
International Journal of Computer Science and Telecommunications [Volume 2, Issue 6, September 2011] 15

Journal Homepage: www.ijcst.org

Appavoo Paramasiven
Computer Science and Engineering Department, University of Mauritius,

Réduit, Mauritius

p.appavoo@uom.ac.mu

Abstract— Caching has been used to improve the

performance of network-dependent computer system. A

number of cache replacement schemes along with invalidation

reports schemes have been devised for MANETs. Apart from

improving the response time of request in MANET, caching

also increases the network lifetime. In this paper, it is shown

how the ant colony optimization is applied to caching system so

as to further improve the performance and lifetime of the ad

hoc network.

Index Terms— Ad Hoc, Network, Cache, Swarm

Intelligence, Ant Colony Optimization and Geocasting

I. INTRODUCTION

D hoc networks have become ubiquitous while
giving rise to new set of application models that are
coined different names. The ever-challenging issues
of such networks are limited-power, limited-

bandwidth and high latency. The latter is noticeable in
interactive applications especially when the communicating
parties are quite far apart in this multi-hop network. One
method brought forward to mitigate these characteristics,
which are the norms rather than the exceptions, of ad hoc
network is caching.

II. RELATED WORK

A number of cache replacement schemes (CRS) and cache
consistency management methods were developed, each
optimized for a certain context of use. The replacement
schemes in [1], [2] and [3] can broadly be classified based
on the way the existing objects are swapped: (1) least
recently used, (2) least recently used with the minimum size,
(3) largest goes out first, and (4) custom-based devised
formulae. The most widely used technique in managing
cache consistency is through the dissemination of
invalidation reports as in [4], [5], [6], [7] and [8] which
contain updates on the state of the objects at the server. The
scheme of invalidation reports sent by the sources of the
respective objects can be classified as stateless-based
(synchronous and asynchronous) and stateful-based as in
[9]. In the synchronous stateless method, the server sends
invalidation reports (IRs) periodically while in the
asynchronous mode, the server sends IRs only when the
objects are updated. The main drawbacks with these two
methods is that the first one tends to use up more of the

scarce resources like power to transmit at a higher frequency
to maintain cache consistency while the second allow
disconnected nodes to only reconnect with a flushed cache.
The stateful approach allows the server to use callback
methods to update cached copies at the client nodes. The
problem of disconnected nodes crop up once again. It is also
useful to point out that frequent disconnection is a
characteristic of ad hoc network. Therefore, frequent
flushing of cache is not uncommon.
SAMPCAN [10] revolutionized the caching replacement

method by downsampling a cached object to create space for
a newly accessed object. The downsampled version despite
being of a lower quality still meets other requests.
SAMPCAN allows for two types of objects, namely (1)
XML, for textual data or information and, (2) images.

III. SWARM INTELLIGENCE: ANT COLONY OPTIMIZATION

(ACO)

Swarm intelligence (SI) is a class of algorithms emerged
from the nature-inspired techniques. The idea that came out
from SI is the ability to coordinate without communication
[11], whereby while agents were individually performing
local tasks, they were also contributing to a global function.
One such discovered methods that have been applied to
routing algorithms in [12] and [13] is the Ant colony
Optimization (ACO), which is based on the way ants find
the optimal way from their nest to a food source. While in
nature, ants lay down pheromone to indicate the directions,
in MANET, nodes mainly record the quality of the route to
the destination, using parameters like number of hops, route
stability, etc.

IV. PROPOSED CACHING SYSTEM USING ACO

A. Overview

The proposed cached system uses the concept of using
pheromone trails to retrieve up-to-date data objects from
nearby caching nodes instead of having the same request
being fulfilled by a far-away server or data source. This
reduces latency in having access to the desired data and is at
the same time energy-saving. The latter is especially critical
to the server and its neighboring nodes that are usually
constantly participating in the forwarding of the requests
and replies.

