
International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 69

Journal Homepage: www.ijcst.org

Sushil Garg1, K. S. Kahlon2 and P. K. Bansal3

1Professor, CSED, RIMT – IET, Mandi GobindGarh, Punjab, India
2Dean, Research Dept., GNDU, Amritsar, Punjab, India

3Ex-Principal, MIMIT, Malout, Punjab, India

Abstract– The aspect-oriented programming (AOP) is a new

paradigm for improving the system’s features such as

modularity, readability and maintainability. Aspect-oriented

software development (AOSD) is a new technique to support

separation of concerns in software development. In aspect-

oriented (AO) systems, the basic components are aspects or

classes, which consist of attributes (aspect or class instance

variables) and those modules such as advice, intertype

declarations, point-cuts, join-points and methods. Coupling is an

internal software attribute that can be used to indicate the degree

of interdependence among the components of a software system.

Thus, in AO systems, the coupling is mainly about the degree of

interdependence among aspects, classes and interfaces. To test

this hypothesis, good coupling measures for AO systems are

needed. In this paper, we apply a coupling metrics suite on UML

diagram of AOP. We first present a UML diagram for AO

systems which is specially designed to count the dependencies

between aspects and classes, aspect and interfaces and other

aspect oriented features in the systems. Based on this UML

diagram, we formally define various coupling measures in terms

of different types of dependencies between aspects, classes and

interfaces.

Index Terms– Aspect Oriented Programming (AOP), Unified

Modeling Language (UML), Aspect Oriented (AO) Systems and

Aspect Oriented Software Development (AOSD)

I. INTRODUCTION

SPECT Oriented Programming (AOP) is an emerging
discipline in Software Engineering. Aspect-oriented
software development (AOSD) is a new technique to

support separation of concerns in software development [1] –
[5]. Such concerns are known as crosscutting concerns.
Examples of crosscutting concerns include tracing, logging,
caching, resource pooling and so on. The techniques of AOSD
make it possible to modularize crosscutting aspects of a
system. Like objects in object-oriented software development,
aspects in AOSD may arise at a stage of the software life
cycle, including requirements specification, design,
implementation, etc. The ability to modularize crosscutting
concerns is expected to improve comprehensibility, parallel
development, reuse and ease of change [6], [7], [8] reducing
development costs, increasing dependability and adaptability.

The current research so far in AOSD is focused on problem

analysis, software design, and implementation techniques. The
most popular AOP model today is as implemented in AspectJ
[8], [9]. AspectJ extends Java with several complementary
mechanisms, namely join points (JPs), pointcut descriptors
(PCDs), advice, introduction and aspects. Joinpoints represent
well-defined points in the execution of a program. Not every
execution point is a join point only those points that can be
used in disciplined and principled manner. Examples of
joinpoints in AspectJ include method calls, access to class
members, and the execution of exception handler blocks. A
Pointcut Descriptors is a language construct that picks out a
set of join points. Joinpoints are described by point cut
declaration. Point cuts can be defined in classes or in aspects
and can be named or be anonymous. Advice is a code that
executes before, after, or around a join point. Basically, advice
is a code that executes at each join point picked out by a point
cut. Introduction is a member of an aspect but it defines or
modifies a number of another type or class. With introduction
we can add method to an existing class, add fields to existing
class and implement an interface in an existing class. Advice,
pointcuts and ordinary data members and methods are grouped
into class-like modules called Aspects. Some existing AOP
languages and frameworks provide a very similar composition
model to the AspectJ one, such as Springs AOP framework
and JBoss AOP.

