
International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 38

Journal Homepage: www.ijcst.org

K. Sampth kumar
1
, Lokeshwari

2
 and J. Srikanth

3

Department of CSE, Aurora Engineering College, Bhongir, Nalgonda, A.P., India

Abstract– An XML search engine XSearch that addresses an

open drawback in XML keyword search: given relevant matches

to keywords, the way to compose question results properly in

order that they will be effectively ranked and simply digested by

users. The approaches adopted within the literature generate

either overwhelmingly giant results or fragmentary results, each

of which can cause the ranking schemes to be ineffective.

Intuitively, every question features a search target and every

result ought to contain precisely one instance of the search target

together with its proof. We have a tendency to developed

XSearch that composes atomic and intact question results driven

by users’ search targets.

Index Terms– Keyword Search, XML and XSearch

I. INTRODUCTION

OMPARED with text search engines where the came

back results are static documents, XML keyword search

engines are able to give finer-grained question results

than the complete XML documents as a result of the supply of

the structure data, that provides opportunities to higher, satisfy

the users’ data wants. However, since everything is

represented as a sub tree in an XML database, a way to

determine the individual question result’s granularity could be

a new challenge that's unaddressed. As shown within the

following example, applicable result composition could be a

key to ranking.

Example 1.1: A user seeking the award data of a student

named Ramesh during a.P would issue question Q1 in Table I,

“A.P, Ramesh, Rakesh, and award”. The schema of the XML

tree is shown in Fig. 1. Note that our system will handle XML

documents while not DTDs conjointly.

Ideally every question result ought to contain one instance

of student, at the side of the connected keyword matches, like

the 2 question results shown in Figure three. Besides, results

ought to be properly ranked. for example, most of the ranking

schemes can rank the coed that has 2 awards over the coed

with one award, as this is often the sole distinction of those 2

question results.

Intuitively, every keyword search incorporates a goal that is

typically the knowledge of a true world entity or relationship

among entities. we tend to use the term search target to seek

advice from the knowledge that the user is longing for, and

target instance to denote every instance of the search target

within the knowledge. Every fascinating question result got to

have specifically one target instance at the aspect of all

associated proof, thus ranking and top-k question processing

are usually based not off target instances, and thus become

meaningful. Specifically, question results of an XML keyword

search ought to satisfy the subsequent 2 properties: Atomicity.

A question result ought to be atomic: it ought to encompass

one target instance. Within the on top of sample question,

every result ought to correspond to a definite student.

Sample Key Word Search:

Fig. 1: Schema of an XML Document

Atomicity permits the ranking methodology to rank target

instances and show the top-k most relevant ones to the user.

Intactness: every question result ought to be intact: containing

the entire target instance moreover as all its supporting data.

Within the on top of sample question, all keyword matches

associated with a similar student ought to be in one result.

With intactness, a ranking methodology has the entire read of

every target instance to provide a good ranking.

However, the question composition ways adopted in

existing XML keyword search engines, named as Sub tree

Result and Pattern Match respectively during this paper, fail to

satisfy the atomicity and/or intactness properties. Sub tree

Result defines a question result as a tree rooted at an LCA

(Lowest common ancestor) node consisting of all relevant

matches that are descendants of this LCA node and therefore

the ways connecting them, as adopted. The results generated

by Sub tree Result usually fail to be atomic.

C

XML Keyword Search: Coarseness Evaluation under

Ambiguity Concerns for Effective Results

ISSN 2047-3338

K. Sampth kumar et al. 39

Fig. 2: Desired Query Results of Q1

Example 1.2: For Q1, a result made by Sub tree Result

typically contains several target instances: the tree rooted at a

university node that contains the match to A.P and every one

the matches to Ramesh, Raeksh and award, like those shown

in Fig. 2. As we are able to see, Sub tree Result violates

atomicity. With several target instances (students) in a very

single result, ranking isn't performed on course instances, and

might be totally unreasonable. Suppose result one has

additional matches to question keywords than result a pair of,

then result one is probably going to be ranked higher by most

existing ranking schemes. However, in result one there's no

student named Ramesh, Rakesh and none of the scholar

associated with Raemsh or Rakesh has any award. In result a

pair of, the scholar that matches Ramesh is mixed with

alternative students that solely match one keyword.

