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  Abstract— Approximate Reasoning using fuzzy logic provides 

a realistic framework for human reasoning. The concept of vague 

logic introduced by Gau & Buehrer [3] is the higher order fuzzy 

logic. Our present work is based on the concept of vague Logic. 

In this paper we are defining the approximate reasoning 

implication rules Generalized Modus Ponens (GMP) and 

Generalized Modus Tollens (GMT) using vague logic. As a 

special case we are also reducing the concept of GMT and GMP 

using fuzzy logic with the help of example.  

 

Index Terms— Vague Logic, Linguistic Variable, Approximate 

Reasoning (AR), GMP and GMT  

I. INTRODUCTION 

N the real word, natural language and human knowledge 

have a big concern of imprecision and vagueness. The theory 

of fuzzy logic given by Zadeh [9] in 1965 is a good 

mathematical and methodological basis for capturing the 

uncertainties, imprecise information associated with human 

related processes, such as identifying relationships, thinking and 

reasoning. There are number of generalized forms [1]-[ 2]-[3]- 

[6] of fuzzy set theory [9] exists in the literature  like fuzzy 

theory, two-fold fuzzy theory,  vague theory, intuitionistic fuzzy 

theory, probabilistic fuzzy theory,  etc. Our present work is 

based on the concept of vague theory recently introduced by 

Gau and Buehrer [3]. Vague sets are the higher order fuzzy sets. 

This generalization makes the procedure more complex but the 

result achieved by higher order theory could be the better one.  

Let X is a universe of discourse; say the collection of all 

students of ITM University. Let A be a vague set of all “good-

in-computers students” of the universe X, and B be a fuzzy set 

of all “good-in-computers students” of X. Suppose that an 

intelligent agent A1 proposes the membership value µB() for the 

element x in the fuzzy set B by his best intellectual capability. 

On the contrary, another intelligent agent A2 proposes 

independently two membership values tA(x) and fA(x) for the 

same element in the vague set A by his best intellectual 

capability. The amount tA(x) is the true-membership value of x 

and fA(x) is the false-membership value of x in the vague set A. 

Both A1 and A2 being human agents have their limitation of 

perception, judgment, processing-capability with real life 
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complex situations. In the case of fuzzy set B, the agent A1 

proposes the membership value µB(x) and proceeds to his next 

computation. There is no higher order check for this 

membership value in general. In the second case, the agent A2 

proposes independently the membership values tA(x) and fA(x), 

and makes a check by using the constraint, tA(x) + fA(x) ≤ 1. If it 

is not honored, the agent has a chance to rethink and to reshuffle 

his judgment procedure either on ‘evidence against’ or on 

‘evidence for’ or on both.  

In 1979 Zadeh [5], father of fuzzy logic introduced the theory 

of approximate reasoning. This theory provides a powerful 

framework for reasoning in the face of imprecise and uncertain 

information. Prof. Zadeh says, "In its narrow sense, fuzzy logic 

is logic of approximate reasoning which may be viewed as a 

generalization and extension of multivalued logic”. The main 

motivation of the theory of approximate reasoning is the desire 

to create a qualitative framework that will use to derive an 

approximate conclusion from imprecise knowledge [7]. 

  Central to this theory is the concept of linguistic variable that 

reflects that most of the human reasoning is approximate rather 

than exact. A linguistic variable is a variable whose values are 

expressed in words rather than numbers. For example, Age is a 

linguistic variable if its values are linguistic rather than 

numerical, i.e., young, not young, very young, quite young, old, 

not very old and not very young, etc., rather than 20, 21, 22, 

23.... Zadeh introduced a number of translation rules which 

allow us to represent some common linguistic statements in 

terms of propositions in our natural language. 

