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Abstract– We develop a probabilistic model of the behavior of a 

crash-recovery target, i.e. one which has the ability to recover 

from the crash state. We show that the fail-free and the crash-

stop are special cases of the crash-recovery run with mean time 

to failure (MTTF) approaching to infinity and mean time to 

recovery (MTTR) approaching to infinity, respectively. We 

compare the previous work QoS metrics to allow the 

measurement of the recovery speed, and the definition of the 

completeness property of a failure detector. Then, the impact of 

the dependability of the crash-recovery target on the QoS bounds 

for such a crash-recovery failure detector is analyzed using 

general dependability metrics, such as MTTF and MTTR, based 

on an approximate probabilistic model of the two-process failure 

detection system. Then according to our approximate model, we 

show how to estimate the failure detector’s parameters to achieve 

a required QoS, based NFD-S algorithm analytically, and how to 

execute the configuration procedure of this crash-recovery 

failure detector. Our analysis indicates that variation in the 

MTTF and MTTR of the monitored process can have a 

significant impact on the QoS of our failure detector. 

 

Index Terms– Crash recovery, failures, Metrics and QoS 

 

I.   INTRODUCTION 

HE purpose of failure detection is to discover abnormal 

software behaviors. Recognizing the occurrence of 

failures is one of the most important steps towards 

achieving fault-tolerance and dependability, challenging 

problem in this research is to tolerate the Byzantine failure 

also called as arbitrary failure means process may behave in 

an arbitrary manner and produces responses at an arbitrary 

time [1]. It is the most difficult failure to detect adopting 

consensus algorithms. To achieve K fault tolerance, 3K+1 

service replications are needed [2]. In the worst case, the K 

faulty services may send incorrect values, or incorrectly 

represent the values of others, but the remaining 2K+1 

services can still return the same. Crash failure detection is the 

building blocks to achieve a successful consensus. However, 

detecting crash failures is a difficult problem. In [3], Fischer et 

al. show the impossibility of separating a crashed process and 

a very slow one, in a pure asynchronous system, known as the 

Fischer-Lynch-Paterson’s impossibility result. Subsequently, 

failure detector oracles, which give possibly erroneous 

information about the state of the monitored target, have been 

proposed. 

Another approach to consider the crash-recovery is 

proposed by Guerraoui and Rodrigues [4]. A process can keep 

crashing and recovering infinitely often and it is eventually 

always up and running. In theory, a process recovery can be 

achieved by adopting stable storage and the state information 

of the process can be stored and retrieved from the storage. 

After a crash is detected, the recovery procedure can be used 

to retrieve the latest stored process information. In practice, in 

order to provide high availability, self-repairing and self-

healing mechanisms are widely adopted in fault-tolerant 

systems to achieve automatic recovery after a crash occurs. 

Particularly, in middleware systems, many techniques and 

algorithms have been introduced to achieve the self-repairing 

or self-healing goal, e.g., [5], [6].  

In such systems, it is assumed that the system undergoes 

periodic crashes. During a crash period, the system is unable 

to service any requests or send any messages, externally 

behaving as if the system is unreachable. The end of the crash 

period is marked by a recovery, after which the system returns 

to normal service and its internal state is restored to the state 

before the crash failure occurred. 

Crash-recovery failure needs to be considered as a 

frequently occurring failure type to be detected. However, the 

crash-recovery case has studied due to the fact that there are 

more possible discrepancies between the failure detector and 

the monitored target, increasing the size of the state space of 

the monitoring process, making the quality of service analysis 

for such a paradigm more complicated. In this we analyzed the 

QoS of a crash-recovery failure detector based on a simple 

time-out algorithm.  A crash-recovery target was modeled as 

an alternating renewal process that the crash-recovery 

behavior of the monitored target will impact the QoS of such a 

failure detector, which implied that the crash-recovery 

paradigm merited further studied. We outlined how to model 

the failure detection pair in a crash-recovery run and how to 

configure the failure detector to satisfy a given QoS 

requirement.  

This paper represents a substantial expansion of support the 

results with analytical results, derived directly from the 

equations in this paper, are also plotted and compared and able 

to present a detailed analysis for each of the QoS metrics, 

which shows the validity of our model. 
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II.   TYPES OF CRASH-RECOVERY FAILURES 

A failure occurs when an actual running system deviates 

from its specified behavior. 

A. Muteness Failure 

Muteness failures are malicious failures in which a process 

stops sending messages but might continue to send other 

messages. When muteness failure occurs the service will stop 

executing its designed features but might still be able to 

generate liveness messages such failures cannot be detected by 

crash failure detectors. Muteness failure is a particular case of 

omission failure which fails to send [7] only some message 

but no all detecting process could be an application-specific.  

