
International Journal of Computer Science and Telecommunications [Volume 2, Issue 9, December 2011] 22

Journal Homepage: www.ijcst.org

Mohammad Javad Abbasi
1
, Somayeh Koupaeimalek

2
, Suren Khachateryan

3
 and Muhammad Shafi Abd Lattif

4

1
Department of Computer Science, State Engineering University of Armenia

2,4
Universiti Technologi Malaysia

3
American University of Armenia

Abstract— To achieve better performance in parallel

processing, which is implemented based on java application. In

this article, we work on high performance of parallel processing

in a local network that computer can be connected as a form of

the cluster making available Java Virtual Machine (JVM).

However, java is not suitable for parallel processing, JavaParty

adds Remote Method Invocation (RMI) to the java application.

This article present performance of parallel processing based on

java using JavaParty. The result shows the performance of

parallel processing has resulted in decrees the execute time by

adding JVM. Advance in JavaParty had provided easy to use

tools and environment or the development of parallel

application.

Index Terms– Parallel processing, Java, JavaParty, Remote

Method Invocation, Cluster and Execute Time

I. INTRODUCTION

ECENT advance in popular computer technology has

great advance. Hardware device are very inexpensive

and power of computing continues to grow up today.

The effective of cheap personal computer to get powerful

computing system is to provide cluster of computers using

open source software and hardware devices linked with high

speed network connection system. This offer a possible

solution with reasonable price and avoiding issue provide

high performance in parallel computing. Parallel computing

can be executed more powerful and faster when use multiple

computer instead of just use one type of the same computer.

Java is one high-level of programming language that has

great effect in use with high performance parallel computing.

Because when write program with java language it is ideal for

the safe object oriented programming type for writing faithful

and constant on every scales. Unfortunately, there are many

problem of parallel method in java programming language

that makes it a lesser amount of favored selection. These

hurdles are lack of multidimensional array, insufficient of

complex number, performance of floating point and

sequential of software execute. However, inter- process

mechanism is mean issue problem to run java program that

we called it Remote Method Invocation (RMI).

RMI made some problem during run in cluster environment

with following:

• The speed of RMI is a very slow in low latency and

high bandwidth environment.

• In cluster environment RMI’s overhead for determine

the problem in network is too verbose.

• Lower efficiently and sustainability happen when the

size of program increase.

• Implemented program with RMI is boring, difficult to

manage and spend more time.

JavaParty is major solution for those problems we mention

above in distributed environment. Traditional java support

distributed parallel with synchronizations and thread method.

While multithreads are limited to single address space

JavaParty extend the ability of java to distributed computing

environment. JavaParty can declare class as remote which can

process in different distributed machine. While javas are not

able run program in one single machine remote class and their

instance are easily accessible in distributed cluster. As far as,

remote classes connected with high bandwidth and low

latency JavaParty can be shows a distributed virtual machine

over several computers. However, it is different for design

traditional fault tolerance computer network communication

over long distance.

II. RELATED WORK

Though for distributed computing there are many software

package, just java implementation are explored in this section.

A. Javaparty

JavaParty use Remote Method Invocation for made easy

port for multi-threaded to distributed cluster, it can built

library to connect with another node in distributed

environment. In java code we should tag the remote code to

clear which code should to be run remotely in distributed

cluster. The JavaParty Compiler (JPC) generates suitable code

required to implement remote method invocation. One

important advantage of JavaParty is that it considerably

reduces the time to write a parallel Java program.

R

Java Based High Performance of Parallel Processing

Application with JavaParty

ISSN 2047-3338

Mohammad Javad Abbasi et al. 23

B. MPIJava

Massage Passing Interface (MPI) is an object oriented

interface for distributed environment. MPI provide the high

performance of communication library and application

topology by providing java binding. It does not consider to

the java application, where it able to work with any platform

that made well-matched java language and MPI environment.

C. Manta

Manta is one java compiler that cans java codes to x86

executable that is very faster than other java implementation,

same as JavaParty. Manta able supports the java language, for

example garbage, collection and exception. However, manta

is high efficient it does not have RMI package for emot

interface.

