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Abstract– Analysis and interpretation of an image 

which was acquired by a non ideal  imaging system is the 

key problem in many application areas.  The observed 

image is  usually  corrupted by blurring, spatial 

degradations,  and random noise.  In this paper,  we 

propose an alternative approach.  We derive the 

features for image representation which are invariant 

with respect to blur regardless of  the degradation point 

spread function (PSF) provided that i t is  centrally 

symmetric.  Methods to obtain blur invariants which are 

invariants with respect to centrally  symmetric blur are 

based on geometric moments or complex  moments, 

orthogonal legendre moments.  The performance of the 

proposed descriptors is evaluated with various 

point-spread functions and different image noises.  The 

comparison of the different approaches with previous 

methods in terms of pattern recognition accuracy is 

also provided. 

 

Index Terms– Blurred Image, Centrally  Symmetric, 

Legendre Moments,  Pattern Recognition and 

Symmetric Blur 

 

I. INTRODUCTION 

LURRING due to object or camera motion during image 

capture can cause substantial degradation in image 

quality. As a result, a great deal of research has been 

conducted on developing methods for restoring motion blurred 

images. These methods make certain assumptions on the 

blurring process, the ideal image, and the noise. Various image 

processing techniques are then used to identify the blur and 

restore the image. 

In scene analysis, we often obtain the input information in a 

form of an image captured by a no ideal imaging system. Most 

real cameras and other sensors can be modeled as a linear 

space-invariant system, where the relationship between the 

input “f(x, y)” and the acquired image “g(x, y)” is described as 

 

g (t(x ,y))=a(f*h)(x ,y)+n(x ,y)                       (1) 

                                                                                                                                                                         
In the above model, h(x; y) is the point-spread function (PSF) 

of the system, “n(x, y)” is an additive random noise, a is a 

constant describing the overall Change of contrast,” t” stands 

for a transform of spatial coordinates due to projective imaging 

geometry and  *  denotes 2D convolution. In many application  

 

 

Areas, it is desirable to find a description of the original scene 

that does not depend on the imaging system without any prior 

knowledge of its parameters [1] - [5]. Basically, there are two 

different approaches to this problem: image normalization or 

direct description by invariants [1] - [5]. Image normalization 

consists of two major steps: geometric registration, that 

eliminates the impact of imaging geometry and transforms the 

image into some standard form, and blind de-convolution, that 

removes or suppresses the blurring .Both these steps have been 

extensively studied in the literature.  

In the invariant approach we look for image descriptors 

(features) that do not depend on “h(x, y)”, “t(x, y)” and “a”. In 

this way we avoid a difficult inversion of Eq. (1). In many 

applications, the invariant approach is much more effective 

than the normalization. Typical examples are the recognition of 

objects in the scene against a database, template matching, etc. 

The pioneering work in this field was performed by Flusser and 

Suk [6] who derived invariants to convolution with an arbitrary 

Centro symmetric PSF. These invariants have been 

successfully used in template matching of satellite images, in 

pattern recognition [7] – [10] in blurred digit and character 

recognition [11], [12], in normalizing blurred images into 

canonical forms [13], [14] and in focus/defocus quantitative 

measurement. 

The extension of blur invariants to N –dimensions has also 

been investigated [20], [21]. All the existing methods to derive 

the blur invariants are based on geometric moments or complex 

moments. However, both geometric moments and complex 

moments contain redundant information and are sensitive to 

noise especially when high-order moments are concerned. This 

is due to the fact that the kernel polynomials are not orthogonal. 

Teague has suggested the use of orthogonal moments to recover 

the image from moments [22]. It was shown that the orthogonal 

moments are better than other types of moments in terms of 

information redundancy, and are more robust to noise. 

In this paper, a new method to derive a set of blur invariants 

based on orthogonal Legendre moments was proposed. The 

organization of this project is as follows the theory of blur 

invariants of geometric moments and the definition of 

Legendre moments. In the relationship between the Legendre 

moments of the blurred image and those of the original image 

and the PSF. Based on this relationship, a set of blur invariants 

using Legendre moments is provided, the experimental results 

for evaluating the performance of the proposed descriptors.    
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II .  MOMENT INVARIANTS 

An essential issue in the field of pattern analysis is the 

recognition of objects and characters regardless of their 

position, size and orientation as illustrated in Fig. 1. The idea of 

using moments in shape recognition gained prominence when 

Hu (1962), derived a set of invariants using algebraic 

invariants. 