 In fuzzy logic and approximate reasoning, Fuzzy inference 

rules are basis for approximate reasoning suggested by Zadeh 

[5]. Fuzzy sets & fuzzy relations are used to represent simple 

and complex fuzzy propositions in fuzzy logic. Rules of 

inference are used to derive new propositions from a given 

collection of fuzzy propositions. Zadeh introduced the form of 

inference rule in approximate reasoning. The most important 

fuzzy implication inference rules are the Generalized Modus 

Ponens (GMP) and the Generalized Modus Tollens (GMT). The 

classical Modus ponens rule says if p is true and p → q is true 

then q is true.  

The more prevalent fuzzy logic is one in which rules of 

inference such as Modus Ponens, Modus Tollens and 

Hypothetical syllogism are “fuzzified”. The fuzzy implication 

inference (GMP or GMT) is based on the compositional rule of 

inference for approximate reasoning.  The compositional rule of 

inference is a tool to implement the generalized "Modus 

Ponens" which allows us to treat a key problem in Approximate 

Reasoning [12].  
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We have a piece of expert's knowledge presented by means 

of a rule if x is A then y is B where A and B are the linguistic 

variables. A new fact is considered with the form x is A', A' 

being another linguistic term on X. We must infer a conclusion 

i.e. the consequent of the rule, which will have the form y is B', 

B' will be obviously another vague statement. The approximate 

reasoning process is modeled by means of an implication 

function f: [0, l] x [0, l] -> [0, 1]. Thus expert's knowledge is 
captured in a fuzzy relation R(x, y) = f (A(x), B(y)). All data are 

combined into the statement:  

if x is A then y is B and x is A'. 

B' is finally computed by B'(Y) = sup min (A'(X), R(X, Y))  

The classical Modus Tollens rule says if p → q is true and q 

is false then p is false. The Generalized Modus Tollens, if the 

rule is “if x is A then y is B” and the fact is “y is B
�
” [11], the 

consequent will be x is A
�
 and A

�
 can be computed by  

A
�
 (x) = sup main (B

�
 (y), R(X, Y) 

In this paper, we are introducing the approximate reasoning 

with vague logic.  

II. PRELIMINARIES 

Next Section discusses the basic preliminaries of vague set 

theory. Then we discuss the literature review of fuzzy logic for 

approximate reasoning. 

Over the classical set theory, Zadeh introduced the concept of 

fuzzy set theory which has been applied almost all the fields 

such as computer sciences, medical sciences, to solve the 

mathematical problems, expert systems and many more. 

Let X = {u1, u2... un} be the universe of discourse. The 

membership function µA (u) of a fuzzy set A is a function µA : X 

→[0,1]. A fuzzy set A in X is defined as the set of ordered pairs 

A = {(u, µA(u) ) : u∈  X }, where µA(u) is the grade of 

membership of element u in the set A [9]. The greater µA(u), the 

greater  “the element u belongs to the set A”. With this concept 

Prof. Zadeh introduced fuzzy set theory. 

A. Vague Set 

Gau and Buehrer [3] pointed out that single membership 

value µA (u) combines the ‘evidence for u’ and the ‘evidence 

against u’. It does not indicate how much there is of each. 

Consequently, there is a necessity of higher order fuzzy sets like 

vague sets, which could be treated as a further generalization of 

Zadeh’s fuzzy sets [9]. 

Definition 1: A vague set (or in short VS) A in the universe of 

discourse X is characterized by two membership functions 

given by [4]: 

1) A truth membership function tA: X ∈  [0, 1], 

2) A false membership function fA: X ∈  [0, 1], 

where tA(u) is a lower bound of the grade of membership of u 

derived from the ‘evidence for u’, and fA(u) is a lower bound on 

the negation of u derived from the ‘evidence against u’, and 

their total amount cannot exceed 1, i.e., tA(u) + fA(u) ≤ 1. Thus 

the grade of membership of u in the vague set A is bounded by a 

subinterval [tA (u), 1- fA (u)] of [0, 1]. This indicates that if the 

actual grade of membership is µ(u), then tA(u) ≤ (u) ≤ 1 - fA(u).  

