
International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 93

Journal Homepage: www.ijcst.org

B. Sushma
1
, B. V. Rama Krishna

2
 and Muni Sekhar Velpruru

3

1,3
Department of Information Technology, Vardhaman College of Engineering, Hyderabad, India

2
St. Mary’s College of Engineering & Technology, India

Abstract– We develop a probabilistic model of the behavior of a

crash-recovery target, i.e. one which has the ability to recover

from the crash state. We show that the fail-free and the crash-

stop are special cases of the crash-recovery run with mean time

to failure (MTTF) approaching to infinity and mean time to

recovery (MTTR) approaching to infinity, respectively. We

compare the previous work QoS metrics to allow the

measurement of the recovery speed, and the definition of the

completeness property of a failure detector. Then, the impact of

the dependability of the crash-recovery target on the QoS bounds

for such a crash-recovery failure detector is analyzed using

general dependability metrics, such as MTTF and MTTR, based

on an approximate probabilistic model of the two-process failure

detection system. Then according to our approximate model, we

show how to estimate the failure detector’s parameters to achieve

a required QoS, based NFD-S algorithm analytically, and how to

execute the configuration procedure of this crash-recovery

failure detector. Our analysis indicates that variation in the

MTTF and MTTR of the monitored process can have a

significant impact on the QoS of our failure detector.

Index Terms– Crash recovery, failures, Metrics and QoS

I. INTRODUCTION

HE purpose of failure detection is to discover abnormal

software behaviors. Recognizing the occurrence of

failures is one of the most important steps towards

achieving fault-tolerance and dependability, challenging

problem in this research is to tolerate the Byzantine failure

also called as arbitrary failure means process may behave in

an arbitrary manner and produces responses at an arbitrary

time [1]. It is the most difficult failure to detect adopting

consensus algorithms. To achieve K fault tolerance, 3K+1

service replications are needed [2]. In the worst case, the K

faulty services may send incorrect values, or incorrectly

represent the values of others, but the remaining 2K+1

services can still return the same. Crash failure detection is the

building blocks to achieve a successful consensus. However,

detecting crash failures is a difficult problem. In [3], Fischer et

al. show the impossibility of separating a crashed process and

a very slow one, in a pure asynchronous system, known as the

Fischer-Lynch-Paterson’s impossibility result. Subsequently,

failure detector oracles, which give possibly erroneous

information about the state of the monitored target, have been

proposed.

Another approach to consider the crash-recovery is

proposed by Guerraoui and Rodrigues [4]. A process can keep

crashing and recovering infinitely often and it is eventually

always up and running. In theory, a process recovery can be

achieved by adopting stable storage and the state information

of the process can be stored and retrieved from the storage.

After a crash is detected, the recovery procedure can be used

to retrieve the latest stored process information. In practice, in

order to provide high availability, self-repairing and self-

healing mechanisms are widely adopted in fault-tolerant

systems to achieve automatic recovery after a crash occurs.

Particularly, in middleware systems, many techniques and

algorithms have been introduced to achieve the self-repairing

or self-healing goal, e.g., [5], [6].

In such systems, it is assumed that the system undergoes

periodic crashes. During a crash period, the system is unable

to service any requests or send any messages, externally

behaving as if the system is unreachable. The end of the crash

period is marked by a recovery, after which the system returns

to normal service and its internal state is restored to the state

before the crash failure occurred.

Crash-recovery failure needs to be considered as a

frequently occurring failure type to be detected. However, the

crash-recovery case has studied due to the fact that there are

more possible discrepancies between the failure detector and

the monitored target, increasing the size of the state space of

the monitoring process, making the quality of service analysis

for such a paradigm more complicated. In this we analyzed the

QoS of a crash-recovery failure detector based on a simple

time-out algorithm. A crash-recovery target was modeled as

an alternating renewal process that the crash-recovery

behavior of the monitored target will impact the QoS of such a

failure detector, which implied that the crash-recovery

paradigm merited further studied. We outlined how to model

the failure detection pair in a crash-recovery run and how to

configure the failure detector to satisfy a given QoS

requirement.

This paper represents a substantial expansion of support the

results with analytical results, derived directly from the

equations in this paper, are also plotted and compared and able

to present a detailed analysis for each of the QoS metrics,

which shows the validity of our model.

