
International Journal of Computer Science and Telecommunications [Volume 2, Issue 7, October 2011] 10

Journal Homepage: www.ijcst.org

M. Gopikrishnan
1
 and Dr. T. Santhanam

2

1
Department of MCA, Prathyusha Institute of Technology and Management, Chennai-602 025, India

2
Department of Computer Science, D. G. Vaishmav College, Chennai- 600 106, India

mgkc71@yahoo.com; santhanam_dgvc@yahoo.com

Abstract– A biometric system provides automatic

identification of an individual based on a unique feature or

characteristic possessed by the individual. Iris recognition is

regarded as the most reliable and accurate biometric

identification system available. An approach for accurate

Biometric Recognition and identification of Human Iris Patterns

using Neural Network has been illustrated in [10]. The same

authors tried by reducing the size of the templates from 20 X

480 to 10 X 480 and concluded that this resulted in saving of

computation effort with no loss in accuracy. In this paper, based

on the accurate methodology [10[, we extend the work for

optimization for Iris Patterns recognition using various neural

training model algorithms. The results from the neural models

trained by Levenberg– Marquardt algorithm is found to provide

accuracy in recognition better than the methods presented in the

literature.

Index Terms– Iris Recognition, Biometric Identification,

Pattern Recognition and Automatic Segmentation

I. INTRODUCTION

ASED on the results reported in the literature [1] – [9]

for Iris recognition, Gopikrishnan et al., [10] studied

Hamming distance coupled with Neural Network based iris

recognition techniques. Perfect recognition on a set of 150

eye images has been achieved through this approach ;

Further, Tests on another set of 801 images resulted in false

accept and false reject rates of 0.0005% and 0.187%

respectively, providing the reliability and accuracy of the

biometric technology. In subsequent papers same authors

provided [11], [12] results of iris recognition performed on a

reduced size template, applying Hamming distance, Feed

forward back propagation, Cascade forward back

propagation, Elman forward back propagation and

perceptron. It has been established that the method suggested

applying perceptron, using hardlim training function and

learnp learning function, provides the best accuracy in respect

of iris recognition with no major additional computational

complexity. This paper uses the CASIA iris image database

collected by Institute of Automation, Chinese Academy of

Sciences [13].

In this paper, based on the accurate methodology suggested

by Gopikrishnan et al., we extend the work for optimization

for Iris Patterns recognition using various neural training

model algorithms. The results from the neural models trained

by Levenberg – Marquardt algorithm is found to provide

accuracy in recognition better than the methods presented in

the literature.

II. ARTIFICIAL NEURAL NETWORKS (ANN)

ANN's are biologically inspired computer programs to

simulate the way in which the human brain process

information. It is a very powerful approach for building

complex and nonlinear relationship between a set of input

and output data. The power of computation comes from

connection in a network. Each neuron has weighted inputs,

simulation function, transfer function and output. The

weighted sum of inputs constitutes the activation function of

the neurons. The activation signal is passed through a

transfer function which introduces non-linearity and

produces the output. During training process, the inter-unit

connections are optimized until the error in prediction is

minimized. Once the network is trained, new unseen input

information is entered to the network to calculate the test

output.

There are many types of neural network for various

applications available in the literature. The most commonly

used and simplest network architecture called Feed–

Forward Back propagation neural network (FFBPNN) [14]

and Cascade Forward Back propagation neural network

(CFBPNN) [15] shown in Fig. 1 are used in this work.

FFBPNN and CFBPNN consist of three layers: an input

layer, an output layer and an intermediate or hidden layer.

The neurons in the input layer only act as buffer for

distributing the input signals to neuron in hidden layer. Each

neuron in hidden layer sums up its input signal after

Fig. 1: Feed & Cascade– Forward Back propagation

B

Effect of Training Algorithms on the Accuracy in Iris

Patterns Recognition using Neural Networks

ISSN 2047-3338

M. Gopikrishnan et al. 11

weighting them and computes it outputs. Training a network

consists of adjusting its weights using learning algorithms.

The different training functions [14], [15] used in this work

are explained briefly in Sections 2.1 to 2.14. All tthese

algorithms scan train any network as long as the weight, net

input and transfer functions have derivative functions.

