
International Journal of Computer Science and Telecommunications [Volume 2, Issue 7, October 2011]                                   10 

Journal Homepage: www.ijcst.org 

 
 

M. Gopikrishnan
1
 and Dr. T. Santhanam

2 

1
Department of MCA, Prathyusha Institute of Technology and Management, Chennai-602 025, India 

2
Department of Computer Science, D. G. Vaishmav College, Chennai- 600 106, India 

mgkc71@yahoo.com; santhanam_dgvc@yahoo.com   

 
 
Abstract– A biometric system provides automatic 

identification of an individual based on a unique feature or 

characteristic possessed by the individual. Iris recognition is 

regarded as the most reliable and accurate biometric 

identification system available. An approach for accurate 

Biometric Recognition and identification of Human Iris Patterns 

using Neural Network has been illustrated in [10]. The same 

authors tried by reducing the size of the templates from 20 X 

480 to 10 X 480 and concluded that this resulted in saving of 

computation effort with no loss in accuracy. In this paper, based 

on the accurate methodology [10[, we extend the work for 

optimization for Iris Patterns recognition using various neural 

training model algorithms. The results from the neural models 

trained by Levenberg– Marquardt algorithm is found to provide 

accuracy in recognition better than the methods presented in the 

literature. 

 

Index Terms– Iris Recognition, Biometric Identification, 

Pattern Recognition and Automatic Segmentation 
 

I.   INTRODUCTION 

ASED on the results reported in the literature [1] – [9] 

for Iris recognition, Gopikrishnan et al., [10] studied 

Hamming distance coupled with Neural Network based iris 

recognition techniques.  Perfect recognition on a set of 150 

eye images has been achieved through this approach ; 

Further, Tests on another set of 801 images resulted in false 

accept and false reject rates of 0.0005% and 0.187% 

respectively, providing the reliability and accuracy of the  

biometric technology.  In subsequent papers same authors 

provided [11], [12] results of iris recognition performed on a 

reduced size template, applying Hamming distance, Feed 

forward back propagation, Cascade forward back 

propagation, Elman forward back propagation and 

perceptron. It has been established that the method suggested 

applying perceptron, using hardlim training function and 

learnp learning function, provides the best accuracy in respect 

of iris recognition with no major additional computational 

complexity.  This paper uses the CASIA iris image database 

collected by Institute of Automation, Chinese Academy of 

Sciences [13].  

In this paper, based on the accurate methodology suggested 

by Gopikrishnan et al., we extend the work for optimization 

for Iris Patterns recognition using various neural training 

model algorithms. The results from the neural models trained 

by Levenberg – Marquardt algorithm is found to provide 

accuracy in recognition better than the methods presented in 

the literature. 

II.   ARTIFICIAL NEURAL NETWORKS (ANN) 

ANN's are biologically inspired computer programs to 

simulate the way in which the human brain process 

information. It is a very powerful approach for building 

complex and nonlinear relationship between a set of input 

and output data. The power of computation comes from 

connection in a network. Each neuron has weighted inputs, 

simulation function, transfer function and output. The 

weighted sum of inputs constitutes the activation function of 

the neurons. The activation signal is passed through a 

transfer function which introduces non-linearity and 

produces the output. During training process, the inter-unit 

connections are optimized until the error in prediction is 

minimized. Once the network is trained, new unseen input 

information is entered to the network to calculate the test 

output.   

There are many types of neural network for various 

applications available in the literature. The most commonly 

used and simplest network architecture called Feed– 

Forward Back propagation neural network (FFBPNN) [14] 

and Cascade Forward Back propagation neural network 

(CFBPNN) [15] shown in Fig. 1 are used in this work. 

FFBPNN and  CFBPNN consist of three layers: an input 

layer, an output layer and an intermediate or hidden layer. 

The neurons in the input layer only act as buffer for 

distributing the input signals to neuron in hidden layer. Each 

neuron in hidden layer sums up its input signal after  

 

 
 

Fig. 1: Feed & Cascade– Forward Back propagation 
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weighting them and computes it outputs. Training a network 

consists of adjusting its weights using learning algorithms. 