Adopting the muteness failure detecting algorithm in which 

proposes a protocol that forces the monitored service to send 

“Iam-not-mute” message to the muteness failure detector 

periodically when service is not mute but stop sending such 

messages when a muteness failure occurs. 

B. Timing Failure 

Timing failure occurs when a service response lies outside 

the specified time interval. Example if the service-hosting 

machine or network is overloaded or some other resources on 

which the service depends are overloaded then the service 

response might be delayed and a timing failure [7] might 

occur. Detection of timing failure should be based on the 

specified deadline or time constraints. In order to detect a 

timing failure recording the time when the conversation 

between a service pair starts can be adopted. If the service 

instance cannot return the answer before the specified deadline 

is regarded as a timing failure. Moreover there are more 

sophisticated timing failure detectors such as the one reported 

in which uses group communication to detect timing failure in 

a quasi-synchronous system or the timely computing base 

model can [9] deal with timeliness requirements without 

synchronized clocks. 

C. Omission Failure 

When a service fails to send a response or receive a message 

an omission failure occurs behaves as a communication failure 

will cause message transmission fail. 

The simplest way to detect omission failures is to enable the 

service to provide failure information. If the service can throw 

a fail to send or fail to receive message exception or send this 

information to the failure detector then the failure is regarded 

as an omission failure. 

D. QoS Failure 

A service even if it provides a correct result might still fail 

to meet the consumers desired level of service fails to satisfy a 

specified property by the service consumer by a certain level 

of QoS constraints. Example 95% [8] confidence that the 

mean time to get results is smaller than 10 seconds assuming 

that initially 99% confidence of this property. QoS failure can 

be tracked by matching the given QoS specification with the 

QoS delivered by the service.  

E. Response Failure 

Response failure occurs when a service response is 

incorrect. In general, response failures can be separated into 

two types. The first type is value failure: the response value is 

wrong; the second type is state transition failure: the service 

deviates from the [8] correct flow of control [9]. To detect 

value failure, voting algorithms can be adopted if multiple 

service replications are deployed. To detect state transition 

failure, the service design specification should be available to 

check whether a service has deviated from its expected state or 

not. 

F. Partial Failure 

For a composed application, a component failure may result 

in a partial failure of the composed service. Identifying such a 

partial service failure still remains challenging. Here we 

regard a component of a service as atomic and consider 

dependencies among these components. Failure of a 

component might potentially cause other failures of the 

composed service or the failure of the composing procedure. 

For a composed service, due to service internal fault-tolerance 

policies, partial failure might not be visible externally by a 

failure detector, which only observes the composed service. In 

order to discover such partial failures, sensors must be 

implemented at the atomic component level to track the status 

information of each atomic component of a composed service. 

The implementation of the sensor for a component should be 

based on the failure mode that the sensor is concerned with.  

G. Composition Failure 

Service composition is an important characteristic of web 

services. Any service partial failure or unmatched composition 

requirements would result in a service composition failure. To 

detect such failures in a composing service, each composition 

step should be checked and tested. If the current composition 

procedure is verified without any mistake having occurred and 

the composition conditions are satisfied, then proceed to the 

next step, otherwise a composition failure might have 

occurred. 

H. Byzantine Failure 

The Byzantine failure is also sometimes called the arbitrary 

failure. It means a service may behave in an arbitrary manner, 

produce arbitrary responses at arbitrary time [9]. It is the most 

complicated failure to detect. According to the detection, 

Byzantine failures can be separated into undetectable and 

detectable failures [10]. Undetectable Byzantine failures refer 

to failures that are unobservable by other processes based on 

the messages they receive or failures that are undiagnosable. 

Detectable Byzantine failures have two categories: 

Commission (Response) failures: the service does not 

behave correctly according to its semantics. 

Omission failure: the service behaves correctly but fails to 

send or receive messages. 
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III.   FAILURES, FAULT TOLERANCE AND 

DEPENDABILITY 

The software and hardware may contain internal or external 

bugs, errors that can make the run-time services unstable.  

Computer system shows that bugs are one of the important 

reasons for system crashes; faults are accepted as inevitable 

and may lead to a system failure. To improve the critical 

systems survivability when failures occur used the fault-

tolerance mechanisms.  Fault tolerance is the ability or the 

property to enable a system to continuously operate correctly 

when some abnormal internal or external events occur. 

Dependability is one of the most important issues for 

computer systems which is a complex attribute, the concept of 

dependability as the property of a computer system such that 

reliance can justifiably be placed on the service it delivers. In 

addition by recording the lifetime information of a system, the 

systems dependability can be described quantitatively. 

Dependability of a system can be measured according to the 

reliability, availability, consistency, usability and security. In 

order to simplify the measurements which are related to failure 

detection. 