The vague set A is written as A = {< u, [tA (u), fA (u)] >: u ∈  

X, where the interval [tA (u), 1 - fA (u)] is called the ‘vague 

value’ of u in A and is denoted by VA (u). For example, 

consider a universe X = {young, old, very old}. A vague set A 

of X could be A = {<young, [.8, .2]>, <old, [.3, .5], <very old, 

[.4, .6]>}. Here in case of linguissic variable “young” tA is .8 

and 1-fA is 2. 

Definition 2: The complement of a vague set A is denoted by 

A
�
 and is defined by 

tA
�
 (x) = fA(x) 

1- fA
�
 (x) = l - tA(x) 

B. Vague Relations and Composition 

In this paper, our work is based on the theory of vague 

relations. In this section we discuss the recent literature on 

vague relations & their properties. 

VAGUE RELATION (VR) 

Let X and Y are two universes. A vague relation (VR) 

denoted by R (X→ Y) of the universe X with the universe Y is 

VS of the Cartesian product X × Y. The true membership value 

tR(x, y) estimates the strength of the existence of the relation of 

R-type of the object x with the object y, whereas the false 

membership value fR(x, y) estimates the strength of the non-

existence of the relation of R-type of the object x with the object 

y [8]-[10]. Generally the relation R (X → Y) is denoted by the 

notation R. 

Example: Consider two universes X = {a, b} and Y = {x, y, 

z}. Let R be a vague relation of the universe X with the universe 

Y (X→Y) proposed by an intelligent agent as shown by the 

following table. 

Table 1 

VR: R (X→Y) 

 

R (X→Y) X Y Z 

A (.6,.3)  (.3,.5) (.7,.3) 

B (.2,.5) (.7,.3) (.4,.4) 

 

The proposed VR reveals the strength of vague relation of 

every pair X →Y; For example, it reveals that the object ‘a’ of 

the universe X has R-relation with the element ‘z’ of Y with the 

following estimation: 

Strength of existence of the relation = .7 

Strength of non-existence of the relation = .3 

A relation E (X→Y) is called a Complete Relation from the 

universe X to the universe Y if VE(x, y) = [1, 1], ∀ (x, y) ∈

X×Y. A relation Φ (X→Y) is called a Null Relation from the 

universe X to the universe Y if VΦ (x, y) = [0, 0], ∀ (x, y)∈
X×Y. 

COMPOSITION OF VRs 

The composition of binary relations is a concept of forming a 

new relation S ° R from two given relations R and S. A vague 

set and a vague relation could also form a new vague relation 

with a useful significance. Similarly two vague relations, under 

a suitable composition, could too yield a new vague relation. 

Composition of a relation is important for application, because 

of the reason that if a relation of a universe X with another 

universe Y is know and if a relation of the universe Y with a 

third universe Z is known then the relation of X with Z could be 
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computed. In our paper, we use composition of a vague set and 

a vague relation to yield a new relation. 

 

Definition 3 (Composition of a VS and a VR): Let A be a VS 

of the universe X and R be a VR of the universe X with another 

Let A be a VS of the universe X and R be a VR of the universe 

X with another universe Y. The composition of R with A, 

denoted by B = R °A, is a VS in Y given by  

VRoA(y) =   [isupx∈X {tA(x) ˆ tR(x, y)}, 

             isupx∈X {(1 - fA)(x)ˆ(1- fR)(x, y)}]. 

 

Definition 4 (Composition of two VRs): Let R(X → Y) and 

S(Y → Z) are two VRs. Then the composition relation B = R 

° S is a VR of X with Z given by 

VRoS(x, z) = [isupy∈Y {tR(x, y) ˆ tS(y, z)},  

              isupy∈Y {(1- fR) (x, y)ˆ(1- fS)(y, z)}]. 