A. Levenberg-Marquardt Algorithm [16]

Back propagation is used to calculate the Jacobian jX of

performance PERF with respect to the weight and bias

variables X. Each variable is adjusted according to

Levenberg-Marquardt,

 jj = jX * jX

 je = jX * E

 dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix. The

adaptive value MU is increased by MU_INC until the

change above results in a reduced performance value. The

change is then made to the network and mu is decreased by

MU_DEC. The parameter MEM_REDUC indicates how to

use memory and speed to calculate the Jacobian jX. If

MEM_REDUC is 1, then TRAINLM runs the fastest, but

can require a lot of memory. Increasing MEM_REDUC to

2, cuts some of the memory required by a factor of two, but

slows TRAINLM somewhat. Higher values continue to

decrease the amount of memory needed and increase

training.

B. TRAINBFG Algorithm [16]

In this algorithm back propagation is used to calculate

derivatives of performance PERF with respect to the weight

and bias variables X. Each variable is adjusted according to

the following:

 X = X + a * dX;

where dX is the search direction. The parameter a is

selected to minimize the performance along the search

direction. The line search function searchFcn is used to

locate the minimum point. The first search direction is the

negative of the gradient of performance. In succeeding

iterations the search direction is computed according to the

following formula:

 dX = -H\gX;

where gX is the gradient and H is an approximate Hessian

matrix.

C. TRAINBR Algorithm [16]

Bayesian regularization minimizes a linear combination

of squared errors and weights. It also modifies the linear

combination so that at the end of training the resulting

network has good generalization qualities. This Bayesian

regularization takes place within the Levenberg-Marquardt

algorithm. Back propagation is used to calculate the

Jacobian jX of performance PERF with respect to the

weight and bias variables X. Each variable is adjusted

according to Levenberg-Marquardt,

 jj = jX * jX

 je = jX * E

 dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.

The adaptive value MU is increased by MU_INC until the

change shown above results in a reduced performance value.

The change is then made to the network and mu is

decreased by MU_DEC. The parameter MEM_REDUC

indicates how to use memory and speed to calculate the

Jacobian jX. If MEM_REDUC is 1, then TRAINLM runs

the fastest, but can require a lot of memory. Increasing

MEM_REDUC to 2 cuts some of the memory required by a

factor of two, but slows TRAINLM somewhat. Higher

values continue to decrease the amount of memory

needed and increase the training times.

D. TRAINCGF Algorithm [16]

This algorithm is a network training function that updates

weight and bias values according to the conjugate gradient

back-propagation with Fletcher-Reeves updates.

E. TRAINCGP Algorithm [16]

This algorithm is a network training function that updates

weight and bias values according to the conjugate gradient

back propagation with Polak-Ribiere updates.

F. TRAINGD Algorithm [16]

This algorithm uses back propagation is used to calculate

derivatives of performance PERF with respect to the weight

and bias variables X. Each variable is adjusted according to

gradient descent:

 dX = lr * dperf/dX

F. TRAINGDM Algorithm [16]

In TRAINGDM algorithm backpropagation is used to

calculate derivatives of performance PERF with respect to

the weight and bias variables X. Each variable is adjusted

according to gradient descent with momentum,

 dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

G. TRAINGDA Algorithm [16]

In this algorithm back-propagation is used to calculate

derivatives of performance DPERF with respect to the

weight and bias variables X. Each variable is adjusted

according to gradient descent:

International Journal of Computer Science and Telecommunications [Volume 2, Issue 7, October 2011] 12

 dX = lr*dperf/dX

Each of epoch, if performance decreases toward the goal,

then the learning rate is increased by the factor lr_inc. If

performance increases by more than the factor

max_perf_inc, the learning rate is adjusted by the factor

lr_dec and the change, which increased the performance, is

not made.

H. TRAINGDX Algorithm [16]

In TRAINGDX algorithm back-propagation is used to

calculate derivatives of performance PERF with respect to

the weight and bias variables X. Each variable is adjusted

according to the gradient descent with momentum.

 dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal,

then the learning rate is increased by the factor lr_inc. If

performance increases by more than the factor

max_perf_inc, the learning rate is adjusted by the factor

lr_dec and the change, which increased the performance, is

not made.

I. TRAINOSS Algorithm [16]

This algorithm uses back-propagation to calculate

derivatives of performance PERF with respect to the weight

and bias variables X. Each variable is adjusted according to

the following:

 X = X + a*dX;

where dX is the search direction. The parameter a is

selected to minimize the performance along the search

direction. The line search function searchFcn is used to

locate the minimum point. The first search direction is the

negative of the gradient of performance. In succeeding

iterations the search direction is computed from the new

gradient and the previous steps and gradients according to

the following formula:

 dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the

weights on the previous iteration, and dgX is the change in

the gradient from the last iteration.