Coupling and cohesion are two structural attributes whose
importance is well-recognized in the software engineering
community. In this paper, we focus on coupling measurement
for AO systems has been studied in [5], [11]. Coupling is the
degree to which components depend on one another. There
are two types of coupling, "tight" and "loose". Loose coupling
is desirable for good software engineering but tight coupling
may be necessary for maximum performance. It has been
recognized that good software design should obey the
principle of low coupling. A system that has strong coupling
may make it more complex because it is difficult to
understand, change, and correct highly inter-related
components in the system. Coupling is therefore considered to
be a desirable goal in software construction, leading to better
values for external attributes such as maintainability,
reusability, and reliability. Recently, many coupling measures

A

How to Measure Coupling in AOP from UML Diagram

ISSN 2047-3338

Sushil Garg et al. 70

and several guidelines to measure coupling of a system have
been developed for object-oriented systems [5], [12], [13].

In an aspect-oriented program, the basic unit is an aspect or
class. An aspect with its encapsulation of state (attributes)
with associated modules such as advice, intertype declarations,
pointcuts, and methods (operations) is a significantly different
abstraction in comparison to the class within object-oriented
software. Thus, in AO systems, the coupling is mainly about
the degree of interdependence among aspects and classes,
aspect and interfaces and other aspect oriented features. To
test this hypothesis, good coupling measures for AO systems
are needed. Moreover, in order to measure the coupling of an
aspect-oriented system, we should consider different types of
interactions between aspects and classes in the system.
However, although coupling metrics has been widely studied
for object-oriented systems and for AO systems also, but it has
not been applied directly to the real aspect oriented system
design.

Unified Modeling Language (UML) is the design language
most accepted in software engineering, and is considered as a
standard. It provides a powerful set of modeling tools for
system analysis and design, for the definition of the system
architecture, and also for specifying the system behavior. It
also provides a set of mechanisms to extend or adapt UML to
a specific domain. This extensibility characteristic makes it
more suitable [14]. UML extensions for AOSD have been
proposed to model the development process at early stages.
Several authors have examined the benefits of AOSD
modeling: facilitate the implementation stage or the
reengineering of existing systems, obtain more reusable and
comprehensive components, document early architectural
decisions related in general with requirements and maintain
their consistency through all the software development
stages[15]. So, to better understand the dependency between
various components of AOP we make UML diagram at the
design phase.

 In this paper, we apply a coupling metrics suite on UML
diagram of AOP. We first present a UML diagram for AO
systems which is specially designed to count the dependencies
between aspects and classes, aspect and interfaces and other
aspect oriented features in the systems. Based on this UML
diagram, we formally define various coupling measures in
terms of different types of dependencies between aspects,
classes and interfaces. Because aspect-oriented paradigm
significantly different from object-oriented paradigms, we
really need to develop a notion of coupling for AO systems,
which is an indicator of the degree to which the components in
the system interact each other.

We hope that by examining the ideas of the coupling in
aspect-oriented systems from several different viewpoints and
through independently developed measures, we can have a
better understanding of what the coupling is meant in AO
systems and the role that coupling plays in the development of
quality aspect-oriented software.

This paper is structured as follows: Section 2 briefly
introduces the UML diagram for AOP and its notations also,
Section 3 defines the coupling metrics for AOP, Section 4
measures coupling from UML in AOP and Section 5 contains
Conclusion.

II. UML NOTATIONS FOR AOSD

A. Introduction to UML

UML is a standard Unified Modeling Language used to
create and document software artifacts. It includes many
useful ideas and concepts that have their roots in various
individual methods and theories. UML provides numerous
modeling techniques, including several types of diagrams,
model elements, notation and guidelines. These techniques can
be used in various ways to model different characteristics of a
software system. Key features of UML comprise: support for
model refinement, extension mechanisms (stereotypes, tagged
values, and constraints), and a language for expressing
constraints (known as the object constraint language, OCL).

UML has established itself as a well accepted modeling
language that provides adequate support for object-oriented
and component-based software development. Basically, there
are various possibilities of using UML to model crosscutting
concerns in a software system. For instance, join points can be
represented in UML as model elements, but their effect can
also be shown in different diagram types of UML, e.g.,
collaboration, sequence and state chart diagrams. Using the
UML helps project teams communicate, explore potential
designs, and validate the architectural design of the software
[15].