A

Using Swarm Intelligence to Optimize Caching
Techniques for Ad Hoc Network

ISSN 2047-3338

International Journal of Computer Science and Telecommunications [Volume 2, Issue 6, September 2011] 16

Certain nodes that participated in the forwarding of the

object keep certain information, the pheromone. Request for
similar object follows the pheromone trails to reach closer
up-to-date cached copy. In the event that the caching node is
requesting other objects, the pheromone trails evaporate as
neighboring nodes update their lists of caching objects
available. While the caching node uses CRSa to update
objects in their respective cache stores, certain neighboring
nodes uses CRSa to update their list of neighbors’ cached
objects.
This allows upcoming requests for similar objects to be

directed to a closer reliable source. Pheromone trails are
used to reach consistent cached copies of what is required.
The former also evaporates (1) as the cache storage is being
updated and/or (2) as the nodes experience with weak
connectivity as ongoing activities of caching are missed.
Fig. 1 gives an overview of how the proposed cached

system operates. C1, C2 and C3 requested for objectx at some
point in time, if SAMPCAN [10] is used for example, they
cached a copy of the object for their own future access.
Nodes (within a certain range to the requestor) that
forwarded the reply and those who heard the reply kept the
following information: objectx, requestor, GPS coordinates
of requestor, replier, GPS coordinates of the replier and
timestamp, which is basically the pheromone, in a close
cached-object list (CCOL).
If requestor is requesting different objects more

frequently, existing cached objects are downsampled or
erased completely. At the same time, neighboring nodes
kept the information for a time duration after which it is
removed from the CCOL, that is the pheromone evaporates.
The isosceles trapezoid shape of the forwarding zone

(FZ), to be supported by the underlying routing protocol,
ensures that neighboring nodes that are well aware of the
activities of the requestor so that they can update their
CCOLs. The SENCAST [14] routing protocol can be
slightly modified, as per the algorithm defined for the FZ
computation in the next section, so that nodes have the
ability of determining whether they are forwarders.
Given that after some times, S issues an object discovery

for objectx (ODOx), it receives up 4 replies, i.e. from C1, C2,
C3 and D, containing the following information: objectx,
replier, GPS coordinates of the replier, timestamp and
objectx_status. Note that the object_status increments with
each update performed on that particular object at the
source. In certain cases, S has the ability to determine if

cached copies at C1, C2 or C3 are up-to-date by comparing
their respective object_statuses with that received from D. S
chooses to retrieve the closest and up-to-date copy of the
object by sending a request for objectx (RFOx) by providing
the GPS coordinates of the closest replier and the replier
itself (the IP address).
Cache consistency is ensured by the source. D sends

invalidation reports (IRs) in an asynchronous stateless mode
so that caching node may update objects’ copies or discard
same as required. IRs are sent to the location of requestors
of the updated objects. This can be achieved using any
geocasting protocol.

B. Algorithm

1) Client/Caching node (requestor)

Client nodes requesting for an object keep a copy of the
requested object till either IRs discards the object or the
object is swapped or downsampled to create space for newly
requested objects.

Thread 1:

Send ODOx:
While not ODOx timeout:
 Wait
If no reply received at all:

(to be taken care by the routing protocol…)

 Expand FZ
 Increase ODO timeout

Send ODOx
Else:
 If no reply is received from the data source and cache
consistency required is high:

(to be taken care by the routing

protocol…)

 Expand FZ
 Increase ODOx timeout
 Send ODOx
 Else:
 Discard caching nodes with outdated copies of
objectx
 Calculate closest caching node
 Send RFOx to the closest caching node
Thread 2:
Listen for IRs
Update cached stores

2) Intermediate node (forwarders)

If packet received is a request (RFO/ODO):
Check CCOL

 If a copy of objectx is available nearby:
 Encapsulate packet

Forward same to the caching node
 Else if node is within FZ (Method isForwarder() is
called) :

Request is forwarded to data source
Else if packet received is a reply for an object:

Forward packet to the requestor
 If distance between requestor and current node <
thresholda:
 Check CCOL

If requestor is in the list:

Fig. 1. Caching with ACO

Data source

Requestor

Caching node

Areas where
pheromones to
caching copies

C1

C2

C3
s d

Appavoo Paramasiven 17

Use CRSa to update neighboring cached
objects lists

 Else:
 Add an entry in CCOL
Else (packet is an IR):

Forward packet to its destination, i.e. the caching
node
 Check CCOL

If requestor is in the list:
Use CRSa to update neighboring cached

objects lists

The optimum value for thresholda depends on the context of
use.