J. TRAINR [16]

For each epoch, all training vectors (or sequences) are

each presented once in a different random order with the

network and weight and bias values updated accordingly

after each individual presentation.

K. TRAINRP Algorithm [16]

Back-propagation is used in this algorithm to calculate

derivatives of performance PERF with respect to the weight

and bias variables X. Each variable is adjusted according to

the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0 and

gX is the gradient. At each iteration the elements of deltaX

are modified. If an element of gX changes sign from one

iteration to the next, then the corresponding element of

deltaX is decreased by delta_dec. If an element of gX

maintains the same sign from one iteration to the next, then

the corresponding element of deltaX is increased by

delta_inc.

L. TRAINSCG Algorithm [16]

In TRAINSCG algorithm back propagation is used to

calculate derivatives of performance PERF with respect to

the weight and bias variables X. The scaled conjugate

gradient algorithm is based on conjugate directions, as in

TRAINCGP, TRAINCGF and TRAINCGB, but this

algorithm does not perform a line search at each iteration.

III. EXPERIMENTAL RESULTS

The performance of the proposed improved methodology

is evaluated with CASIA database (the institute of

Automation, Chinese Academy of Sciences). The CASIA

data base contain nearly 4500 iris images at (320X280). The

experiments were carried out in Intel Core 2 Duo processor

with templates. This is a real world application level

simulation.

The goal of training is to find an optimum solution for

network, so that output arises from real answer. In network

training, each input vector and opposite output vector make

a couple. Usually, a neural network trains with more

couples. In neural network, primary weights are important

because this comparison is dependent on different elements

such as input data, weights, goal error parameter and the

aim of network usage.

In Table (1-4) and Fig. (2-5) (using a 3D Column chart)

the results of comparison between different training

functions in neural network are shown. Levenberg–

Marquardt algorithm is found to provide accuracy in

recognition better than the methods presented in the

literature and its performance is better than other training

functions.

M. Gopikrishnan et al. 13

Fig. 2: Verification of Performance using 3D Column Chart

 (Layer 2 Feed Forward Back Propagation)

Table 2: Comparison between experimental Results using Layer 2 with Cascade Forward Back Propagation

Training Function Learning Function
EXP

1 & 2

EXP

1 & 3

EXP

1 & 4

EXP

1 & 5

EXP

1 & 6

EXP

1 & 7

EXP

1 & 8

EXP

1 & 9

EXP

1&10

BFG GDM 0.13 0.13 0.18 0.14 0.16 0.16 0.16 0.16 0.15

CGB GDM 0.18 0.11 0.20 0.15 0.16 0.20 0.15 0.17 0.15

CGF GDM 0.21 0.14 0.20 0.17 0.18 0.18 0.19 0.19 0.17

CGP GDM 0.17 0.12 0.24 0.14 0.16 0.16 0.15 0.15 0.16

GD GDM 0.38 0.39 0.39 0.39 0.38 0.39 0.40 0.41 0.38

GDM GDM 0.40 0.38 0.40 0.42 0.39 0.39 0.39 0.40 0.39

GDA GDM 0.35 0.33 0.35 0.33 0.37 0.35 0.34 0.35 0.42

GDX GDM 0.36 0.34 0.37 0.35 0.36 0.35 0.36 0.36 0.36

LM GDM 0.12 0.08 0.12 0.09 0.11 0.11 0.11 0.11 0.11

0SS GDM 0.19 0.13 0.12 0.15 0.18 0.18 0.17 0.17 0.15

R GDM 0.18 0.15 0.18 0.16 0.18 0.18 0.18 0.18 0.18

RP GDM 0.16 0.12 0.16 0.13 0.15 0.15 0.15 0.15 0.15

SCG GDM 0.15 0.19 0.15 0.18 0.15 0.17 0.20 0.23 0.14

Table 1: Comparison between experimental Results using Layer 2 Feed Forward Back Propagation