B. Notations

UML Notations in AOP can be seen from Table 1:

Table 1: UML Notations for AOSD

International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 71

C. Goals of UML

The primary goals in designing of UML are:
1. Provide users with a ready-to-use, expressive visual

modeling language so they can develop and exchange
meaningful models.

2. Provide extensibility and specialization mechanisms
to extend the core concepts.

3. Be independent of particular programming languages
and development processes.

4. Provide a formal basis for understanding the
modeling language.

5. Support higher-level development concepts such as
collaborations, frameworks, patterns and
components.

6. Integrate best practices.

D. Why Use UML

• Improve the quality of software.

• Reduce cost and time to market.

• Solve problems like concurrency, replication,
security, fault tolerance.

 III. ASPECT ORIENTED (AO) COUPLING METRICS

In this section, the Chidamber and Kemerer‘s metrics suite
is revised. Some of the metrics are adapted or extended, in
order to make them applicable to the AOP software. Since the
proposed metrics apply both to classes and aspects, in the
following the term module will be used to indicate either of
the two modularization units. Similarly, the term operation
subsumes class methods and aspect advices or introductions
[16].

A. Weighted Operations in Module (WOM)

� It counts number of operations in a given module.
� WOM captures the internal complexity of a module

in terms of the number of implemented functions.
� How much time and effort is required to develop the

module is predicted by complexity and number of
operations involved in the module.

� Modules with large numbers of operations are likely
to be more application specific, limiting the
possibility of reuse.

B. Depth of Inheritance Tree (DIT)

� Depth of inheritance of a class is its depth in the
inheritance tree, if multiple inheritances is involved.
It is the length of the longest path from a given
module to the class/aspect hierarchy root.

� The deeper a module is in the hierarchy, the greater
the number of operations it is likely to inherit,
making it more complex to predict its behavior.

� Deeper trees constitute greater design complexity,
since more operations and modules are involved.

� The deeper a particular module is in the hierarchy,
the greater the potential reuse of inherited operations.

C. Number of Children (NOC)

� NOC is the number of immediate sub- classes or sub-
aspects of a given module. The number of children of
a module indicates the proportion of modules
potentially dependent on properties inherited from
the given one.

� Greater the number of children then greater the reuse
due to inheritance.

� If a module has a large number of children, it may be
a case of misuse of sub-classing.

� If a module has a large number of children, it may
require more testing of the operations in that module.

D. Coupling on Advice Execution (CAE)

� It is the number of aspects containing advices
possibly triggered by the execution of operations in a
given module.

� There is an (implicit) dependence of the operation
from the advice. Thus, the given module is coupled
with the aspect containing the advice and a change of
the latter might impact the former.

� This kind of coupling is absent in OO systems.

E. Coupling on Method Call (CMC)

� It is the number of modules or interfaces declaring
methods that are possibly called by a given module.

� If we use high number of methods from many
different modules indicates that the function of the
given module cannot be easily isolated from the
others. High coupling is associated with a high
dependence from the functions in other modules.

� Examples, constructor calls are counted as a method
call, calls from introduced methods are counted as a
call from aspect, introduced method calls are counted
as an aspect's member calls.

F. Coupling on Field Access (CFA)

� It is the number of modules or interfaces declaring
fields that are accessed by a given module.

� CFA measures the dependences of a given module on
other modules, but in terms of accessed fields.

� In OO systems this metric is usually close to zero, but
in AOP, aspects might access class fields to perform
their function.

� Examples, field access from introduced methods are
counted as a access from aspect, access to introduced
fields are counted as an access to aspect's fields.

G. Response for a Module (RFM)

� In this, the number methods and advices potentially
executed in response to a message received by a
given module.

� The main reason to apply it to AOP software is
associated with the implicit responses that are
triggered whenever a pointcut intercepts an operation
of the given module.

Sushil Garg et al. 72

� If a large number of methods can be invoked in
response to message, the testing & debugging of the
module becomes difficult.