Reliability can be defined as the probability that the system 

will operate correctly in a specified operating environment up 

until time t (t>0). 

Availability can be defined as the probability that the system 

will be operational at time t. 

Consistency can be defined as the probability that the 

system will return to normal operation correctly after a failure 

has occurred within a specified operating environment within 

time t. 

Generally reliability presents how long a system will 

operate correctly and can be captured by mean time to failure 

which records the probability of a service to persist without a 

failure. Availability presents the probability that a system is 

accessible or reachable with correct operation at any time and 

can be captured by mean time to failure divided by mean time 

between failures. Consistency presents the ability of a system 

to recover from a failure state to the correct operation state and 

can be captured by meantime to recovery (MTTR) which 

records how fast a system recovers. Furthermore from the 

system design perspective different systems might desire 

different aspects of dependability features such as the highly 

available system which requires the system to be accessible 

with correct operation most of the time or the highly 

consistent system which requires fast recovery of the system 

after failures occur. 

IV.   PROBLEM DEFINITION 

Global distributed systems, various types of failure may 

occur during the execution. In our work we address crash 

failure detection. Furthermore, many researchers have drawn 

their attentions on the QoS of crash failure detectors’ 

implementations and failure detection algorithms. However, 

most previous work on the QoS of crash failure detection is 

based on the crash-stop or the fail-free assumption and relies 

on predicting the liveness message transmission behavior and 

estimating a suitable timeout threshold to achieve a better QoS 

of crash failure detection. In contrast, we regard a crashed  

 
 

Fig. 1: Network topology with node failures 

 

process or service as recoverable, since many fault-tolerance 

techniques can be adopted to achieve such recovery. For high-

level applications, a more realistic crash failure model would 

be crash-recovery. 

Fig.1 shows the problem definition where Red Color Node 

represents the network failure. 

Our solution implements the Sender sends some data to 

receiver where some nodes exist between networks of sender 

to receiver, where different port numbers assigned to all these 

intermediate nodes. When program begins a file accepted by 

sender to transmit to receiver NFDS (Network Failure 

Detection Algorithm) monitors the transmission for failures. If 

any failure detected NFDS reports the specific node where 

data lost and recovers the data from previous node. 

Retransmission from recovered node done by NFDS this 

process continues until all data packets safely reaches the 

destination. For successful delivery to destination all the 

intermediate nodes maintain a copy of data to ensure data 

transmission reliability over network 

A. System Model 

We consider a distributed system model with two services: 

one FDS and CR-TS distributed over a wide-area network. 

The FDS and the CR-TS are connected by an unreliable 

communication channel. Liveness (heartbeat) messages are 

transmitted through the channel. The communication channel 

does not create or duplicate liveness messages, but the 

messages might be lost or delayed indefinitely during 

transmission.1 The CR-TS can fail by crashing but can be 

repaired and restart to run again after some repair time, i.e., it 

behaves as a crash-recovery model. The drift of the local 

clocks of the FDS and the CR-TS is small enough to be 

ignored and their local clocks are sufficiently [11] 

synchronized (this can be guaranteed by some time 

synchronization service such as the Network Time Protocol 

used to be regarded as a clock synchronized system. The 

failure detection algorithm we adopt is the NFD-S algorithm. 

 

 
 

Fig. 2: (a) Fail-free transition, (b) Crash-recovery transition 
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B. Quality of Service Metrics for Crash Recovery 

In order to measure the speed with which a FDS can 

discover a recovery of the CR-TS, Recovery detection time 

(TDR): represents the time that elapses from CR-TS’s 

recovery time to the time when the FDS discovers the 

recovery. If the recovery is not detected, then TDR = +1. 

Since in a crash-recovery run there is no eventual behavior of 

a CR-TS, a fast recovery could make a failure undetectable by 

a FDS. Under such circumstances, the completeness property 

of a failure detector proposed in [11] cannot be always 

satisfied. In order to reflect this situation, we refine the 

definition of completeness as follows: 

• Strong completeness: every crash failure of a recoverable 

process will be detected. 

• Weak completeness: a proportion of crash failures of 

recoverable process will be detected, satisfying a 

specified requirement. 

To measure the completeness of a crash recovery failure 

detector, another new QoS metric: 

 

Detected failure proportion (RDF): the ratio of the detected 

failures over the occurred failures (0 _ RDF _ 1). When no 

crash failure is detected, RDF = 0. When all crash failures 

occurrences are detected, RDF = 1. The strong completeness 

property of a FDS’s requires that E(RDF) = 1. The weak 

completeness property requires E(RDF) _ RL DF, where RL 

DF is the required lower bound on the detected failure 

proportion and 0 < RL DF < 1. 