Two-dimensional moments of a digitally sampled M X M 

image that has gray function f (x, y), (x y=0, 1, 2…M- 1) is 

given as 

 ��� � ∑ ∑ ��.�	
���	 ���	
���	 ���, ��                            (2) 
 

The moments f(x, y) translated by an amount (a, b) are defined 

as, 

 

µ�� � ∑ ∑ �� � ����� �� � ��� . ���, ��                            (3) 
 

 

                 
                    (a)                                                         (b) 

 

 

                   
                  (c)                                                    (d)              

 

 

 
Fig. 1. (a) 2-d object (b) change of size (c) change of orientation (d) change of 

position                                                                          

 

III.   BASIC TERMS AND MATHEMICAL FOUNDATION 

First we define the basic terms which will be then used in 

construction of the invariants. 

 

Definition 3.1: By image function (or image) we understand 

any real function f(x, y) having a bounded support and a finite 

nonzero integral. 

 

Definition 3.2: Fourier transform (or spectrum) F (u, v) of the 

image f(x, y) is defined as: 

 

���, �� � � � �������� !��∞�∞∞�∞  ���, ��#�#�          (4) 
 

Where i is the complex unit 

 

Definition 3.3: Geometric moment “mpq “of image f(x; y), 

where p,q are non-negative 

   Integers and (p + q) is called the order of the moment, is 

defined as:  

                ����$�=� � ��∞�∞∞�∞  ��  ���, ��#�#�                       (5)                                          
                                          

Corresponding central moment µpq of order (p+q) of this 

image f(x, y) is defined as   

 %���$�=� � �� & �'�$���(�((�( �� & �'�$��� ���, ��#�#�      (6) 
 

Where the coordinates, 

 

�'�$� � ���$���$� 

�'�$� � ���$���$� 
Where the coordinates )�'�$�, �'�$�*   denotes the Centriod                                

 

Definition 3.4: Complex moment “C (f) pq”” of order (p + q) 

of the image f(x; y) is defined as 

 +���$�=� � �� � ,���(�((�(  �� & ,���  ���, ��#�#�         (7)                                    
 Where i is the complex unit 

 

Definition 3. 5:   h(x, y) is Central symmetry image function 

and the imaging system is energy preserving that is 

 

h (x ,y)=h(-x,-y)                                                (8) 

         

    � � -��, ��∞�∞∞�∞  #�#� � 1                               (9) 
    

Most real sensors and imaging systems have PSF s with 

certain degrees of symmetry.   In many cases they have even 

higher symmetry than central, such as axial or radial symmetry. 

Thus, the Central symmetry assumption is general enough to 

describe almost all practical situations.     

 

Definition 3. 6:  The Centriod the blurred image “g(x, y)” is 

related to Centriod of the original image “f(x, y)” and that of 

PSF “h(x,y)” as 

                                        �'�/� � ��$� � ��0� 
                                        �'�/� � ��$� � ��0�           (10)                                                       
 

In particular if h(x, y) is centrally symmetric then �  0 � �0 
=0 and in such case we have �/ � �$ , �/ � �$ 
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IV.   ORTHOGONAL MOMENTS 

Cartesian moments, are formed using a monomial basis set x
p
 

y
q
 this basis set is non-orthogonal and this Property is passed 

onto the Cartesian moments. These monomials increase rapidly 

in range as the order Increases, producing highly correlated 

descriptions. This can result in important descriptive 

information being contained within small differences between 

moments, which lead to the need for high computational 

precision. 

However, moments produced using orthogonal basis sets 

exist. These orthogonal moments have the advantage of 

needing lower precision to represent differences to the same 

accuracy as the monomials. The Orthogonallity condition 

simplifies the reconstruction of the original function from the 

generated moments. Orthogonallity means mutually 

perpendicular, expressed mathematically two functions y
m
and 

y
n
 are orthogonal over an interval a<x<b if and only if: 

 � �1����2���#� � 0;              � 5 678                               (11) 

                                                                                                                                                     

Here we are primarily interested in discrete images, so the 

integrals within the moment descriptors are replaced by 

summations. It is noted that a sequence of polynomials which 

are orthogonal with respect to integration, are also orthogonal  

With respect to summation, one such (well established) 

orthogonal moment is Legendre. 