On the opposite hand, Pattern Match defines question |a

question |a question} result as a tree rooted at an LCA node

consisting of specifically one match to every query keyword

that is meaningfully connected with one another and also the

methods connecting them, used. The results generated by

Pattern Match Result typically fail to be intact.

Example 1.3: the highest three results of Q1 generated by

Pattern Match are shown in Fig. 2. Though every result's

atomic, it's not intact: constant target instance (student) named

as Ramesh with 2 awards is presented as 2 results, one for

every match of award. This causes many issues. First, the

highest k results typically contain data regarding but k target

instance, since multiple results will describe constant target

instance. This not solely wastes the user’s time however

makes it troublesome for a user to seek out the highest k

ranked target instances. Second, from such results the user

loses data, e.g., the scholar who has DHS student award and

J.N.T.U award is truly constant person. Furthermore,

separating the supporting data (award) of constant target

instance (student) into multiple results can divide the ranking

signals among these results. As an example, a student named

Ramesh with 2 awards ought to intuitively be ranked above

another Ramesh with one award; however Pattern Match

invalidates this ranking issue by separating this student into 2

results. During this demo, we'll gift a XML keyword engine,

XSearch that addresses the on top of challenges of result

composition and allows effective ranking. Compared with

Fig. 3: Architecture of XSearch

existing keyword search engines, XSearch allows effective

ranking primarily based on search targets. Specifically, the

technical con tributions of this work include: (1) To the most

effective of our information, XSearch is that the initial system

that composes ranking friendly XML keyword search results,

that are driven by inferred user search targets. (2) XSearch

identifies user search targets by inferring the comeback

specification in question keywords, modifying relationship

among keyword matches and also the information entities

concerned within the search. (3) XSearch adopts a unique

question result composition approach towards achieving each

atomicity and intactness properties.

II. SYSTEM OVERVIEW

Fig. 3 shows the architecture of XSearch. Users input a

keyword question similarly as an optional specification of the

search target. First, the Relevant Match Identifier retrieves

nodes within the XML document that match keywords, and

identifies relevant matches. Target Entity Recognizer

classifies XML nodes into entities, attributes and affiliation

nodes, and classifies keywords into come back nodes and

predicates. If the user doesn't explicitly specify the search

target (which is probably going the case as most users are

unwilling to perform advanced searches), Target Entity

Recognizer infers the search target (if not specified by the

user) based mostly on node classes and therefore the

modifying relationships of entities and predicates. Result

Assembler module composes and organizes the results based

mostly on the search target and relevant keyword matches.

Result Ranker ranks the results based mostly on their sizes and

numbers of keyword matches that are common ranking factors

adopted in search engines of these modules use the indexes of

the input XML information engineered by the Index builder

module. Next we have a tendency to briefly introduce the key

modules of the system.

Index Builder: The Index Builder builds 3 indexes to hurry

up question processing:

International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 40

• A node inverted index is constructed to seek out the

nodes matching every keyword.

• A node class index is constructed to retrieve the class of

a node using node ID. we have a tendency to adopt the

approach proposed in X obtain to classify XML nodes

into 3 categories:

• entity, if a node may be a *-node within the DTD;

• Attribute, if a node isn't an entity and has just one leaf

kid. Its leaf kid is named the attribute value;

• Connection node, if a node is neither an entity nor an

attribute.

• A modifier index that maps every attribute worth to an

inventory of entity sorts. An entity sort E is within the

list of attribute worth A, if A not a modifier of E (to be

outlined within the Target Entity Recognizer part).

(a) Sub Tree

(b) Pattern Matches

Fig. 4: Query Results of Q1 Returned by Sub tree Result and Pattern Match

All 3 indexes are engineered offline. The modifier index

may be efficiently engineered by a traversal of the XML

knowledge.