V. ESTIMATION OF QUALITY OF SERVICE & NFD-S 

ALGORITHM IN A CRASH-RECOVERY RUN 

In a crash-recovery run, the state of CR-TS can switch 

between Alive and Crash. There is a sequence of regeneration 

points for the CRTS, each of which is the recovery time of the 

CR-TS. In the following these are also regeneration points of 

the system consisting of the failure detection pair. In order to 

study the steady state behavior of CR-TS throughout its 

lifetime, only need to observe the time period between two 

consecutive recovery times of the CR-TS. Fig shows the 

relationship between a FDS [10] and CR-TS on the interval t 2 

[t 0, t 3), where both t 0 and t 3 are regeneration points. 

Obviously, the mean time between t0 and t 3 is the MTBF. We 

split [t 0, t 3) into [t 0; t 1), [t 1;, t 2), [t 2, t 3), 

 

- t 1 is the time when the FDS detects the recovery of the CR-

TS from the Crash state to the Alive state, 

- t 2 is the time when the service crashes, 

- Ss is the first liveness message sending time after a recovery, 

- Sf is the sending time of the last liveness message before a 

crash, 

- Si is the sending time of a liveness message between ss and 

sf, 

- h is the liveness sending interval; ts is the first decision time 

after recovery5, 

- tb is the last decision time before crash, 

- t f is the freshness point according to sf, 

 - TDR is the time to detect a recovery. 

 

 
 

Fig. 3: Analysis of the Crash-Recovery NFD-S Algorithm 

 

Let tr be a recovery time of the current MTBF period. The 

following definitions are based on the NFD-S algorithm. 

 For the fail-free duration [t1 t2) within each MTBF period 

1. K : for any i ≥ 1, let k be the smallest integer such that, for 

all j ≥ i+k, mi j is sent at or after time ti. 

For any i ≥ 1, let pi j(x) be the probability that the FDS 

does not receive just the (i+ j)th message mi+j by time ti+x, for 

every j≥ 0 and every x ≥ 0; let pi 0 = pi 0(0). 

For any i≥2, let q0
i
 be the probability that the FDS 

receives message mi�1 before time ti. 

A. Comparative Study 

Previous work focused on the QoS of crash failure detectors 

is based on the crash stop at that time or fail-free assumption. 

The fail-free assumption assumes that failures do not occur. 

The crash-stop assumption assumes that there is only one 

failure and the monitoring procedure terminates once that 

crash failure is detected. The algorithms based on these 

assumptions focus on how to estimate the probabilistic 

message arrival time and a suitable time-out period for a 

failure detector to ensure a required QoS. 

We have drawbacks with previous work. In such systems, it 

is assumed that the system undergoes periodic crashes. During 

a crash period, the system is unable to service any requests or 

send any messages, externally and behaving as if the system is 

unreachable.  

The end of the crash period is marked by a recovery, after 

which the system returns to normal service and its internal 

state is restored to the state before the crash failure occurred. 

For such systems, crash-recovery failure needs to be 

considered as a frequently occurring failure type to be detected 

in the Proposed System by means of QOS. 

Proposed system show how to remove the fail-free or crash-

stop assumption and model the probabilistic behavior of a 

failure detector with respect to a crash-recovery target, taking 

into consideration general dependability metrics, such as mean 

time to failure (MTTF) and mean time to recovery (MTTR).  

We outline how the QoS of a failure detector is limited by [9] 

the dependability of the monitored target. Moreover, we 

establish that the crash-stop or fail-free models are special 

cases of the crash-recovery model.  

In order to effectively assess the QoS of the failure detector 

in a crash-recovery run, we have defined new QoS metrics to 

measure the recovery detection speed and the proportion of the 

failures of the monitored target which are detected.  

To make an accurate estimation of the failure detector’s 

parameters needed to achieve a required QoS, a configuration 

procedure for a crash-recovery failure detector analyze how to 
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achieve the QoS from a given set of requirements based on the 

NFD-S algorithm. 

V.   CONCLUSION 

The crash-recovery target and its failure detector are 

analyzed as stochastic processes. We redefined previous work 

QoS metrics to be applicable to crash recovery failure 

detection and metrics to measure the recovery detection speed 

and the completeness property of a failure detector.  

Monitored target’s crash-recovery behavior on each QoS 

metric and showed that if a failure detector’s parameters are to 

be accurately estimated, these dependability characteristics 

must be taken into account. Thus, we showed how to 

configure the failure detector to satisfy a given set of 

requirements based on the dependability characteristics in 

addition to the QoS of message transmission based on the 

NFD-S algorithm. Our analysis shows that the QoS analysis is 

a particular case of a crash-recovery run. Furthermore, if the 

recovery of the monitored target needs to be detected, future 

work extends with novel failure detection algorithms. 
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