The different training functions [14], [15] used in this work 

are explained briefly in Sections 2.1 to 2.14. All tthese 

algorithms scan train any network as long as the weight, net 

input and transfer functions have derivative functions. 

A.  Levenberg-Marquardt Algorithm [16] 

Back propagation is used to calculate the Jacobian jX of 

performance PERF with respect to the weight and bias 

variables X.  Each variable is adjusted according to 

Levenberg-Marquardt,   

       jj = jX * jX 

       je = jX * E 

       dX = -(jj+I*mu) \ je 

where E is all errors and I is the identity matrix. The 

adaptive value MU is increased by MU_INC until the 

change above results in a reduced performance value.  The 

change is then made to the network and mu is decreased by 

MU_DEC.  The parameter MEM_REDUC indicates how to 

use memory and speed to calculate the Jacobian jX.  If 

MEM_REDUC is 1, then TRAINLM runs the fastest, but 

can require a lot of memory. Increasing MEM_REDUC to 

2, cuts some of the memory required by a factor of two, but 

slows TRAINLM somewhat.  Higher values continue to 

decrease the      amount of memory needed and increase 

training.  

B. TRAINBFG Algorithm [16] 

In this algorithm back propagation is used to calculate 

derivatives of performance PERF with respect to the weight 

and bias variables X.  Each variable is adjusted according to 

the following: 

        X = X + a * dX; 

where dX is the search direction.  The parameter a is 

selected to minimize the performance along the search 

direction.  The line search function searchFcn is used to 

locate the minimum point. The first search direction is the 

negative of the gradient of performance. In succeeding 

iterations the search direction is computed according to the 

following formula: 

        dX = -H\gX; 

where gX is the gradient and H is an approximate Hessian 

matrix. 

C. TRAINBR Algorithm [16] 

Bayesian regularization minimizes a linear combination 

of squared errors and weights.  It also modifies the linear 

combination so that at the end of training the resulting 

network has good generalization qualities. This Bayesian 

regularization takes place within the Levenberg-Marquardt 

algorithm. Back propagation is used to calculate the 

Jacobian jX of performance PERF with respect to the 

weight and bias variables X. Each variable is adjusted 

according to Levenberg-Marquardt,   

       jj = jX * jX 

       je = jX * E 

       dX = -(jj+I*mu) \ je 

where E is all errors and I is the identity matrix.  

The adaptive value MU is increased by MU_INC until the 

change shown above results in a reduced performance value.  

The change is then made to      the network and mu is 

decreased by MU_DEC.  The parameter MEM_REDUC 

indicates how to use memory and speed to calculate the 

Jacobian jX.  If MEM_REDUC is 1, then TRAINLM runs 

the fastest, but can require a lot of memory. Increasing 

MEM_REDUC to 2 cuts some of the memory required by a 

factor of two, but slows TRAINLM somewhat.  Higher 

values continue to decrease the      amount of memory 

needed and increase the training times. 

D. TRAINCGF Algorithm [16] 

This algorithm is a network training function that updates 

weight and bias values according to the conjugate gradient 

back-propagation with Fletcher-Reeves updates. 

E. TRAINCGP Algorithm [16] 

This algorithm is a network training function that updates 

weight and bias values according to the conjugate gradient 

back propagation with Polak-Ribiere updates.  

F. TRAINGD Algorithm [16] 

This algorithm uses back propagation is used to calculate 

derivatives of performance PERF with respect to the weight 

and bias variables X.  Each variable is adjusted according to 

gradient descent:   

       dX = lr * dperf/dX 

F. TRAINGDM Algorithm [16] 

In TRAINGDM algorithm backpropagation is used to 

calculate derivatives of performance PERF with respect to 

the weight and bias variables X.  Each variable is adjusted 

according to gradient descent with momentum,  

       dX = mc*dXprev + lr*(1-mc)*dperf/dX 

where dXprev is the previous change to the weight or bias. 

