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Abstract– In this article presenting the environment of spatial 

data mining and classifications of spatial databases to improve 

the quality in spatial objects that are spatial clustering, 

classification, and association. Framework for spatial data 

mining formulate the visibility nearest neighbor graphs, relations 

and objects  differing in how to prune instances during the search 

process. We further propose the implementation of spatial 

database engine using the eleven spatial instances, here we 

describes only seven which finds the type of instance in different 

geometry or geography analysis. To design the spatial database 

engine requires the data types and measurements are analyzed, 

our work shows not only for mining process but also to 

implement the spatial objects in SQL specification version 1.1.0. 

  

Index Terms– Spatial Classifications, Outlier, Data Types and 

Measurements 
 

I.    INTRODUCTION 

PATIAL data mining is the discovery of interesting 

relationships and characteristics that may exist 

implicitly in spatial databases. Spatial data mining aims 

to automate such a knowledge discovery process (Gueting R. 

H et al., 1994). 

It plays an important role in: a) extracting interesting spatial 

patterns and features; b) capturing intrinsic relationships 

between spatial and non-spatial data; c) presenting data 

regularity concisely and at conceptual levels; and d) helping to 

reorganize spatial databases to accommodate data semantics, 

as well as to achieve better performance. Spatial data mining 

has deep roots in both traditional spatial analysis fields (such 

as spatial statistics, analytical cartography, and exploratory 

data analysis) and various data mining fields in statistics and 

computer science (such as clustering, classification, 

association rule mining, information visualization, and visual 

analytics).  

Its goal is to integrate and further develop methods in 

various fields for the analysis of large and complex spatial 

data. Not surprisingly, spatial data mining research efforts are 

often placed under different umbrellas, such as spatial 

statistics, geocomputation, geovisualization, and spatial data 

mining, depending on the type of methods that a research 

focuses on. Data mining and knowledge discovery is an 

iterative process that involves multiple steps, including data 

selection, cleaning, preprocessing, and transformation; 

incorporation of prior knowledge; analysis with computational 

algorithms and/or visual approaches, interpretation and 

evaluation of the results; formulation or modification of 

hypotheses and theories; adjustment to data and analysis 

method; evaluation of result again; and so on (Fayyad et al., 

1996). Data mining and knowledge discovery is exploratory in 

nature, more inductive than traditional statistical methods. It 

naturally fits in the initial stage of a deductive discovery 

process, where researchers develop and modify theories based 

on the discovered information from observation data (Miller & 

Han, 2009). 

SECTION II 

A) Spatial Classification 

Spatial supervised classification is about grouping data 

items into categories according to their attribute values. 

‘‘Supervised” classification needs a training dataset to the 

classification model, a validation dataset to optimize the 

configuration, and a test dataset to evaluate the performance of 

the trained model. Supervised methods include, for example, 

decision trees, artificial neural networks (ANN), maximum 

likelihood estimation (MLE), linear discriminant function 

(LDF), support vector machines (SVM), nearest neighbor 

methods and case-based reasoning (CBR). Spatial 

classification methods extend the general-purpose 

classification methods to consider not only attributes of the 

object to be classified but also the attributes of neighboring 

objects and their spatial relations (Ester et al., 1997; Koperski 

et al., 1998). A visual approach for spatial classification was 

introduced in (Andrienko & Andrienko, 1999), where the 

decision tree derived with the traditional algorithm C4.5 

(Quinlan, 1993) is combined with map visualization to reveal 

spatial patterns of the classification rules.  

Decision tree induction has also been used to analyze and 

predict spatial choice behaviors (Thill & Wheelerm, 2000). 

Artificial neural networks (ANN) have been used for a broad 

variety of problems in spatial analysis (Fischer, 1998; Fischer 

et al., 2003; Gopal, Liu and Woodcock, 2001; Yao & Thill, 

2007). Remote sensing is one of the major areas that 
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commonly use classification methods to classify image pixels 

into labeled categories e.g., (Cleve et al., 2008). 