T

Analysis of Crash Recovery Failure Detection with

Quality of Services
ISSN 2047-3338

B. Sushma et al. 94

II. TYPES OF CRASH-RECOVERY FAILURES

A failure occurs when an actual running system deviates

from its specified behavior.

A. Muteness Failure

Muteness failures are malicious failures in which a process

stops sending messages but might continue to send other

messages. When muteness failure occurs the service will stop

executing its designed features but might still be able to

generate liveness messages such failures cannot be detected by

crash failure detectors. Muteness failure is a particular case of

omission failure which fails to send [7] only some message

but no all detecting process could be an application-specific.

Adopting the muteness failure detecting algorithm in which

proposes a protocol that forces the monitored service to send

“Iam-not-mute” message to the muteness failure detector

periodically when service is not mute but stop sending such

messages when a muteness failure occurs.

B. Timing Failure

Timing failure occurs when a service response lies outside

the specified time interval. Example if the service-hosting

machine or network is overloaded or some other resources on

which the service depends are overloaded then the service

response might be delayed and a timing failure [7] might

occur. Detection of timing failure should be based on the

specified deadline or time constraints. In order to detect a

timing failure recording the time when the conversation

between a service pair starts can be adopted. If the service

instance cannot return the answer before the specified deadline

is regarded as a timing failure. Moreover there are more

sophisticated timing failure detectors such as the one reported

in which uses group communication to detect timing failure in

a quasi-synchronous system or the timely computing base

model can [9] deal with timeliness requirements without

synchronized clocks.

C. Omission Failure

When a service fails to send a response or receive a message

an omission failure occurs behaves as a communication failure

will cause message transmission fail.

The simplest way to detect omission failures is to enable the

service to provide failure information. If the service can throw

a fail to send or fail to receive message exception or send this

information to the failure detector then the failure is regarded

as an omission failure.

D. QoS Failure

A service even if it provides a correct result might still fail

to meet the consumers desired level of service fails to satisfy a

specified property by the service consumer by a certain level

of QoS constraints. Example 95% [8] confidence that the

mean time to get results is smaller than 10 seconds assuming

that initially 99% confidence of this property. QoS failure can

be tracked by matching the given QoS specification with the

QoS delivered by the service.

E. Response Failure

Response failure occurs when a service response is

incorrect. In general, response failures can be separated into

two types. The first type is value failure: the response value is

wrong; the second type is state transition failure: the service

deviates from the [8] correct flow of control [9]. To detect

value failure, voting algorithms can be adopted if multiple

service replications are deployed. To detect state transition

failure, the service design specification should be available to

check whether a service has deviated from its expected state or

not.

F. Partial Failure

For a composed application, a component failure may result

in a partial failure of the composed service. Identifying such a

partial service failure still remains challenging. Here we

regard a component of a service as atomic and consider

dependencies among these components. Failure of a

component might potentially cause other failures of the

composed service or the failure of the composing procedure.

For a composed service, due to service internal fault-tolerance

policies, partial failure might not be visible externally by a

failure detector, which only observes the composed service. In

order to discover such partial failures, sensors must be

implemented at the atomic component level to track the status

information of each atomic component of a composed service.

The implementation of the sensor for a component should be

based on the failure mode that the sensor is concerned with.

G. Composition Failure

Service composition is an important characteristic of web

services. Any service partial failure or unmatched composition

requirements would result in a service composition failure. To

detect such failures in a composing service, each composition

step should be checked and tested. If the current composition

procedure is verified without any mistake having occurred and

the composition conditions are satisfied, then proceed to the

next step, otherwise a composition failure might have

occurred.

H. Byzantine Failure

The Byzantine failure is also sometimes called the arbitrary

failure. It means a service may behave in an arbitrary manner,

produce arbitrary responses at arbitrary time [9]. It is the most

complicated failure to detect. According to the detection,

Byzantine failures can be separated into undetectable and

detectable failures [10]. Undetectable Byzantine failures refer

to failures that are unobservable by other processes based on

the messages they receive or failures that are undiagnosable.

Detectable Byzantine failures have two categories:

Commission (Response) failures: the service does not

behave correctly according to its semantics.

Omission failure: the service behaves correctly but fails to

send or receive messages.

