters. Generalization ability of the neural networks

helps in successfully analyzing the performance of very

large systems. The neural network model is an effective tool

for modeling the performance of dynamic load balancing

algorithms. The study has also revealed a number of future

research problems. For example, one can consider the nodes

in the system to be heterogeneous instead of homogeneous.

Furthermore, one can consider an environment where tasks

are initially submitted to a node from L different links rather

than a single queue. However, this assumption will require

new analysis of the central-server queuing model.

REFERENCES

[1] I. Ahmad and A. Ghafoor, “A Semi Distributed Task

Allocation Strategy for Large Hypercube Supercomputers,”

Proc. of Supercomputing’90, Nov. 1990, pp. 898–907.

[2] I. Ahmad, A. Ghafoor and K. Mehrotra, “Performance

Prediction for Distributed Load Balancing on Multicomputer
Systems,” Proc. of Supercomputing’91, Nov. 1991, pp. 830–

839.

[3] S. Ahmad and G. Tesauro, “Scaling and Generalization in

Neural Networks: A Case Study,” in D. S. Touretzky et al.,

eds., Proceedings of the 1988 Connectionist Models Summer

School, Morgan Kaufmann, 1988, pp. 3–10.

[4] D. L. Eager, E. D. Lazowska and J. Zahorjan, “Adaptive

Load Sharing in Homogeneous Distributed Systems,” IEEE

Trans. on Software Engg.,vol. SE–12, May 1986, pp. 662–

675.

[5] S. E. Fahlman and C. Lebiere, “The Cascade–Correlation

Learning Architecture,” Advances in Neural Information
Processing Systems 2, D. Touretzky ed., Morgan Kaufmann,

San Mateo (CA), 1990, pp. 524–532.

[6] G. C. Fox, A. Kolawa and R. Williams, “The Implementation

of a Dynamic Load Balancer,”Proc. of SIAM Hypercube

Multiprocessors Conf., 1987, pp. 114–121.

Seyed Hossein Kamali et al. 22

[7] A. Ghafoor, T. R. Bashkow and I. Ghafoor, “Bisectional

fault–Tolerant Communication Architecture for
Supercomputer Systems, “IEEE Trans. on Computers, vol. 38,

pp. 10, October 189, pp. 1425–1446.

[8] A. Lapedes and R. Farber, “Nonlinear Signal Processing

Using Neural Networks: Prediction and System Modeling,”

Tech. Rep. LA–UR–87–2662, Los Alamos National Lab.,

NM, 1987.
[9] H.–C. Lin and C. S. Raghavendra, “A Dynamic Load

balancing Policy with a Central Job Dispatcher (LBC),” Proc.

of The 11–th Int’l conf. on Distributed Computing systems,

May 1991, pp. 264–271.

[10] M. Livny and M. Melman, “Load Balancing in Homogeneous
Broadcast Distributed Systems,” Proc. of ACM Computer

Network Performance Symposium, April 1982, pp. 47– 55.

[11] R. Luling, B. Monien and F. Ramme, “Load Balancing in

Large Networks: A Compar

ative Study,” Proc. of The Third Symposium on Parallel and

Distributed Processing, December 1991, pp. 686–689.

[12] J. Moody and C. Darken, “Fast Learning in Networks of

Locally–Tuned Processing Units,” Neural Computing, 1(2),

1989, pp. 281–294.

[13] B. A. A. Nazief, “Empirical Study of Load Distribution

Strategies on Multicomputers,” Ph.D Dissertation, University

of Illinois at Urbana–Champaign, 1991.
[14] J. Platt, “A Resource–Allocation Network for Function

Interpolation,” Neural Computing, 3(2), 1990, to appear.

[15] X. Qian and Qing Yang, “Load Balancing on Generalized

Hypercube and Mesh Multiprocessors with LAL,” Proc. of

The 11th Int’l conf. on Distributed Computing systems, May

1991, pp. 402–409.

[16] D. E. Rumelhart, G.E. Hinton and R.J. Williams, “Learning

internal representations by error propagation,” Parallel

Distributed Processing, Vol. 1, Ch. 8, 1986, MIT Press,

Cambridge (MA).

[17] M. Schaar, K. Efe, L. Delcambre and L. N. Bhuyan, “Load

Sharing with Network Cooperation,” Proc. of The Fifth

Distributed Memory Computing Conference, April 1990, pp.

994–999.

[18] W. Shu, “Chare Kernel and its Implementation on

Multicomputers,” Ph.D Dissertation, University of Illinois at

Urbana–Champaign, 1990.
[19] A. Svensson, “History, an Intelligent Load Sharing Filter,”

Proc. of 10–th Intl. Conf. on Distributed Computing Systems,

1990, pp. 546–553.

[20] M. F. Tenorio and W. Lee, “Self–Organizing Neural

Networks for the Identification Problem,” Advances in

Neural Information Processing Systems 1, D. Touretzky, ed.,

Morgan–Kaufmann, San Mateo, 1989, pp. 57–64.

[21] M. M. Theimer and K. A. Lantz, “Finding Idle Machines in a

Workstation–based Distributed System,”Proc. of 8–th Intl.

Conf. on Distributed Computing Systems, 1988, pp. 112–122.

[22] K. S. Trivedi, Probability & Statistics with Reliability,
Queuing and Computer Science Applications, Prentice–Hall,

Inc., Englewood Cliffs, NJ, 1982.

[23] Y. Wang and R. J. T. Morris, “Load Sharing in Distributed

Systems,” IEEE Trans. on Computers, C–34 no. 3, March

1985, pp. 204–217.

[24] A. S. Weigend, B. A. Huberman and D. E. Rumelhart,
“Predicting the Future: A Con-nectionist Approach,”

submitted to the International Journal of Neural Systems,

April 1990.