Spatial prediction models form a special group of regression 

analysis that considers the independent and/or dependent 

variable of nearby neighbors in predicting the dependent 

variable at a specific location, such as the spatial 

autoregressive models (SAR) (Anselin et al., 2006; Cressie, 

1983; Pace et al., 1998). However, spatial regression methods 

such as SAR often involve the manipulation of an n by n 

spatial weight matrix, which is computationally intensive if n 

is large. Therefore, more recent research efforts have sought to 

develop approaches to find approximate solutions for SAR so 

that it can process very large data sets (Griffith, 2004; Kazar, 

Sheikh Lilja et al., 2004; Smirnov & Anselin, 2001). 

B) Spatial Association 

Spatial association rule mining was originally intended to 

discover regularities between items in large transaction 

databases (Agrawal et al., 1993). Let I = {i1, i2, . . ., im} be a 

set of items i.e., items purchased in transactions such as 

computer, memorycard, milk, bread etc.). Let D be a set of 

transactions, where each transaction T is a set of items such 

that T  I. Let X be a set of items and a transaction T is said 

to contain X if and only if X T. An association rule is in the 

form: X=>Y, where X I,Y I and X Y = ¢. The rule X 

=> Y holds in the transaction set D with confidence c if c% of 

all transactions in D that contain X also contain Y. The rule X 

=> Y has supports in the transaction set D if s% of 

transactions in D contain X  Y. Confidence denotes the 

strength and support indicates the frequencies of the rule. It is 

often desirable to pay attention to those rules that have 

reasonably large support (Agrawal et al., 1993). Similar to the 

mining of association rules in transactional or relational 

databases, spatial association rules can be mined in spatial 

databases by considering spatial properties and predicates 

(Appice, Ceci, Lanza, Lisi, & Malerba, 2003; Han & Kamber, 

2001; Koperski & Han, 1995; Mennis & Liu, 2005).  

A spatial association rule is expressed in the form A) B [s%, 

c%], where A and B are sets of spatial or non-spatial 

predicates, s% is the support of the rule, and c% is the 

confidence of the rule. 

C) Spatial Clustering 

Spatial clustering, regionalization and point pattern analysis 

Cluster analysis is widely used for data analysis, which 

organizes a set of data items into groups (or clusters) so that 

items in the same group are similar to each other and different 

from those in other groups (Gordon, 1996; Jain & Dubes, 

1988; Jain et al., 1999). Many different clustering methods 

have been developed in various research fields such as 

statistics, pattern recognition, data mining, machine learning, 

and spatial analysis. Clustering methods can be broadly 

classified into two groups: partitioning clustering and 

hierarchical clustering. Partitioning clustering methods, such 

as K-means and self-organizing map (SOM) (Kohonen, 2001); 

divide a set of data items into a number of non-overlapping 

clusters. A data item is assigned to the ‘‘closest” cluster based 

on a proximity or dissimilarity measure. Hierarchical 

clustering, on the other hand, organizes data items into a 

hierarchy with a sequence of nested partitions or groupings 

(Jain & Dubes, 1988). Commonly-used hierarchical clustering 

methods include the Ward’s method (Ward, 1963), single-

linkage clustering, average-linkage clustering, and complete-

linkage clustering (Gordon, 1996; Jain & Dubes, 1988).  

To consider spatial information in clustering, three types of 

clustering analysis have been studied, including spatial 

clustering i.e., clustering of spatial points, regionalization (i.e., 

clustering with geographic contiguity constraints), and point 

pattern analysis (i.e., hot spot detection with spatial scan 

statistics). For the first type, spatial clustering, the similarity 

between data points or clusters is defined with spatial 

properties (such as locations and distances). Spatial clustering 

methods can be partitioning or hierarchical, density-based, or 

grid-based. Readers are referred to (Han et al., 2001) for a 

comprehensive review of various spatial clustering methods. 