International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 95

III. FAILURES, FAULT TOLERANCE AND

DEPENDABILITY

The software and hardware may contain internal or external

bugs, errors that can make the run-time services unstable.

Computer system shows that bugs are one of the important

reasons for system crashes; faults are accepted as inevitable

and may lead to a system failure. To improve the critical

systems survivability when failures occur used the fault-

tolerance mechanisms. Fault tolerance is the ability or the

property to enable a system to continuously operate correctly

when some abnormal internal or external events occur.

Dependability is one of the most important issues for

computer systems which is a complex attribute, the concept of

dependability as the property of a computer system such that

reliance can justifiably be placed on the service it delivers. In

addition by recording the lifetime information of a system, the

systems dependability can be described quantitatively.

Dependability of a system can be measured according to the

reliability, availability, consistency, usability and security. In

order to simplify the measurements which are related to failure

detection.

Reliability can be defined as the probability that the system

will operate correctly in a specified operating environment up

until time t (t>0).

Availability can be defined as the probability that the system

will be operational at time t.

Consistency can be defined as the probability that the

system will return to normal operation correctly after a failure

has occurred within a specified operating environment within

time t.

Generally reliability presents how long a system will

operate correctly and can be captured by mean time to failure

which records the probability of a service to persist without a

failure. Availability presents the probability that a system is

accessible or reachable with correct operation at any time and

can be captured by mean time to failure divided by mean time

between failures. Consistency presents the ability of a system

to recover from a failure state to the correct operation state and

can be captured by meantime to recovery (MTTR) which

records how fast a system recovers. Furthermore from the

system design perspective different systems might desire

different aspects of dependability features such as the highly

available system which requires the system to be accessible

with correct operation most of the time or the highly

consistent system which requires fast recovery of the system

after failures occur.

IV. PROBLEM DEFINITION

Global distributed systems, various types of failure may

occur during the execution. In our work we address crash

failure detection. Furthermore, many researchers have drawn

their attentions on the QoS of crash failure detectors’

implementations and failure detection algorithms. However,

most previous work on the QoS of crash failure detection is

based on the crash-stop or the fail-free assumption and relies

on predicting the liveness message transmission behavior and

estimating a suitable timeout threshold to achieve a better QoS

of crash failure detection. In contrast, we regard a crashed

Fig. 1: Network topology with node failures

process or service as recoverable, since many fault-tolerance

techniques can be adopted to achieve such recovery. For high-

level applications, a more realistic crash failure model would

be crash-recovery.

Fig.1 shows the problem definition where Red Color Node

represents the network failure.

Our solution implements the Sender sends some data to

receiver where some nodes exist between networks of sender

to receiver, where different port numbers assigned to all these

intermediate nodes. When program begins a file accepted by

sender to transmit to receiver NFDS (Network Failure

Detection Algorithm) monitors the transmission for failures. If

any failure detected NFDS reports the specific node where

data lost and recovers the data from previous node.

Retransmission from recovered node done by NFDS this

process continues until all data packets safely reaches the

destination. For successful delivery to destination all the

intermediate nodes maintain a copy of data to ensure data

transmission reliability over network

A. System Model

We consider a distributed system model with two services:

one FDS and CR-TS distributed over a wide-area network.

The FDS and the CR-TS are connected by an unreliable

communication channel. Liveness (heartbeat) messages are

transmitted through the channel. The communication channel

does not create or duplicate liveness messages, but the

messages might be lost or delayed indefinitely during

transmission.1 The CR-TS can fail by crashing but can be

repaired and restart to run again after some repair time, i.e., it

behaves as a crash-recovery model. The drift of the local

clocks of the FDS and the CR-TS is small enough to be

ignored and their local clocks are sufficiently [11]

synchronized (this can be guaranteed by some time

synchronization service such as the Network Time Protocol

used to be regarded as a clock synchronized system. The

failure detection algorithm we adopt is the NFD-S algorithm.

Fig. 2: (a) Fail-free transition, (b) Crash-recovery transition

B. Sushma et al. 96

B. Quality of Service Metrics for Crash Recovery

In order to measure the speed with which a FDS can

discover a recovery of the CR-TS, Recovery detection time

(TDR): represents the time that elapses from CR-TS’s

recovery time to the time when the FDS discovers the

recovery. If the recovery is not detected, then TDR = +1.