G. TRAINGDA Algorithm [16] 

In this algorithm back-propagation is used to calculate 

derivatives of performance DPERF with respect to the 

weight and bias variables X.  Each variable is adjusted 

according to gradient descent:   
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       dX = lr*dperf/dX 

Each of epoch, if performance decreases toward the goal, 

then the learning rate is increased by the factor lr_inc.  If 

performance increases by more than the factor 

max_perf_inc, the learning rate is adjusted by the factor 

lr_dec and the change, which increased the performance, is 

not made. 

H. TRAINGDX Algorithm [16] 

In TRAINGDX algorithm back-propagation is used to 

calculate derivatives of performance PERF with respect to 

the weight and bias variables X.  Each variable is adjusted 

according to the gradient descent with momentum.  

       dX = mc*dXprev + lr*mc*dperf/dX 

where  dXprev is the previous change to the weight or bias.  

For each epoch, if performance decreases toward the goal, 

then the learning rate is increased by the factor lr_inc.  If 

performance increases by more than the factor 

max_perf_inc, the learning rate is adjusted by the factor 

lr_dec and the change, which increased the performance, is 

not made. 

I. TRAINOSS Algorithm [16] 

This algorithm uses back-propagation to calculate 

derivatives of performance PERF with respect to the weight 

and bias variables X.  Each variable is adjusted according to 

the following:  

        X = X + a*dX;  

where dX is the search direction.  The parameter a is 

selected to minimize the performance along the search 

direction.  The line search function searchFcn is used to 

locate the minimum point. The first search direction is the 

negative of the gradient of performance. In succeeding 

iterations the search direction is computed from the new       

gradient and the previous steps and gradients according to 

the following formula:  

        dX = -gX + Ac*X_step + Bc*dgX;  

where gX is the gradient, X_step is the change in the 

weights on the previous iteration, and dgX is the change in 

the gradient from the last iteration. 

J. TRAINR [16] 

For each epoch, all training vectors (or sequences) are 

each presented once in a different random order with the 

network and weight and bias values updated accordingly 

after each individual presentation. 

K. TRAINRP Algorithm [16] 

Back-propagation is used in this algorithm to calculate 

derivatives of performance PERF with respect to the weight 

and bias variables X.  Each variable is adjusted according to 

the following:  

dX = deltaX.*sign(gX); 

where the elements of deltaX are all initialized to delta0 and 

gX is the gradient.  At each iteration the elements of deltaX  

are modified.  If an element of gX changes sign from one 

iteration to the next, then the corresponding element of 

deltaX is decreased by delta_dec. If an element of gX  

maintains the same sign from one iteration to the next, then 

the corresponding element of deltaX is increased by 

delta_inc. 

L. TRAINSCG Algorithm [16] 

In TRAINSCG algorithm back propagation is used to 

calculate derivatives of performance PERF with respect to 

the weight and bias variables X.  The scaled conjugate 

gradient algorithm is based on conjugate directions, as in 

TRAINCGP, TRAINCGF and TRAINCGB, but this       

algorithm does not perform a line search at each iteration. 

III. EXPERIMENTAL RESULTS 

The performance of the proposed improved methodology 

is evaluated with CASIA database (the institute of 

Automation, Chinese Academy of Sciences). The CASIA 

data base contain nearly 4500 iris images at (320X280). The 

experiments were carried out  in Intel Core 2 Duo processor 

with templates. This is a real world application level 

simulation.  

The goal of training is to find an optimum solution for 

network, so that output arises from real answer. In network 

training, each input vector and opposite output vector make 

a couple. Usually, a neural network trains with more 

couples. In neural network, primary weights are important 

because this comparison is dependent on different elements 

such as input data, weights, goal error parameter and the 

aim of network usage.  