� The larger the number of methods that can be
invoked from a class, the greater the complexity of
the class.

H. Coupling between Modules (CBM)

� It is the number of modules or interfaces declaring
methods or fields that are possibly called or accessed
by a given module.

� This is a combination of CFA and CMC metrics.

I. Crosscutting Degree of an Aspect (CDA)

� It is the number of modules affected by the pointcuts
and by the introductions in a given aspect.

� This is a brand new metric, specific to AOP software.
� This gives an idea of the overall impact an aspect has

on the other modules.

III. MEASURING COUPLING FROM UML
DIAGRAM IN AOP

We next apply our coupling metrics that are define in
section 3 on UML diagram that is made in aspect oriented
systems. Our metrics focuses on coupling caused by
dependencies that occur between aspect and class, aspect and
interfaces and other aspect oriented features in an AO system.
In the following, Figure 1, we describe the types of
dependencies between various aspect oriented features
through UML diagram.

In this section, the weaving mechanism of AspectJ is
implemented in the UML. A new UML relationship is
introduced to denote the relationship between aspects and their
base classes [17].

 The basic subject/observer protocol is designed as an
abstract aspect, named SubjectObserverProtocol that crosscuts
two interfaces, named Subject and Observer (see Figure 1,
upper part). The interfaces specify operations that entities
participating in the subject/observer protocol have to provide.
These operations (named addObserver, removeObserver,
getObservers, getData, setSubject, getSubject, and update) are
not implemented by the interfaces, though. Instead, they are
implemented by the aspect by means of introductions, named
Subject and Observer. Further, the aspect specifies an after
advice (given the "pseudo" identifier "advice_id01") that
implements the notification of observers and gets executed
after a join point contained in the pointcut stateChanges is
reached. That pointcut, though, is left undefined (i.e.,
"abstract") by the abstract aspect SubjectObserverProtocol and
must be designated to a concrete set of join point of a
particular application domain by a concrete aspect. This is
accomplished by the concrete aspect
SubjectObserverProtocolImpl that applies the subject/observer
protocol implemented by the abstract aspect
SubjectObserverProtocol to the classes Button and
ColorLabel.

To do so, the concrete aspect specifies a pointcut that
designates all call join points related to invocations of the click

Fig. 1. Aspect Oriented Design Model

 operation of a Button object. Besides that, the concrete aspect
specifies that the Button class implements the Subject interface
and that the ColorLabel class implements the Observer
interface by means of its introductions Button and ColorLabel.
The crosscutting effects of aspects on their base classes are
visualized by the «crosscut» relationships that represent the
weaving mechanism. This relationship is explained in [17].

 Now we apply the coupling metrics on UML diagram of
AOP for measuring the interdependency between the various
aspect oriented features. This determines that which
component or class or aspect is how much coupled to other
component in AO systems. Our coupling metrics are defined
on counting, for each aspect, the number of dependencies
between aspect and classes, aspect and interfaces etc. This can
be determined through Table 2.

Table 2: AOP Metrics for Aspect Oriented Design Model

COUPLING METRICS COUPLING VALUES

WOM 15

DIT 0

NOC 2

CAE 1

CMC 4

CFA 4

RFM 11

CBM 4

CDA 2

International Journal of Computer Science and Telecommunications [Volume 2, Issue 8, November 2011] 73

IV. CONCLUSION

In this paper, we proposed an AOP metrics suite for
measuring the coupling in AO systems. We first, present a
UML diagram for AO systems which is specially designed to
count the dependencies between aspects and classes, aspect
and interfaces and other aspect oriented features in the
systems. Based on this UML diagram, we formally define
various coupling measures in terms of different types of
dependencies between aspects, classes and interfaces. The
coupling metrics proposed in this paper focused on
dependencies between aspects and classes, aspects and
interfaces, between aspects or between classes and interfaces.
We also apply our coupling metrics to real aspect oriented
system design which helps us to understand the
interdependency among different components of the AO
system.