III. JAVAPARTY

Java party a distributed java virtual machine in top of

regular java virtual machine that execute on the nodes of

workstation cluster .however this techniques can really be

applied to object-oriented and since, in general, it’s not in

array-based .more over parallelism dose not stem from for all

loop, do across-loop or do all-loop but instead expressed by

mean of thread object to make object accessible from other

node.

Java’s remote method invocation (RMI) used instead of

insert many verbose RMI command manually in to his multi-

threaded java application to port is from single workstation to

cluster ,java party allows him to declare class to be remote

.java party then generate all the necessary RMI command

automatically.

JavaParty provided the multi –threaded java program to a

remote environment such as heterogeneous. Java's language

supports the threads and synchronization methods. While

multi-threaded Java programs are incomplete to a single

address space, JavaParty extends the capabilities of Java to

distributed computing environments.

The regular way of porting a parallel application to a

discrete condition is the use of a communication library.

Java's Remote method invocation (RMI) reduces the

execution of communication protocols unnecessary, but still

indications to increased program difficulty. The motives for

increased complexity are the limited RMI capabilities and

other practicality that must be fulfilled for formation and

access of remote objects.

A. Java RMI Architecture

Fig. 1 shows the different layers of the Java RMI

architecture. These layers include stubs/skeletons, reference

layer, and remote transport layer.

1) Stubs and Skeletons: In javaparty RMI can use stubs

and skeletons to communicat with remote objects. A stub for

a remote object acts as a client's local representative or proxy

for that object.

On the server side the skeleton object inverse

transformation parameter list and result value by restoring by

correct type of the parameter, invoking the request method on

Fig. 1: Java RMI Architecture

the server implementation object and convert in the result

back to generic representation to the caller.The caller invokes

a method on the local stub which is responsible for carrying

out the method call on the remote object. In RMI, a stub for a

remote object implements the same as set of remote

interfaces that a remote object implements.
2) Reference Layer: The reference layer responsible for

uniquely addressing remote object and dispatching incoming

request to the correct server the object number combination

with internet address and port ,the object was export on the

identities the object in distributed environment .

3) Transport Layer: The transport layer it is responsible

caching connection to remote machine using the appropriate

network technology . the transport technology also defines the

wire protocol that is used for the communication .there are

two transport technology’s implemented for KRMI ,on for

regular TCP/IP socket called Socket Technology and on for

the Para station network layer over Myrinet¹ communication

hardware.

IV. COMPILING, AND RUNNING APPLICATION

A. JavaParty Syntex

Java language modifier with remote that we called it

JavaParty. A class declaration can be prepended with this

remote modifier to state a class a remote class [9]. Hear we

shows sample code of remote class.

public remote class hello {

/** instance variable of remote

class */

public int x;

public void foo() { ... }

public static int y;

public static void bar() { ... }

}

As you see in sample code there is not different between

remote class code and non-remote class code. Instance, in

remote class just add remote syntax for communication with

other object and also they can link together. In below show

International Journal of Computer Science and Telecommunications [Volume 2, Issue 9, December 2011] 24

other instances of instantiating and opening an adaptable of a

remote class remain assumed as follows:

hello r = new hello()

created remote object

r.x = 42;

r.foo()

hello.y = 13;

class

hello.bar();

The example of working in JavaParty is used to test

whether an object is to be an illustration of a convinced class

at runtime. Remote objects may be allocated to variables that

are confirmed to be of type java.lang.Object [9]. This is

shown in the bellowing code.

Object obj = new hello();

remote class R.

if (obj instanceof hello) { ... }

B. Setup

In order to run and compile the JavaParty, the JavaParty

package must be installed in your java directory.

Requirements, downloads and setup registration are available

from [9].