D) Spatial Outlier Analysis 

Shekhar, Lu and Zhang (2003) define a spatial outlier as a 

spatially-referenced object whose non-spatial attributes appear 

inconsistent with other objects within some spatial 

neighborhood. Note that, unlike spatial outliers, this definition 

does not imply that the object is significantly different than the 

overall database as a whole: it is possible for a spatial object to 

appear consistent with the other objects in the entire database 

but nevertheless appear unusual with a local neighborhood.  

They develop a unified modeling framework and identify 

efficient computational structures and strategies for detecting 

these types of spatial outliers based on a single (non-spatial) 

attribute. More generally, geographic objects can also exhibit 

unusual spatial properties such as size and shape. Ng (2001) 

uses distance-based measures to detect unusual paths in two-

dimensional space traced by individuals through a monitored 

environment. These measures allow the identification of 

unusual trajectories based on entry/exit points, speed and 

geometry; these trajectories may correspond to unwanted 

behaviors such as theft. 

SECTION III 

A) Spatial Data Mining Framework 

Spatial data mining is based on spatial neighbourhood 

relations between objects and on the induced neighbourhood 

graphs and neighbourhood paths which can be defined with 

respect to these neighbourhood relations. Thus, a set of 

database primitives or basic operations for spatial data mining 

are introduced, which are sufficient to express most of the 

spatial data mining Algorithms. Similar to the relational 

standard language SQL, the use of standard primitives will 

speed-up the development of new data mining algorithms and 

will also make them more portable. Second, develop 

techniques to efficiently support the proposed database 

primitives (e.g., by specialized index structures) thus 

speeding-up all data mining algorithms which are based on our 

database primitives. Moreover, basic operations for spatial 

data mining can be integrated into commercial database 

management systems.  

This will offer additional benefits for data mining 

applications such as efficient storage management, prevention 
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of inconsistencies, index structures to support different types 

of database queries which may be part of the data mining 

algorithms. 

B) Spatial Neighborhood Relations, Spatial Neighborhood 

Graphs and their Operations 

Spatial data mining are based on the concepts of 

neighborhood graphs and neighborhood paths which in turn 

are defined with respect to neighborhood relations between 

objects. There are three basic types of spatial relations: 

topological, distance and direction relations which may be 

combined by logical operators to express a more complex 

neighborhood relation. Spatial objects such as points, lines, 

polygons or polyhedrons are all represented by a set of points. 

For example, a polygon can be represented by its edges) or 

by the points contained in its interior, e.g., the pixels of an 

object in a raster representation.  

Topological relations: are based on the boundaries, interiors 

and complements of the two related objects and are invariant 

under transformations which are continuous, one-one, onto 

and whose inverse is continuous. The relations are: A disjoint 

B, A meets B, A overlaps B, A equals B, A covers. 

Fig. 1 shows the Illustration of some topological distance 

and direction relations B, A covered-by B, A contains B, A 

inside B. A formal definition has been given by Egenhofer in 

1991. Relations compare the distance of two objects with a 

given constant using one of the arithmetic comparison 

operators. If dist is a distance function, σ is one of the 

arithmetic predicates <, > or = , and c is a real number, then a 

distance relation O1 distance c O2 between the two spatial 

objects O1 and O2 holds if distance(O1, O2) σ c. To define the 

direction relations, e.g. O2 south O1, we consider one 

representative point of the object O1 as the origin of a virtual 

coordinate system whose quadrants and half-planes define the 

directions. To fulfill the direction predicate, all points of O2 

have to be located in the respective area of the plane.  

Fig. 1 illustrates the definition of some direction relations 

using 2D polygons. Obviously, the directions are not uniquely 

defined but there is always a smallest direction relation for 

two objects A and B, called the exact direction relation of A 

and B, which is uniquely determined. In Fig. 2, for instance, A 

and B satisfy the direction relations northeast and east but the 

exact direction relation of A and B is northeast. By combining 

basic spatial relations via logical operators it is possible to 

define more complex spatial relations, e.g. “O1 is north of O2 

and no more than 5 km away”. Each such spatial relation 

induces a spatial neighborhood graph as defined in the  

 

 

Fig. 1. Topological distance and direction relations 

 

following definition. 