Training Function Learning Function
EXP

1 & 2

EXP

1 & 3

EXP

1 & 4

EXP

1 & 5

EXP

1 & 6

EXP

1 & 7

EXP

1 & 8

EXP

1 & 9

EXP

1&10

BFG GDM 0.18 0.15 0.18 0.16 0.18 0.17 0.17 0.18 0.18

CGB GDM 0.18 0.14 0.17 0.18 0.17 0.17 0.16 0.16 0.22

CGF GDM 0.23 0.15 0.19 0.24 0.21 0.18 0.17 0.17 0.19

CGP GDM 0.17 0.18 0.17 0.15 0.22 0.17 0.16 0.16 0.18

GD GDM 0.39 0.39 0.40 0.42 0.40 0.40 0.39 0.39 0.42

GDM GDM 0.40 0.40 0.40 0.42 0.40 0.41 0.39 0.40 0.40

GDA GDM 0.37 0.37 0.38 0.40 0.37 0.37 0.38 0.36 0.39

GDX GDM 0.39 0.37 0.40 0.35 0.39 0.37 0.38 0.37 0.38

LM GDM 0.16 0.12 0.15 0.14 0.16 0.16 0.15 0.14 0.15

0SS GDM 0.18 0.15 0.19 0.17 0.19 0.18 0.18 0.18 0.17

R GDM 0.21 0.18 0.22 0.19 0.21 0.21 0.20 0.20 0.20

RP GDM 0.18 0.15 0.19 0.16 0.18 0.18 0.17 0.18 0.17

SCG GDM 0.17 0.17 0.17 0.15 0.17 0.18 0.18 0.18 0.17

International Journal of Computer Science and Telecommunications [Volume 2, Issue 7, October 2011] 14

Fig. 3: Verification of Performance using 3D Column Chart

(Layer 2 with Cascade Forward Back Propagation)

Table 3: Comparison between experimental Results using Layer 10 with Feed Forward Back Propagation

Training Function Learning Function
EXP

1 & 2

EXP

1 & 3

EXP

1 & 4

EXP

1 & 5

EXP

1 & 6

EXP

1 & 7

EXP

1 & 8

EXP

1 & 9

EXP

1&10

BFG GDM 0.18 0.15 0.19 0.16 0.17 0.18 0.17 0.17 0.17

CGB GDM 0.17 0.14 0.17 0.15 0.17 0.16 0.17 0.16 0.21

CGF GDM 0.18 0.15 0.19 0.25 0.18 0.18 0.18 0.17 0.18

CGP GDM 0.17 0.14 0.17 0.25 0.18 0.16 0.16 0.16 0.16

GD GDM 0.41 0.40 0.38 0.39 0.40 0.41 0.40 0.41 0.41

GDM GDM 0.40 0.41 0.40 0.41 0.41 0.40 0.40 0.40 0.41

GDA GDM 0.37 0.33 0.38 0.35 0.36 0.36 0.37 0.39 0.38

GDX GDM 0.38 0.39 0.40 0.36 0.40 0.37 0.38 0.38 0.35

LM GDM 0.16 0.13 0.16 0.14 0.20 0.15 0.15 0.15 0.15

0SS GDM 0.18 0.15 0.19 0.17 0.18 0.18 0.18 0.18 0.18

R GDM 0.21 0.18 0.22 0.20 0.20 0.20 0.21 0.22 0.20

RP GDM 0.19 0.15 0.18 0.16 0.18 0.18 0.18 0.17 0.17

SCG GDM 0.17 0.14 0.18 0.15 0.17 0.16 0.17 0.17 0.17

Fig. 4: Verification of Performance using 3D Column Chart

(Layer 10 Feed Forward Back Propagation)

M. Gopikrishnan et al. 15

Table 4: Comparison between experimental Results using Layer 10 with Cascade Forward Back Propagation