Since in a crash-recovery run there is no eventual behavior of

a CR-TS, a fast recovery could make a failure undetectable by

a FDS. Under such circumstances, the completeness property

of a failure detector proposed in [11] cannot be always

satisfied. In order to reflect this situation, we refine the

definition of completeness as follows:

• Strong completeness: every crash failure of a recoverable

process will be detected.

• Weak completeness: a proportion of crash failures of

recoverable process will be detected, satisfying a

specified requirement.

To measure the completeness of a crash recovery failure

detector, another new QoS metric:

Detected failure proportion (RDF): the ratio of the detected

failures over the occurred failures (0 _ RDF _ 1). When no

crash failure is detected, RDF = 0. When all crash failures

occurrences are detected, RDF = 1. The strong completeness

property of a FDS’s requires that E(RDF) = 1. The weak

completeness property requires E(RDF) _ RL DF, where RL

DF is the required lower bound on the detected failure

proportion and 0 < RL DF < 1.

V. ESTIMATION OF QUALITY OF SERVICE & NFD-S

ALGORITHM IN A CRASH-RECOVERY RUN

In a crash-recovery run, the state of CR-TS can switch

between Alive and Crash. There is a sequence of regeneration

points for the CRTS, each of which is the recovery time of the

CR-TS. In the following these are also regeneration points of

the system consisting of the failure detection pair. In order to

study the steady state behavior of CR-TS throughout its

lifetime, only need to observe the time period between two

consecutive recovery times of the CR-TS. Fig shows the

relationship between a FDS [10] and CR-TS on the interval t 2

[t 0, t 3), where both t 0 and t 3 are regeneration points.

Obviously, the mean time between t0 and t 3 is the MTBF. We

split [t 0, t 3) into [t 0; t 1), [t 1;, t 2), [t 2, t 3),

- t 1 is the time when the FDS detects the recovery of the CR-

TS from the Crash state to the Alive state,

- t 2 is the time when the service crashes,

- Ss is the first liveness message sending time after a recovery,

- Sf is the sending time of the last liveness message before a

crash,

- Si is the sending time of a liveness message between ss and

sf,

- h is the liveness sending interval; ts is the first decision time

after recovery5,

- tb is the last decision time before crash,

- t f is the freshness point according to sf,

 - TDR is the time to detect a recovery.

Fig. 3: Analysis of the Crash-Recovery NFD-S Algorithm

Let tr be a recovery time of the current MTBF period. The

following definitions are based on the NFD-S algorithm.

 For the fail-free duration [t1 t2) within each MTBF period

1. K : for any i ≥ 1, let k be the smallest integer such that, for

all j ≥ i+k, mi j is sent at or after time ti.

For any i ≥ 1, let pi j(x) be the probability that the FDS

does not receive just the (i+ j)th message mi+j by time ti+x, for

every j≥ 0 and every x ≥ 0; let pi 0 = pi 0(0).

For any i≥2, let q0
i
 be the probability that the FDS

receives message mi�1 before time ti.

A. Comparative Study

Previous work focused on the QoS of crash failure detectors

is based on the crash stop at that time or fail-free assumption.

The fail-free assumption assumes that failures do not occur.

The crash-stop assumption assumes that there is only one

failure and the monitoring procedure terminates once that

crash failure is detected. The algorithms based on these

assumptions focus on how to estimate the probabilistic

message arrival time and a suitable time-out period for a

failure detector to ensure a required QoS.

We have drawbacks with previous work. In such systems, it

is assumed that the system undergoes periodic crashes. During

a crash period, the system is unable to service any requests or

send any messages, externally and behaving as if the system is

unreachable.

The end of the crash period is marked by a recovery, after

which the system returns to normal service and its internal

state is restored to the state before the crash failure occurred.

For such systems, crash-recovery failure needs to be

considered as a frequently occurring failure type to be detected

in the Proposed System by means of QOS.

Proposed system show how to remove the fail-free or crash-

stop assumption and model the probabilistic behavior of a

failure detector with respect to a crash-recovery target, taking

into consideration general dependability metrics, such as mean

time to failure (MTTF) and mean time to recovery (MTTR).

We outline how the QoS of a failure detector is limited by [9]

the dependability of the monitored target. Moreover, we

establish that the crash-stop or fail-free models are special

cases of the crash-recovery model.