 Target Entity Recognizer: this is often the key module of

XSearch that infers search target for a question. It inters the

search target by analyzing the matches to input keywords and

also the XML knowledge structure. Two situations are

considered:

CASE 1: In several queries, users offer hints regarding the

XML nodes they're probing for moreover because the

conditions these nodes ought to satisfy. we tend to decision

these XML nodes come back nodes and also the conditions

search predicates. The entities related to come back nodes are

thought-about as target entities. Intuitively, if an entity is laid

out in a question while not data regarding its associated

attributes, then seemingly the data of its instances is that the

user’s interest and this entity is taken into account as a

comeback node. If a affiliation node or attribute node is laid

out in a question, however none of their worth descendants

matches any keyword, then most likely the instances of those

nodes in conjunction with the values are what the user is

sorting out. During this case, the entity related to this attribute

(which is taken into account because the nearest ancestor

entity of the attribute), or the closest descendant entity of the

affiliation node, is taken into account because the target entity

for example, for Q1, award would be thought-about as a come

back node, and so student because the target entity.

CASE 2: In case the question keywords don't contain come

back nodes, we tend to exam all the relevant entities and also

the modifying relationship between search predicates and

these entities to spot target entities. We tend to follow 2

inferences to exclude some entities from being target entities.

First, if an attribute worth A seems within the question is and

invariably associated with an entity sort E, then E isn't

seemingly to be the target entity, we tend to decision A the

non-modifier of E. Otherwise, A may be a modifier of E, or A

modifies E. An entity sort may be a candidate target entity if

all predicates within the question modify this entity sort.

Example 2.1: think about Q2, “A.P, undergraduate”, where

each keyword is search predicates. As there are not any come

back nodes, we discover all entities concerned during this

query: university and student. Allow us to choose 2 candidate

semantics of this search that think about totally different

relevant entities because the target entity:

(1) Notice the colleges in 2006 that

(i) Find during a.P

(ii) Have an undergraduate student.

(2) Notice the scholars who

(i) Are undergraduate students and

(ii) Attend a university during a.P.

If we tend to take better look, semantics (1) is counter

intuitive: it specifies 2 conditions for search Target University.

However, each university has undergraduate students. The

second condition doesn't modify (or restrict/constrain) the

university entity in the least, and is unlikely to be employed by

an inexpensive user for looking out universities. Therefore, the

K. Sampth kumar et al. 41

target entity of this question ought to be student that is

changed by each A.P and undergraduate.

The second inference is to look at the modification power of

the modifiers, in case multiple entity sorts are left when the

primary inference. The key attribute of an entity ought to have

the strongest modification power, whose presence shadows/

disables all alternative modifiers.

Example 2.2: think about Q3” Fellowship” as an example.

This question has 2 candidate semantics:

(1) Notice the university named J.N.T.U that has one or a

lot of students who have received Fellowship.

(2) Notice the scholar who attend J.N.T.U and who have

received Fellowship. Within the knowledge, J.N.T.U, that is

that the worth of the key attribute of university uniquely

identifies a university. If the user’s search target may be a

university, s/he doesn't want further keywords like

Fellowship. Therefore, the second semantics a lot of

seemingly reflects what the user really means that. As we are

able to see, the presence of J.N.T.U disables Fellowship as a

modifier of university, so university isn't thought-about as a

target entity.

III. RESULT ASSEMBLER

The Result Assembler module composes atomic and intact

search results primarily based on the target entities inferred by

the Target Entity Recognizer module. If there's only 1 target

entity for the question, then one question results generated for

every instance of the target entity to create certain that it's

atomic and intact. We tend to additionally embody into every

result the matches to every keyword that are closest (compare

to alternative matches for constant keyword) to the current

target entity instance. When a question has multiple target

entities, the user is probably going inquisitive about all target

entities and their relationships. We tend to adopt sub tree end

in this case, such that every result contains all the connected

target entity instances. We have got performed a collection of

experiments on real knowledge sets to verify the result quality,

potency and scalability of XSearch.

Fig. 5: Snap Shot of the XSearch

IV. CONCLUSION

Through this demo, we have a tendency to aim at showing

users a crucial nonetheless unstudied step of processing

keyword searches on XML: composing leads to a meaningful

manner. As mentioned in Section I, result composition has

crucial effects on meaningful result ranking. The event and

demonstration of Target- Search shows the importance of this

step and offers a sound answer to the challenges of composing

XML search results. We have a tendency to conduct

experiments on many sample knowledge sets, together with a

knowledge regarding baseball groups and players, a

geographical knowledge (mondial), and a bookstore

knowledge with recursive schema. The input will be an easy

keyword question, like “Arora, undergraduate”. Users may

also specify the search targets using “*”, e.g., “JNTU,

undergraduate, student*”.