This composition yields a vague-valued link between the 

objects x (of X) and z (of Z) through the elements y (of Y). 

Clearly R ° S ≠ S ° R. 

C. Fuzzy Logic and AR 

Suppose that we are given an x
�
 ∈ X and want to find an y

�
∈ 

Y which corresponds to x
� 
under the rule-base. 

R1 : If x = x1 then y = y1 

R2 : If x = x2 then y = y2 

. . . . . . 

Rn : If x = xn then y = yn 

fact:  x = x
�
 

consequence:  y = y
�
 

Let x and y be linguistic variables, e.g. “x is high” and “y is 

small”. The basic problem of approximate reasoning is to find 

the membership function of the consequence part. For this Prof. 

Zadeh has introduced a large number of translation rules. 

In fuzzy logic and approximate reasoning, the most important 

fuzzy implication inference rule is the Generalized Modus 

Ponens (GMP). Fuzzy inference rules are the basis of 

approximate reasoning suggested by Zadeh [5]-[7]. 

Definition 5: The Generalized Modus Ponens rule says 

Rule : if x is A then y is B 

fact  : x is A
�
 

consequence:  y is B
�
 

where the consequence B
�
 in the matrix form  is determined as 

a composition of the fact and the fuzzy implication operator. 

  B
�
=A

�
 ° (A→B) that is equivalent to 

B
�
 (y) = supx∈X min {A

�
 (x), (X → Y) (x, y)}, y ∈ Y. 

 

Definition 6: The Generalized Modus Tollens inference rule 

says: 

Rule : if x is A then y is B 

fact : y is B
�
 

consequence:  x is A
�
 

      A
�
 = B

�
 ° (A→B) that is equivalent to 

A
�
 (x) = supy∈Y min {B

�
 (y), (A → B) (x, y)}, x ∈ X. 

III. RELATED WORK 

Prof. L. A. Zadeh [5] described the term linguistic variable, a 

variable whose values are words or sentences in a natural or 

artificial language. He also characterized linguistic variable by a 

quintuple (
χ

, T (
χ

), U, G, M). Author discussed the concept 

of hedges such as very, quite, extremely, etc., as well as the 

connectives and and or in this paper. The author discussed the 

concept of a linguistic variable provides a means of 

approximate characterization of phenomena which are too 

complex or too ill-defined to be amenable to description in 

conventional quantitative terms which leads to fuzzy logic. By 

providing a basis for approximate reasoning, that is, a mode of 

reasoning which is not exact nor very inexact, such logic may 

offer a more realistic framework for human reasoning than the 

traditional two-valued logic. The author described the main 

applications of the linguistic approach that lie in the realm of 

humanistic systems-especially in the fields of artificial 

intelligence, linguistics, human decision processes, pattern 

recognition, psychology, law, medical diagnosis, information 

retrieval, economics and related areas. 

E. H. Mamdani described an application of fuzzy logic in 

designing controllers for industrial plants [11]. The discussed 

method has been applied to pilot scale plants as well as in a 

practical industrial situation. The author also discussed the 

potential for using fuzzy logic in modeling and decision 

making. From the application point of view both the learning 

situation described as well as decision making can be best 

framed in terms of hierarchical structures. The work described 

in this paper demonstrates the great usefulness of applying 

Approximate Reasoning using fuzzy logic to management and 

other humanistic systems. 

IV. IMPLEMENTATION OF APPROXIMATE REASONING USING 

VAGUE LOGIC 

In the previous section, we discussed the literature review of 

fuzzy logic and approximate reasoning. In this section we 

introduce the vague logic with approximate reasoning by 

applying the vague set theory over the GMP and GMT. As Gau 

& Buehrer defined the major advantage of vague sets over 

fuzzy sets is that vague sets disjoin the positive and negative 

evidence for membership of an element in the set. We not only 

have an estimate of how likely it is that an element is in the set, 

but we also have a lower and upper bound on this likelihood. 