In order to effectively assess the QoS of the failure detector

in a crash-recovery run, we have defined new QoS metrics to

measure the recovery detection speed and the proportion of the

failures of the monitored target which are detected.

To make an accurate estimation of the failure detector’s

parameters needed to achieve a required QoS, a configuration

procedure for a crash-recovery failure detector analyze how to

International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 97

achieve the QoS from a given set of requirements based on the

NFD-S algorithm.

V. CONCLUSION

The crash-recovery target and its failure detector are

analyzed as stochastic processes. We redefined previous work

QoS metrics to be applicable to crash recovery failure

detection and metrics to measure the recovery detection speed

and the completeness property of a failure detector.

Monitored target’s crash-recovery behavior on each QoS

metric and showed that if a failure detector’s parameters are to

be accurately estimated, these dependability characteristics

must be taken into account. Thus, we showed how to

configure the failure detector to satisfy a given set of

requirements based on the dependability characteristics in

addition to the QoS of message transmission based on the

NFD-S algorithm. Our analysis shows that the QoS analysis is

a particular case of a crash-recovery run. Furthermore, if the

recovery of the monitored target needs to be detected, future

work extends with novel failure detection algorithms.

REFERENCE

[1] J. Laprie, A. Avizienis, and H. Kopetz, Dependability: Basic

Concepts and Terminology. Springer-Verlag, 1992.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine

Generals Problem,” ACM Trans. Programming Languages and

Systems, vol. 4, no. 3, pp. 382-401, 1982.

[3] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of

Distributed Consensus with One Faulty Process,” J. ACM, vol.

32, no. 2, pp. 374-382, Apr. 1985.

[4] R. Guerraoui and L. Rodrigues, Introduction to Reliable

Distributed Programming. Springer, 2006.

[5] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, “Towards

Architecture-Based Self-Healing Systems,” Proc. First

Workshop Self-Healing Systems (WOSS ’02), pp. 21-26, 2002.

[6] M.E. Shin and D. Cooke, “Connector-Based Self-Healing

Mechanism for Components of a Reliable System,” Proc. 2005

Workshop Design and Evolution of Autonomic Application

Software, pp. 1-7, 2005.

[7] R. Koo and S. Toueg, “Checkpointing and Rollback-Recovery

for Distributed Systems,” IEEE Trans. Software Eng., vol. 13,

no. 1, pp. 23-31, Jan. 1987.

[8] D. Manivannan and M. Singhal, “A Low-Overhead Recovery

Technique Using Quasi Synchronous Check pointing,” Proc.

IEEE Int’l Conf. Distributed Computing Systems, pp. 100-107,

1996.

[9] J.C. Laprie, A. Avizienis, and H. Kopetz. Dependability: Basic

Concepts and Terminology. Springer-Verlag New York, Inc.

Secaucus, NJ, USA, 1992.

[10] Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-

Smith. Solving Consensus in a Byzantine Environment Using

an Unreliable Fault Detector. In Proceedings of the

International Conference on Principles of Distributed Systems

(OPODIS), pages 61 – 75, 1997.

[11] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for

Asynchronous Distributed Systems. Technical Report TR93 -

1377, Department of Computer Science, Cornell University,

1993.

B. Sushma pursuing M. Tech Software Engineering

at Varadhaman College of Engineering. Her areas of

interest are Networking, Data Mining and

Information security.

B. V. Rama Krishna Assoc. Prof. at St Mary’s

College of Engineering & Technology M.Tech from

Punjab University currently he is pursuing Ph.D

Data Mining From ANR university, Hyderabad. His

areas of interest include Data Mining, Information

Security.

 Muni Sekhar Velpruru received the Bachelor of

Technology degree with Information Technology

from the Jawaharlal Nehru Technological

University, Hyderabad, in 2007 and the Master of

Technology degree in computer science and

Engineering-Information Security from National

Institute and Technology, Karnataka, Surathkal. He

is currently working in Assistant Professor in the Department of

Information Technology, Vardhaman College of Engineering,

Hyderabad. In his two years of Research, he published near to six

paper national and International Journals and Various conferences.

His research interests include Network Security cryptography,

Virtualization, Cloud Computing, Service Oriented Architecture and

Web Designing.