To method the question, Xsearch adopts existing XML

keyword search techniques [8] to spot relevant keyword

matches, then automatically identifies the search target (if it's

not specified with the question) and composes query results in

keeping with the techniques mentioned in Section II. The

results are presented as XML fragments, within which

components will be expanded/collapsed. If the user isn't glad

with the results, s/he will specify the fascinating target entity

sort, based mostly on that Xsearch can generate new results.

Through the results generated by Xsearch, the user ought to

be ready to simply notice the specified info within the top- k

results, as they correspond to precisely the top-k target entity

instances, i.e., they're atomic and intact. By being atomic and

intact, every target entity instance will be fairly ranked, while

not considering an excessive amount of or too very little info.

Besides, the results also are straightforward for users to know

and can not contain irrelevant info of a target entity instance in

a very result, or split the data of a target entity instance in

multiple results. Note that a way to rank results of XML

keyword search is an orthogonal problem; any ranking theme

will be incorporated into Xsearch.

For comparison purpose, the results made by Subtree Result

and Pattern Match also will be shown upon clicking the

corresponding tabs, and ranked using identical ranking theme.

Through comparison, the users can perceive the disadvantage

of failing to supply atomic or intact results, as illustrated in

Examples 1.1 and 1.2. This helps users notice the importance

of result composition in XML keyword search and therefore

the advantages a decent methodology of result composition

brings to results ranking and user search expertise.

Users will rate the results generated by every approach

within the scope of 1-10, and supply feedbacks to the

developers of Xsearch. Through the demonstration of Xsearch,

we have a tendency to show the importance of fastidiously

composing results for XML keyword search, a drag so far

largely ignored. The publicity of Xsearch within the database

community can attract a lot of analysis on this subject, which

can create the XML search engines a lot of intelligent and so

more profit the users.

International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 42

REFERENCES

[1] T. Cheng and K. C.-C. Chang. Entity Search Engine: Towards

Agile,Best-Effort Information Integration over the Web. In

CIDR, 2007.

[2] T. Cheng, X. Yan, and K. C.-C. Chang. EntityRank: Searching

Entities Directly and Holistically. In VLDB, 2007.

[3] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A

Semantic Search Engine for XML. In VLDB, 2003.

[4] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D.

Srivastava. Keyword Proximity Search in XML Trees. IEEE

Transactions on Knowledge and Data Engineering, 18(4), 2006.

[5] Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In

VLDB, 2004.

[6] Z. Liu, Y. Cai, and Y. Chen. Ranking Friendly Result

Composition for XML Keyword Search. Technical Report TR-

09-016, A.P State University, 2008.

[7] Z. Liu and Y. Chen. Identifying Meaningful Return Information

for XML,Keyword Search. In SIGMOD, 2007.

[8] Z. Liu and Y. Chen. Reasoning and Identifying Relevant

Matches for XML Keyword Search. In VLDB, 2008.

[9] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for

Smallest LCAs in XML Databases. In SIGMOD, 2005.

K. Sampath kumar is pursuing his M. Tech in Software

Engineering (Dept. of CSE) in Aurora Engineering College, Bhongir,

Nalgonda, A.P and India. His areas of interests are Software

Engineering, Testing, Mining and Data Engineering,

Email: sampath.kilaru@gmail.com

Mrs. Lokeshwari senior Associate Professor in the Department of

Computer Science & Engineering, Aurora Engineering College,

Bhongir, Nalgonda, A.P and India, Email: lokeshwari@yahoo.co.in

Srikanth Jatla working as Associate Professor and Head of the

Department of Computer Science and Engineering at Aurora’s

Engineering College with a teaching experience of 12years.He is a

B.E and M. Tech in Computer Science and pursuing his PhD in Data

Stream Mining at JNTU, Hyderabad. His areas of interest includes

data structures, principles of programming languages, algorithm

analysis and compiler design, Email: jsrikanth@aurora.ac.in