In Table (1-4) and Fig. (2-5) (using a 3D Column chart) 

the results of comparison between different training 

functions in neural network are shown. Levenberg– 

Marquardt algorithm is found to provide accuracy in 

recognition better than the methods presented in the 

literature and its performance is better than other training 

functions. 
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Fig. 2: Verification of Performance using 3D Column Chart  

           ( Layer 2 Feed Forward Back Propagation) 

 
 

 

Table 2: Comparison between experimental Results using Layer 2 with Cascade Forward Back Propagation 

Training Function Learning Function 
EXP  

1 & 2 

EXP  

1 & 3 

EXP  

1 & 4 

EXP  

1 & 5 

EXP  

1 & 6 

EXP  

1 & 7 

EXP  

1 & 8 

EXP  

1 & 9 

EXP 

1&10 

BFG GDM 0.13 0.13 0.18 0.14 0.16 0.16 0.16 0.16 0.15 

CGB GDM 0.18 0.11 0.20 0.15 0.16 0.20 0.15 0.17 0.15 

CGF GDM 0.21 0.14 0.20 0.17 0.18 0.18 0.19 0.19 0.17 

CGP GDM 0.17 0.12 0.24 0.14 0.16 0.16 0.15 0.15 0.16 

GD GDM 0.38 0.39 0.39 0.39 0.38 0.39 0.40 0.41 0.38 

GDM GDM 0.40 0.38 0.40 0.42 0.39 0.39 0.39 0.40 0.39 

GDA GDM 0.35 0.33 0.35 0.33 0.37 0.35 0.34 0.35 0.42 

GDX GDM 0.36 0.34 0.37 0.35 0.36 0.35 0.36 0.36 0.36 

LM GDM 0.12 0.08 0.12 0.09 0.11 0.11 0.11 0.11 0.11 

0SS GDM 0.19 0.13 0.12 0.15 0.18 0.18 0.17 0.17 0.15 

R GDM 0.18 0.15 0.18 0.16 0.18 0.18 0.18 0.18 0.18 

RP GDM 0.16 0.12 0.16 0.13 0.15 0.15 0.15 0.15 0.15 

SCG GDM 0.15 0.19 0.15 0.18 0.15 0.17 0.20 0.23 0.14 

Table 1: Comparison between experimental Results using Layer 2 Feed Forward Back Propagation 

Training Function Learning Function 
EXP  

1 & 2 

EXP  

1 & 3 

EXP  

1 & 4 

EXP  

1 & 5 

EXP  

1 & 6 

EXP  

1 & 7 

EXP  

1 & 8 

EXP  

1 & 9 

EXP 

1&10 

BFG GDM 0.18 0.15 0.18 0.16 0.18 0.17 0.17 0.18 0.18 

CGB GDM 0.18 0.14 0.17 0.18 0.17 0.17 0.16 0.16 0.22 

CGF GDM 0.23 0.15 0.19 0.24 0.21 0.18 0.17 0.17 0.19 

CGP GDM 0.17 0.18 0.17 0.15 0.22 0.17 0.16 0.16 0.18 

GD GDM 0.39 0.39 0.40 0.42 0.40 0.40 0.39 0.39 0.42 

GDM GDM 0.40 0.40 0.40 0.42 0.40 0.41 0.39 0.40 0.40 

GDA GDM 0.37 0.37 0.38 0.40 0.37 0.37 0.38 0.36 0.39 

GDX GDM 0.39 0.37 0.40 0.35 0.39 0.37 0.38 0.37 0.38 

LM GDM 0.16 0.12 0.15 0.14 0.16 0.16 0.15 0.14 0.15 

0SS GDM 0.18 0.15 0.19 0.17 0.19 0.18 0.18 0.18 0.17 

R GDM 0.21 0.18 0.22 0.19 0.21 0.21 0.20 0.20 0.20 

RP GDM 0.18 0.15 0.19 0.16 0.18 0.18 0.17 0.18 0.17 

SCG GDM 0.17 0.17 0.17 0.15 0.17 0.18 0.18 0.18 0.17 
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Fig. 3: Verification of Performance using 3D Column Chart 

(Layer 2 with Cascade Forward Back Propagation) 

 
 

 

Table 3: Comparison between experimental Results using Layer 10 with Feed Forward Back Propagation 