V.   LEGENDRE MOMENTS 

The 2-D Legendre moments of order (p+q)  of image 

function  f(x,y) defined as 

 9���$�=� � :����������  :�������, ��#�#�                           (12)                                                                                            
 

Where p, q=0, 1, 2, 3 ….infinity. Pp,Pq   Legendre 

polynomials and f(x,y) continuous image function. The 

Legendre polynomials are a complete orthogonal basis set 

defined over the interval [-1,1], orthogonality to exist in the 

moments, the image function f(x,y) is defined over the same 

interval as the basis set, where the “n
th”
 order Legendre 

polynomial is defined as:  

 :���� � ; c=,>x>2
@	                                                     (13)                                                                                                                          

 

And the Legendre coefficients given by:  

 

c=,>=   AB�� ��  ����CDEF �� @�!�C)CDEF *!)CHEF *!@!             p & k � even             0                                   p & k � odd P   (14) 
                                                                                                                                                                       

So, for a discrete image with current pixel   Pxy   
 

Q�� � ��1 ����2 ��R ∑ ∑ :����:����:����                      (15)                                                                                                 

 

And x, y are defined over the interval [-1,1]. 

The corresponding Central’s moments are defined as  9S���$� � � � :� )� & ��$�* :� )� & ��$�* ���, ��#�#�������     (16)                                                                           

Where the coordinates )��$�, ��$�*   denotes the Centriod                                
VI.   EXPERMIENTS 

A. Recognition Rates for Degraded Images by Moment 

Invariant 

A toy image, whose size is 128 X128X 3 (Fig. 2) has been 

chosen from the public Columbia database. This image is 

degraded by average blur and salt and pepper noise. The 

parameter σ(standard deviation of Gaussian function)of  

average blur chosen As equal to 56.the other parameters such as 

salt and pepper noise is also added with noise density of 0.3.the 

original image  was blurred by 3 X 3,4 X 4,5 X 5,6 X 6,7 X 7,8 

x 8 9 X 9 10 x 10 averaging mask are shown in the Fig. 3. 

 

 

 
 

                                   
                      Fig.  2. Original image of size 128 X 128 X3 

 

 

 

Fig. 3. Degrade image with average blur and salt and pepper                                               

Noise with varying mask sizes 

 

 

The recognition rate for the above image by using geometric 

moments invariants and complex moment invariants is 35.56% 

&43.58%.the recognition rate for Legendre moment invariants 

is 95.81%,from this example we can say that Legendre moment 

invariants is best compared with complex and geometric 

moment invariants.  

Some of the examples of images selected from image 

database of Columbia University are chosen the Fig. 4. 
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TABLE I: RECOGNITION RATES FOR DEGRADED IMAGES 

 