C. Compiling Applications

When javaparty has been registered, java application

program can be written with javaparty language code and run

this code. We can compile javaparty code in any PC with java

1.4.2 and installed javaparty package. To validate the process,

a version of Hello World called HelloJP provided by [9] will

be used:

package examples;

public remote class HelloJP {

public void hello() {

// Print on the console of the virtual

machine where the

// object lives

System.out.println("Hello JavaParty!");

}

public static void main(String[] args) {

for (int n = 0; n < 10; n++) {

HelloJP world = new HelloJP();

world.hello();

}

}

}

Hear we use following stage to compile the HelloJP code:

1) Save the HelloJP with HelloJP.java file name.

2) Create a directory named classes where you wish to

exist in your use classes to.
mkdir classes

3) Compile the code.
jpc -d classes HelloJP.java

D. Running Applications

Hear we show how to run HelloJP:

1) From the location of classes, set the class path. For

clusters without a distributed file system, a reliable copy of all

the classes with the same path must be copied to each

machine.
setenv CLASSPATH classes

2) Run the JavaParty application.
jpc examples.HelloJP

Remote objects are formed on the VM and the output message

is printed on the head machine console.
Hello JavaParty!

V. SIMULATION RESULT

In our test we use eight pc and all had Intel operator Dual-

core x86, 64bit CPUs running as 2600 MHz. The names of

this pc are jp1, jp2, jp3, jp7and jp8. All pc had 1 GB of ram.

The main goal of this process is characterizing the whole

system or the subsystem in order to find the potential

performance.

In this paper we measure benchmark for three purpose:

measuring system performance, measuring the subsystem

performance, and measure the change of system performance

after and before comparisons.

We can measure benchmark the ability of pc to execute of

test. In order the results are recorded and they able to use as

reference to compare with the other benchmark measurement.

In any time the software and hardware has been change the

benchmark can completed for comparison in after and before

changing. For improvement we often compared with money

and time cost to make improvements in benchmark. However

there are more open source program for cluster and most of

them designed for MPI and heterogeneous. In JavaParty web

site there is available benchmark program for heterogeneous

and MPI which is easy to run and compiled. In first

examination of benchmark, it shows us that most of this

benchmark compile and run too easy and quick to notification

any significant improvements with the heterogeneous cluster.

This was more expected outstanding to the fact that these

benchmarks were calculated to run on PC from the late 90s.

Even though disappointment with not actuality capable to

apply best of the benchmarks, one, named electrostatic

algorithm, presented a more consistent, longer run time

offering a more precise and accurate benchmark. A new

routing algorithm on a grid is tested. It is based on

electrostatic interactions between obstacles and a

conventional particle, whose motion trajectory denotes a path

between two given grid cells. The algorithm inherits the

power of maze routing in that it is able to route huge matrix

with various obstructions. The large memory requirement of

the conventional maze algorithm is alleviated through

successive net refinement, which constrains the maze

searching to small regions. The algorithm shows advantages

in routing huge configurations with sparse layout of the

obstacles.

The furthest loop has been parallelized using a cyclic

distribution for load balance. After the program completes,

the elapsed time is shown.

Mohammad Javad Abbasi et al. 25

The Electrostatic algorithm JavaParty code was

downloaded from [9]. It was then compile by jpc and run

by jprm, jpvm.

The simulation was run 40 sequential times with 2 PC, 3

PC, 4 PC, 6 PC and 8 PC. The nasty and normal eccentricity

of the usage time for each set was calculated. The simulation

results are shown in Table 1 and are shown in Figure 2. It

seems from these results that the speed-up of electrostatic

algorithm is depending to the number of PC involved in the

accomplishment time. Comparing the mean execution times,

adding two more PC to the original two reduced the execution

time meaningfully from 68.5 seconds to 57.3 seconds. Adding

six PC to the original two declined the run time to 19.4

seconds.

Table 1: electrostatic Result Summary

PC No 2 3 4 6 8

Time 68.5 57.3 43.5 31.3 19.4

Sum 29 18.7 16.8 11.1 4.87

Fig. 2: Execution times for electrostatic routing

During the running simulation some of the machine did not

continuously run. For instance, when jp1 and jp2 were

configured to run and compile the electrostatic algorithm

rarely jp1 CPU’s assist in the execute time of the code. Due to

this happening, the normal deviation significantly going

higher than estimated, particularly when we use fewer PC for

running.