Training Function Learning Function 
EXP  

1 & 2 

EXP  

1 & 3 

EXP  

1 & 4 

EXP  

1 & 5 

EXP  

1 & 6 

EXP  

1 & 7 

EXP  

1 & 8 

EXP  

1 & 9 

EXP 

1&10 

BFG GDM 0.18 0.15 0.19 0.16 0.17 0.18 0.17 0.17 0.17 

CGB GDM 0.17 0.14 0.17 0.15 0.17 0.16 0.17 0.16 0.21 

CGF GDM 0.18 0.15 0.19 0.25 0.18 0.18 0.18 0.17 0.18 

CGP GDM 0.17 0.14 0.17 0.25 0.18 0.16 0.16 0.16 0.16 

GD GDM 0.41 0.40 0.38 0.39 0.40 0.41 0.40 0.41 0.41 

GDM GDM 0.40 0.41 0.40 0.41 0.41 0.40 0.40 0.40 0.41 

GDA GDM 0.37 0.33 0.38 0.35 0.36 0.36 0.37 0.39 0.38 

GDX GDM 0.38 0.39 0.40 0.36 0.40 0.37 0.38 0.38 0.35 

LM GDM 0.16 0.13 0.16 0.14 0.20 0.15 0.15 0.15 0.15 

0SS GDM 0.18 0.15 0.19 0.17 0.18 0.18 0.18 0.18 0.18 

R GDM 0.21 0.18 0.22 0.20 0.20 0.20 0.21 0.22 0.20 

RP GDM 0.19 0.15 0.18 0.16 0.18 0.18 0.18 0.17 0.17 

SCG GDM 0.17 0.14 0.18 0.15 0.17 0.16 0.17 0.17 0.17 

 
 

Fig. 4: Verification of Performance using 3D Column Chart 

( Layer 10 Feed Forward Back Propagation) 
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Table 4: Comparison between experimental Results using Layer 10 with Cascade Forward Back Propagation 

Training Function Learning Function 
EXP  

1 & 2 

EXP  

1 & 3 

EXP  

1 & 4 

EXP  

1 & 5 

EXP  

1 & 6 

EXP  

1 & 7 

EXP  

1 & 8 

EXP  

1 & 9 

EXP 

1&10 

BFG GDM 0.13 0.13 0.18 0.14 0.16 0.16 0.16 0.16 0.15 

CGB GDM 0.18 0.11 0.20 0.15 0.16 0.20 0.15 0.17 0.15 

CGF GDM 0.21 0.14 0.20 0.17 0.18 0.18 0.19 0.19 0.17 

CGP GDM 0.17 0.12 0.24 0.14 0.16 0.16 0.15 0.15 0.16 

GD GDM 0.38 0.39 0.39 0.39 0.38 0.39 0.40 0.41 0.38 

GDM GDM 0.40 0.38 0.40 0.42 0.39 0.39 0.39 0.40 0.39 

GDA GDM 0.35 0.33 0.35 0.33 0.37 0.35 0.34 0.35 0.42 

GDX GDM 0.36 0.34 0.37 0.35 0.36 0.35 0.36 0.36 0.36 

LM GDM 0.12 0.08 0.12 0.09 0.11 0.11 0.11 0.11 0.11 

0SS GDM 0.19 0.13 0.12 0.15 0.18 0.18 0.17 0.17 0.15 

R GDM 0.18 0.15 0.18 0.16 0.18 0.18 0.18 0.18 0.18 

RP GDM 0.16 0.12 0.16 0.13 0.15 0.15 0.15 0.15 0.15 

SCG GDM 0.15 0.19 0.15 0.18 0.15 0.17 0.20 0.23 0.14 

 

 

Fig. 5: Verificationof Performance using 3D Column Chart 

( Layer10 with Cascade Forward Back Propagation)

 
 

 

IV.   CONCLUSIONS 

Based on the improved iris recognition method already 

proposed in the literature in this paper optimization for Iris 

Patterns recognition using various neural training model 

algorithms is carried out. The results of the neural model 

trained by Levenberg – Marquardt algorithm is found to 

provide accuracy in recognition better than other training 

methods. A comparison of results obtained for the two 

experiments show the results of the improved method 

exhibit an encouraging performance as for as the accuracy 

is concerned especially on the CASIA data set [13]. The 

performance evaluation and comparisons indicate that the 

proposed method is a viable and very efficient method for 

iris recognition resulting in lesser time complexity and 

space requirement. 
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