REFERENCES

[1] L. Bergmans and M. Aksits, “Composing crosscutting
Concerns Using Composition Filters”, Communications of the
ACM, Vol.44, No.10, pp.51-57, October 2001.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin, “Aspect-Oriented Programming”,
Proceedings of the 11th European Conference on Object-
Oriented Programming, pp.220-242, LNCS, Vol.1241,
Springer-Verlag, June 1997.

[3] K. Lieberher, D. Orleans, and J. Ovlinger, “Aspect Oriented
Programming with Adaptive Methods,” Communications of the
ACM, Vol.44, No.10, pp.39-41, October 2001.

[4] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, “N Degrees
of Separation: Multi-Dimensional Separation of Concerns,”
Proceedings of the International Conference on Software
Engineering, pp.107-119, 1999.

[5] Jianjun Zhao, “Measuring Coupling in Aspect-Oriented
Systems”, Fukuoka Institute of Technology, Japan, 2004.

[6] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “AChange
Impact Assessment in Aspect-Oriented Software Systems”,
International Software Engineering Conference Russia 2006
(SECR-2006), pp.83-87, Dec 2006.

[7] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, “An Evaluation
of Maintainability of Aspect-Oriented Systems: a Practical

Approach”, International Journal of Computer Science and
Security, Vol -1, Issue-2, pp. 1-9, Aug 2007.

[8] Avadhesh Kumar, Rajesh Kumar, P.S. Grover, "Towards a
Unified Framework for Cohesion Measurement in Aspect-

Oriented Systems”, Proceedings of the 19th Australian
Conference on Software Engineering. ASWEC 2008, pp.57-65,
March 2008.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. “An Overview of AspectJ”. In Proceedings of
the 15th European Conference on Object- Oriented
Programming, pp. 327–355, Springer, 2001.

[10] V. C. Garcia, E. K. Piveta, D. Lucrédio, A. Álvaro, E. S.
Almeida, L.C. Zancanella, & A.F. Prado, “Manipulating
crosscutting concerns” , Proc. 4th Latin American Conf. on
Patterns Languages of Programming (SugarLoafPLoP), Porto
das Dunas, CE, Brazil, 2004.

[11] J. Zhao and B. Xu, “Measuring Aspect Cohesion,” Proc.
Fundamental Approaches to Software Engineering
(FASE’2004), LNCS 2984, pp.54-68, Springer Verlag,
Barcelona, Spain, March 29-31, 2004.

[12] S. R. Chidamber and C. F. Kemerer. “A Metrics Suite for
Object-Oriented Design”, IEEE Transactions on Software
Engineering, pp.476-493, Vol.20, No.6, 1994.

[13] M. Hitz and B. Montazeri, “ Measuring Coupling and
Cohesion in Object-Oriented Systems”, Proceedings of
International Symposium on Applied Corporate Computing,
pp.25-27,Monterrey,Mexico, October 1995.

[14] Fernando Asteasuain, Bernardo Contreras, Elsa Est´evez, Pablo
R. Fillottrani, “Evaluation of UML Extensions for Aspect
Oriented Design”, Universidad Nacional del Sur Av. Alem
1253 – (8000) Bah´ıa Blanca, Argentina, 2003.

[15] Francisca Losavio, Alfredo Matteo, Patricia Morantes, “UML
Extensions for Aspect Oriented Software Development”,
Journal of Object Technology, Published by ETH Zurich, Chair
of Software Engineering, Vol. 8, No. 5, 2009.

[16] Kotrappa Sirbi, Prakash Jayanth Kulkarni, “Impact of Aspect
Oriented Programming on Software Development Quality

Metrics”, Global Journal of Computer Science and
Technology, Vol. 10 Issue 7 Ver. 1.0, pp. 28-36, September
2010.

[17] Dominik Stein, “An Aspect-Oriented Design Model Based on
AspectJ and UML”, Master Thesis, University of Essen,
Germany, January 2002.