3) Source node (node maintaining the required object)

Thread1:
Consolidate updates received
Send IRs to Requestors’ of updated objects

Thread2:
 Reply to RFO/ODO messages

4) Caching node (any node caching objects)

Thread 1:

If packet received is a request (RFO/ODO):
 If a copy of objectx exist:
 Reply the requestor
Thread 2:

If packet received is IR:
 If frequency of access to object > thresholdb:
 timex=[sizeOfObject (bytes) /
averageTransferRateBetweenHops (bytes/sec)] *
NoOfHopsToSource
 wait 2 * timex
 send ODOx

 send RFOx

The optimum value for thresholdb depends on the context

of use. Also, to a certain extent, the waiting time of 2*timex
allows caching node closer to the source to retrieve the
updated objects so that other caching nodes retrieve same to
closer caching nodes instead of requesting same from the
data source.

5) Nodep determining whether it is a forwarder or not

The transformation from geodetic to a 2D local grid can
be performed as shown in [15]. Using the location of the
requestor (s) and the data source (d), p can derive the
equation Y = m(X) + C. Then p finds out the (i) distance
between itself and the perpendicular intersection, q, with the
imaginary line joining s and d, and (ii) the FZ threshold, t, at
q, given the threshold t1 and t2 at s and d respectively. Note
that the threshold values are the two sides of the trapezoid
FZ.
Fig. 2 illustrates.

isForwarder(position of requestors, location of data

sourced, threshold t1, threshold t2):

m = (s.Y – d.Y)/(s.X – d.X)

C = s.Y – m(s.X)

K = p.X + m(p.Y)

If (s.X – d.X) != 0 and m != 0:

q.X = (K/m - C)/(m + 1/m),

q.Y = m * q.X + C

Else If (s.X – d.X) != 0 and m == 0:

q.X = p.X,

q.Y = C

If (s.X – d.X) == 0:

q.X = s.X or q.X = d.X

q.Y = p.Y

t = t2 /2 +(√((s.X – q.X)
2 + (s.Y – q.Y)2)/ (√((s.X –

d.X)2 + (s.Y – d.Y)2)) * (t1 – t2)

If (√((p.X – q.X)2 + (p.Y – q.Y)2)) < t:

Return true, i.e. p forwards the packet

Else

Return false, i.e. p discards the packet

Fig. 3. Scenario of a caching node, for a requested object

Fig. 2. FZ delimitation

p

q

Y

x

t1

t2

t

International Journal of Computer Science and Telecommunications [Volume 2, Issue 6, September 2011] 18

V. DISCUSSIONS

A. Caching node within the FZ of requestor

The caching node replies the requestor that a copy of the
required object is available. Neighboring nodes with
pheromone trails forwards the request to the same caching
node. It can also be the case that several caching nodes and
the source node of the object reply to an ODO message.
Optimally, the requestor chooses to send an RFO to the
closest up-to-date caching node. Fig. 3 depicts the scenario
of a caching node, for a requested object, and neighboring
nodes with pheromone trails lying in the FZ.

B. Caching node outside FZ of requestor

1). With pheromone trails inside the FZ

In some cases, caching nodes lying outside the FZ can
also be closer to the requestor. The availability of such
resources is made aware through pheromone trails of certain
nodes covered by the FZ. Fig. 4 shows examples of
successful routes of ODO messages using pheromone trails.

2). Without pheromone trails inside the FZ

In the worst case scenario, neither pheromone trails to
caching nodes lying outside the FZ exists nor is the
existence of caching nodes inside the FZ. Then the server
reply is the only respond that the requestor receives. Fig. 5
illustrates.

C. Evaporation of pheromone trails

Ideally pheromone trails must lead to consistent cached
copies of the requested object. The trapezoid form of the FZ
allows most neighboring nodes to hear the concerned
caching node activities. Depending on the different ODO
messages, they update their respective CCOL. As such,
objects that are swapped in the caching storage are reflected
by neighboring nodes that collectively build up the trails to
the caching node whenever required. Nodes experiencing
weak connectivity flush their CCOL as this may lead to
inconsistent cache objects or wasting more energy by
forwarding ODO to non-existent objects.