VI. CONCLUSION

This Paper presented that while executing a parallel Java

method with JavaParty, the execution time can be reduced by

adding so many extra virtual machines. For increase the

performance and QoS profile we can use cluster interconnect

to arrange the JavaParty traffic between PC. During this

research we understand the JavaParty is elegant way to

implement a heterogeneous cluster with java application. In

comparison of JavaParty and RMI, the JavaParty is easier

than RMI to work with it. Similarly matched to traditional

RMI, JavaParty programs also become accustomed more

compliantly to numerous network situations and can

achievement locality. In this implementation, we presented

techniques to realize local access to transparent remote

JavaParty object within the same order of magnitude as

regular java method invocation. JavaParty’s improved

runtime structure and serialization is more rapidly and more

capable associated with Java’s normal environment providing

a more suitable package for a carefully related group.

REFERENCES

[1] M. Philippsen and M. Zenger, “JavaParty: Transparent

Remote Objects in Java,”IEEE Concurrency, Vol. 9, No. 11,

pp.1125-1242, 1997.

[2] W. Stallings, Operating Systems. 4th ed., Upper Saddle

River: Prentice Hall,2001, p. 779.

[3] Manta: Fast parallel java. Retrieved May 20, 2007 from

www.cs.vu.nl/manta.

[4] B. Haumacher, M. Philippsen, and C. Nester. A More Efficient

RMI for Java.Concurrency: Practice and Experience,

12(7):495-518, May 2000.

[5] P. Gray and V. S. Sunderam. IceT: Distributed Computing and

Java. Retrieved May 9, 2007 from

http://citeseer.ist.psu.edu/192886.html.

[6] Michael Philippsen and Bernhard Haumacher. Locality

optimization in JavaParty by means of static type analysis, In

Proceedings of the EuroPar'98, Southampton, England,

September 2-3, 1998, September 1998.

[7] Matthias Jacob, Michael Philippsen and Martin Karrenbach.

Large-Scale Parallel Geophysical Algorithms in Java: A

Feasibility Study, In Concurrency: Practice and Experience

10(11-13):1143-1154, John Wiley & Sons, Ltd., Chichester,

West Sussix, September-November 1998.

[8] Matthias Gimbel, Michael Philippsen, Bernhard Haumacher,

Peter C. Lockemann and Walter F. Tichy. Java as a Basis for

Parallel Data Mining in Workstation Clusters, In Proceedings

of the 7th International Conference on High Performance

Computing and Networking, HPCN Europe 1999 of Lecture

Notes in Computer Science Volume 1593, pages 884-894,

Amsterdam, April 12-14, 1999, Springer Verlag, Heidelberg,

Germany, 1999.

[9] Christian Nester, Michael Philippsen and Bernhard

Haumacher. A More Efficient RMI for Java, In Proceedings of

the ACM 1999 Conference on Java Grande, San Francisco,

USA, June 12-14, 1999, pages 152-159, 1999.

[10] Bernhard Haumacher and Michael Philippsen. More Efficient

Object Serialization, In Proceedings of the International

Workshop on Java for Parallel and Distributed Computing of

Lecture Notes in Computer Science Volume 1586, pages 718-

732, San Juan, Puerto Rico, April 12, 1999, Springer Verlag,

Heidelberg, Germany, April 1999.

[11] Bernhard Haumacher and Michael Philippsen. Exploiting

Object Locality in JavaParty, a Distributed Computing

Environment for Workstation Clusters, In Proceedings of the

Compilers for Parallel Computers (CPC2001), Edinburgh,

Scotland, UK, June 27-29, 2001, pages 83-94, June 2001.

[12] Bernhard haumacher and Michael philippsen, Efficient local

calls to potentially remote object in JavaParty,International

conference of parallel processing in spania.