Blur 

Type 
Noise Type 

Geometric 

moment 

invariant 

Complex 

moment 

invariant 

Legendre 

moment 

invariants 

No blur No noise 100% 100% 100% 

Average 
Gaussian noise 

with STD=8 
91.61 % 89.46% 92.70% 

Average 

Gaussian 

noise with 

STD=16 

86.49% 83.17 % 93.53% 

Average 
Gaussian noise 

with STD=20 
82.91% 80.68% 89.90% 

Average 

Salt & pepper 

noise with 

density=0.01 

98.67% 98.95% 98.91% 

Average 

Salt & pepper 

noise with 
density=0.02 

98.27% 97.62% 99.13% 

Average 
Salt & pepper 
noise with 

density=0.03 

96.23% 96.23% 98.90% 

Average 

multiplicative 

noise with 

STD=0.1 

82.69% 80.26% 99.18% 

Average 

multiplicative 

noise with 

STD=0.2 

71.38% 67.57% 95.96% 

Average 

multiplicative 

noise with 

STD=0.3 

64.16% 60.59% 93.82% 

Gaussian 
Gaussian noise 
with STD=8 

91.04% 88.67% 93.26% 

Gaussian 
Gaussian noise 
with STD=16 

86.20 % 83.35% 95.71% 

Gaussian 
Gaussian noise 

with STD=20 
82.78% 79.43 % 83.39% 

Gaussian 

Salt & pepper 

noise with 

STD=0.01 

98.49% 99.29% 99.91% 

Gaussian 

Salt & pepper 

noise with 

STD=0.03 

96.45% 96.63% 99.23% 

Gaussian 

multiplicative 

noise with 

STD=0.1 

82.54% 80.03% 98.52% 

Gaussian 

multiplicative 

noise with 
STD=0.2 

71.77% 67.33% 94.79% 

Gaussian 

multiplicative 

noise with 

STD=0.3 

64.17% 61.07% 93.09% 

motion 
Gaussian noise 

with STD=8 
91.26% 89.73% 95.68% 

motion 
Gaussian noise 

with STD=16 
86.61% 84.73% 91.97% 

motion 
Gaussian noise 

with STD=20 
82.82% 80.02% 80.83% 

motion 

Salt & pepper 

noise with 

STD=0.01 

99.12% 98.33% 99.14% 

motion 

Salt & pepper 

noise with 
STD=0.02 

97.32% 97.91% 98.98% 

motion 

Salt & pepper 

noise with 

STD=0.03 

96.68% 96.03% 98.87% 

motion 

multiplicative 

noise with 

STD=0.1 

82.76% 80.23% 99.10% 

motion 

multiplicative 

noise with 

STD=0.2 

71.52% 67.73% 95.89% 

motion 

multiplicative 

noise with 

STD=0.3 

63.78% 60.65% 94.35% 

 
 
Fig. 4. Four color images selected from image data base of Columbia 
University 

 

                       
 

Fig. 5. Some examples of the degraded images with 3X3 mask 

 

The recognition rates for the different moment invariants are 

given in the following table 1 for varying blur and noises. They 

lead to the same conclusions regarding the performance of the 

respective moment invariants but the decrease in recognition 

rate is more significant when the Noise level is increased. This 

is also true for the LMI. The CMI do not perform well in these 

experiments Table I. 

B. Performance Analysis of Moment Invariants 

A standard grey level image of size 128 X 128 X 3 is shown 

in the Fig. 2. This experiment was carried out to verify the 

performance of the invariants to both blur and noise. The 

original image was blurred by 9 X 9 averaging mask. Some 

examples of the blurred image with different types of noise are 

shown in Fig. 6. The programs were implemented in MATLAB 

6.5 on a PC P4 2.4 GHZ, 512M RAM. It can be seen from Tables I 

and II that the GMI and the CMI, LMI performs better result in 

recognition of degraded images. 

 

         
               (a)                                (b)                                  (c)  

Fig. 6. Some examples of the degraded images: (a) Gaussian blur with salt and 
pepper noise (b) Average blur with salt and pepper noise(c) average blur with 

Gaussian noise 

 
Fig. 7. Error rate for Gaussian blur and salt and pepper noise for Fig. 6 (a) 

Horizontal axis standard deviation or density and vertical axis error rate. 
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Fig. 8. Error rate for average blur and salt and pepper noise for Fig. 6 (b) 
Horizontal axis standard deviation or density and vertical axis error rate 

 

 

 
 

Fig. 9. Error rate for average blur and Gaussian noise for Fig. 6(c) Horizontal 

axis standard deviation or density and vertical axis error rate 

 

From the above Fig. 7 – Fig. 9 it can be seen that LMI 

performs better than GMI, CMI. It can be also seen that a better 

robustness is achieved whatever the PSF or the additive noises 

for the original image by using LMI. 

C. Moment Invariants of Order up to Five for LMI, GMI and 

CMI 

The moment invariants of original image shown in Fig. 2 up 

to order five is shown in the following Table II.                                    

 
TABLE II: CALCULATION OF VARIOUS MOMENTS OF ORDER FIVE 

 
MOMENTS 

OF ORDER 
LMI GMI CMI 

(5,0) 0        74.729       56.9078 

(4,1) 42.36384      -46.81451       72.7031 

(3,2) -5.095288       17.41009        266.155 

(2,3) 17.71161      -18.44362       243.8148 

(1,4) -8.146794           -28.73874 564.2339 

(0,5) 0       264.9122       15.03025 

VII.   CONCLUSION 

The paper was devoted to the image features which are 

invariant to blurring by a filter with centrally symmetric PSF. In 

this paper, we have proposed a new approach to derive a set of 

blur invariants using the orthogonal Legendre moments. We 

demonstrated that invariant Functional can be used in image 

analysis as features for description and recognition of objects in 

degraded images. Invariant-based approach is a significant step 

towards robust and reliable object recognition methods. The 

experiments conducted so far in very distinct situations 

demonstrated that the proposed descriptors are more robust to 

noise and have better discriminative power than the methods 

based on geometric or complex moments. The derivation of 

combined invariants to both geometric transformation and blur 

is currently under investigation.  
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