VI. CONCLUSION & FUTURE WORKS

The ACO can significantly increase the network lifetime
by forwarding request to closer caching node than to distant
data source. Using different scenarios it has been
demonstrated how ACO is used to improve the overall
functioning of the ad hoc network by decreasing latency.
The pheromone evolves with respect to the availability of an
object at a caching node. When an object is replaced in the
cache store, the pheromone trails naturally evaporates
following RDO messages forwarded/heard. There is no cost
associated with the maintenance of the pheromone, nodes
update their respective CCOLs based on the activities of its
surrounding and depending on its level of connectivity to the
network. Simulation results can also determine the optimum
values for thresholda and thresholdb. The effect of mobility
also has to be incorporated in the caching system as the
former affects the pheromone trails.

REFERENCES

[1] Abrams M., Standridge C., Abdulla G., Williams S. and Fox
E., “Caching Proxies: Limitations and Potentials,” Proc.
Fourth Int’l World Wide Web Conf., Boston, 1995.

[2] Aggarwal C., Wolf L. and Yu P., “Caching on the World
Wide Web”, IEEE Transactions on Knowledge and Data
Engineering, vol. 11, no. 1, 1999

[3] Williams S., Abrams M., Standridge C. R., Abdulla G., and
Fox E. A., “Removal Policies in Network Caches for World
Wide Web Documents,” Proc. ACM SIGCOMM, pp. 293-
304, 1996.

[4] J. Jing, A. Elmagarmid, A.S. Helal, and R. Alonso, “Bit-
sequences: an adaptive cache invalidation method in mobile
client/server environments”, Mobile Networks and
Applications, vol 2, no 2, 115–127, 1997.

[5] J. Cai, K.L. Tan, "Energy efficient selective cache
invalidation", Wireless Networks, vol 5, issue 6, p 489–502,
1999.

[6] G. Cao, “A scalable low-latency cache invalidation strategy
for mobile environments”, IEEE Transactions on Knowledge
and Data Engineering, Vol 15, No. 5, p1251–1265, 2003.

[7] A. Madhukar, T. Özyer, R. Alhajj, “Dynamic cache
invalidation scheme for wireless mobile
environments”,Wireless Networks, vol 15, no 6, p 727–740,
2009.

[8] Z.Wang, M. Kumar, S. Das, H. Shen, “Dynamic cache
consistency schemes for wireless cellular networks”, IEEE
Transactions on Wireless Communications, vol 5, issue 2,
366–376, 2006.

[9] K. Tan, J. Cai, B. Ooi, “An evaluation of cache invalidation
strategies in wireless environments”, IEEE Transactions on
Parallel and Distributed Systems, vol 12, no 8, 789–807,
2001.

Fig. 5. Without pheromone trails inside the FZ

Fig. 4. With pheromone trails inside the FZ Fig 3 Caching node outside FZ
of requestor: with pheromone trails

Successful ODO routes to
caching nodes using
pheromone trails

Appavoo Paramasiven 19

[10] P. Appavoo, “SAMPCAN: A Novel Caching Technique for
Client-Server Interaction Model In Large Ad Hoc Networks
Using Resampling Methods”, International Journal of
Wireless & Mobile Networks, vol 3, issue 2, 165-180, 2011.

[11] S. Franklin, “Coordination without communication”, URL:
http://www.msci.memphis.edu/~franklin/coord.html,
accessed on 19th July 2011.

[12] J. Wang, E. Osagie, P. Thulasiraman, Ruppa K. Thulasiram,
“HOPNET: A hybrid ant colony optimization routing
algorithm for mobile ad hoc network”, Ad Hoc Networks,
vol 7, 690 – 705, 2009.

[13] M. Unes, U. Sorges, I. Bouazizi , “ARA – The Ant-Colony
Based Routing Algorithm for MANETs”, ICPPW '02
Proceedings of the 2002 International Conference on Parallel
Processing Workshops, 2002.

[14] P. Appavoo and K. Khedo, SENCAST: A Scalable Protocol

for Unicasting and Multicasting in a Large Ad hoc

Emergency Network, International Journal of Computer
Science and Network Security, Vol.8 No.2, p 154 – 165.
February 2008

[15] C. G. Carlson and D. E. Clay, “The Earth Model –
Calculating Field Size and Distances between Points using
GPS Coordinates”, Site-Specific Management Guidelines
series-11, Potash & Phosphate Institute (PPI), 1999.