This lower/upper bound can be used to perform constraint 

propagation. For instance, constraint propagation can be used to 

detect inconsistencies in assignments of intervals to Boolean 

expressions involving the sets. 

A. Definition of GMP for Vague logic 

The Generalized Modus Ponens rule in vague logic says 

     Rule : if x is A then y is B 

fact  : x is A
�
 

consequence:  y is B
�
 

Let x and y be the linguistic variables and here these 

linguistic variables are defined by the member functions that 

provides the information “evidence for u” and “evidence against 

u” i.e. tA and fA.  Equation (1) shows how the consequence B
Ꞌ
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can be determined as a composition of fact in vague logic and 

vague implication operator. 

VB
�
 =A

�
 ° (VR) that is equivalent to 

VB
�
 = [isupx∈X {tA

�
 (x) ˆ tR (x, y)},   

             isupx∈X {(1- fA
�
) (x) ˆ (1- fR) (x, y)}]  (1) 

Where tR (x, y) = J [tA(x), tB(y)] = min [1, 1-t A(x) + tB(y)] & 

             fR (x, y) = J [fA(x), fB(y)] = min [1, 1-fA(x) + fB(y)] 

 

B. Definition of GMT for Vague logic 

The Generalized Modus Tollens rule for vague logic says 

       Rule : if x is A then y is B 

Fact : y is B
�
 

consequence:  x is A
�
 

Equation (2) shows how the consequence A
Ꞌ
 can be 

determined as a composition of fact in vague logic and vague 

implication operator: 

VA
�
 =B

�
 ° (VR) that is equivalent to 

VA
�
 = [isupx∈X (tB

�
 (x) ˆ tR (x, y)},  

          isupx∈X{(1- fB
�
)(x)ˆ(1- fR)(x, y)}]  (2) 

Where tR(x, y) = J [tA(x), tB(y)] = min [1, 1-t A(x) + tB(y)] &  

             fR (x, y) = J [fA(x), fB(y)] = min [1, 1-fA(x) + fB(y)] 

V. NUMERICAL ANALYSIS 

Case1: Let X = {x1, x2, x3} and Y = {y1, y2} be the sets of 

values of variables X, Y. 

Let A = [0.4, 0.6]/x1 + [0.8, 0.9]/x2 + [0.5, 0.6]/x3 and  

       B = [0.9, 0.9]/y1 + [0.3, 0.5]/y2. 

Let A
�
 = [0.5, 0.6]/x1 + [0.8, 0.9]/x2 + [0.6, 0.7]/x3. 

According to the equation (1) defined in previous section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VB
�
 =   [0.8, 0.9]/y1 + [0.6, 0.7]/y2 

 

Case2: Let X = {x1, x2, x3} and Y = {y1, y2} be the sets of 

values of variables X, Y. 

Let A = [0.4, 0.6]/x1 + [0.8, 0.9]/x2 + [0.5, 0.6]/x3 and  

       B = [0.9, 0.9]/y1 + [0.3, 0.5]/y2. 

Let B
�
 = [0.8, 0.8]/y1 + [0.6, 0.7]/y2. 

 

According to equation (2): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VA
�
 = [0.8, 0.8]/x1 + [0.8, 0.8]/x2 + [0.8, 0.8]/x3 

VI. CONCLUSION 

In this paper we have implemented approximate reasoning. 

We have used the vague set tool in order to get the better 

approximate result as it separates the positive and negative 

evidence of membership in the relation. We have extended the 

Generalized Modus Ponens & Generalized Modus Tollens 

implication rules with the vague logic. As a special case, the 

method reduces to a method of approximate reasoning using 

fuzzy logic. In this work we considered an example to illustrate 

the GMP and GMT implication rules in matrix form. 

Obviously, if there is no in deterministic element in the 

membership values throughout the computations, the notion of 

vague relations reduces to the notion of fuzzy relation. 
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