Training Function Learning Function
EXP

1 & 2

EXP

1 & 3

EXP

1 & 4

EXP

1 & 5

EXP

1 & 6

EXP

1 & 7

EXP

1 & 8

EXP

1 & 9

EXP

1&10

BFG GDM 0.13 0.13 0.18 0.14 0.16 0.16 0.16 0.16 0.15

CGB GDM 0.18 0.11 0.20 0.15 0.16 0.20 0.15 0.17 0.15

CGF GDM 0.21 0.14 0.20 0.17 0.18 0.18 0.19 0.19 0.17

CGP GDM 0.17 0.12 0.24 0.14 0.16 0.16 0.15 0.15 0.16

GD GDM 0.38 0.39 0.39 0.39 0.38 0.39 0.40 0.41 0.38

GDM GDM 0.40 0.38 0.40 0.42 0.39 0.39 0.39 0.40 0.39

GDA GDM 0.35 0.33 0.35 0.33 0.37 0.35 0.34 0.35 0.42

GDX GDM 0.36 0.34 0.37 0.35 0.36 0.35 0.36 0.36 0.36

LM GDM 0.12 0.08 0.12 0.09 0.11 0.11 0.11 0.11 0.11

0SS GDM 0.19 0.13 0.12 0.15 0.18 0.18 0.17 0.17 0.15

R GDM 0.18 0.15 0.18 0.16 0.18 0.18 0.18 0.18 0.18

RP GDM 0.16 0.12 0.16 0.13 0.15 0.15 0.15 0.15 0.15

SCG GDM 0.15 0.19 0.15 0.18 0.15 0.17 0.20 0.23 0.14

Fig. 5: Verificationof Performance using 3D Column Chart

(Layer10 with Cascade Forward Back Propagation)

IV. CONCLUSIONS

Based on the improved iris recognition method already

proposed in the literature in this paper optimization for Iris

Patterns recognition using various neural training model

algorithms is carried out. The results of the neural model

trained by Levenberg – Marquardt algorithm is found to

provide accuracy in recognition better than other training

methods. A comparison of results obtained for the two

experiments show the results of the improved method

exhibit an encouraging performance as for as the accuracy

is concerned especially on the CASIA data set [13]. The

performance evaluation and comparisons indicate that the

proposed method is a viable and very efficient method for

iris recognition resulting in lesser time complexity and

space requirement.

ACKNOWLEDGMENTS

The iris CASIA dataset is available on the web at

http:// www. sinobiometrics.com / english/ Iris%20Data

bases.asp[13].

REFERENCES

[1] S. Sanderson, J. Erbetta. Authentication for secure

environments based on iris scanning technology. IEE

Colloquium on Visual Biometrics, 2000.

[2] E. Wolff. Anatomy of the Eye and Orbit. 7th edition. H. K.

Lewis & Co. LTD, 1976.

[3] R. Wildes. Iris recognition: an emerging biometric

technology. Proceedings of the IEEE, Vol. 85, No. 9, 1997.

[4] Yingzi Du, Robert Ives, Bradford Bonney and Delores

Etter, “ Analysis of partial iris recognition” by spie – 2005.

[5] Woodward, N.M. Orlans, and P.T. Higgins, Biometrics,

The McGraw-Hill Company, Berkeley, California, 2002.

International Journal of Computer Science and Telecommunications [Volume 2, Issue 7, October 2011] 16

[6] J. Daugman, “High Confidence Visual Recognition of

Persons by a Test of Statistical Independence”, IEEE

Transactions on Pattern Analysis and Machine Intelligence,

Vol. 15, No. 11, pp. 1148-1161, 1993.

[7] R.P. Wildes, J.C. Asmuth, G.L. Green, S.C. Hsu, R.J.

Kolczynski, J.R. Matey, and S.E. McBride, “A Machine

Vision System for Iris Recognition”, Mach. Vision

Application, Vol. 9, pp.1-8, 1996.

[8] W.W. Boles and B. Boashash, “A Human Identification

Technique Using Images of the Iris and Wavelet

Transform”, IEEE Transactions on Signal Processing, Vol.

46, No. 4, pp. 1185-1188, 1998.

[9] J.E. Siedlarz, “Iris: More detailed than a fingerprint”, IEEE

Spectrum, vol. 31, pp. 27, 1994.

[10] M. Gopikrishnan , Dr. T.Santhanam “A tradeoff between

template size reduction and computational accuracy in Iris

Patterns Recognition using Neural Networks”, seec

proceedings by , SEEC’ 2010..

[11] M. Gopikrishnan , Dr. T.Santhanam “Improved Biometric

Recognition and identification of Human Iris Patterns using

Neural Networks”, pp 610 – 615 by ICMCS 2010.

[12] M. Gopikrishnan , Dr. T.Santhanam and Dr.R.Raghavan,

“Neural Network based accurate Biometric Recognition and

identification of Human Iris Patterns” seec proceedings ,

pp154 – 157 , 2009.

[13] CASIA Iris Image Database, http://

www.sinobiometrics.com.

[14] Feedforward Network, Backpropagation, Neural Network

Toolbox in MATLAB.

[15] Cascade-forward Network, Back propagation, Neural

Network Toolbox in MATLAB.

[16] Neural Network User Guide, available from http://

www.mathworks.com/ help/ toolbox /nnet/2010