Definition 1: (neighborhood graphs and paths) 

Let neighbor be a neighborhood relation and DB be a database 

of spatial objects. A neighborhood graph is a graph with 

nodes N = DB and edges where an edge e = (n1, n2) exists if 

neighbor(n1,n2) holds. A neighborhood path of length k is 

defined as a sequence of nodes [n1, n2, . . ., nk], where 

neighbor (ni, ni+1) holds for all . We assume the standard 

operations from relational algebra like selection, union, 

intersection and difference to be available for sets of objects 

and sets of neighborhood paths (e.g., the operation selection 

(set, predicate) returns the set of all elements of a set 

satisfying the predicate). In addition, we introduce some 

operations which are specific to neighborhood graphs and 

paths and which are designed to support spatial data mining.  

The following operations are briefly described: 

neighbors: Graphs × Objects × Predicates → Sets_of_objects 

paths: Sets_of_objects → Sets_of_paths; 

extensions: Graphs × Sets_of_paths × Integer × Predicates → 

Sets_of_paths 

The operation neighbors (graph, object, predicate) returns 

the set of all objects connected to object in graph satisfying 

the conditions expressed by the predicate. The operation 

paths(objects) creates all paths of length 1 formed by a single 

element of objects and the operation extensions(graph, paths, 

length, predicate) returns the set of all paths of the specified 

length in graph extending one of the elements of paths. The 

extended paths must satisfy the predicate predicate. The 

elements of paths are not contained in the result implying that 

an empty result indicates that none of the elements of paths 

could be extended. Because the number of neighbourhood 

paths may become very large, the argument predicate in the 

operations neighbours and extensions acts as a filter to restrict 

the number of neighbours and paths to certain types of 

neighbours or paths.  

The definition of predicate may use spatial as well as non-

spatial attributes of the objects or paths. For the purpose of 

KDD “leading away” from the start object. Conjecture that a 

spatial KDD algorithm using a set of paths which are crossing 

the space in arbitrary ways will not produce useful patterns. 

The reason is that spatial patterns are most often the effect of 

some kind of influence of an object on other objects in its 

neighborhood. Furthermore, this influence typically decreases 

or increases more or less continuously with increasing or 

decreasing distance. To create only “relevant” paths, special 

filter predicates which select only particular subsets of all 

paths, i.e., paths which are “leading away” from the start 

objects in a certain sense.  

 

 
 

Fig. 2. The Illustration of some filter predicates 
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This approach also significantly reduces the runtime of the 

spatial data mining algorithms operating on neighborhood 

paths. 

There are different possibilities to define filters for paths 

“leading away” from start objects. The filter starlike, e.g., is a 

very restrictive filter which allows only a small number of 

“coarse” paths. This filter is appropriate for many 

applications, and in terms of runtime it is most efficient. It 

requires that, when extending a path p = [n1,n2,...,nk] with a 

node nk+1, the exact “final” direction of p may not be 

generalized. For instance, a path with final direction northeast 

can only be extended by a node of an edge with the exact 

direction northeast. The filter variable-starlike allows more 

“finegrained” paths by requiring only that, when extending p 

the edge (nk, nk+1) has to fulfill at least the exact “initial” 

direction of p. For instance, a neighborhood path with initial 

direction north can be extended such that the direction north 

or the more special direction northeast is satisfied. The filter 

variable-starlike allows a more detailed spatial analysis than 

the filter starlike, but it increases the runtime of a data mining 

algorithm because more paths have to be processed by the 

algorithm.  

Fig. 2 illustrates these filters when extending the paths from 

a given start object. It also depicts another filter vertical 

starlike which is less restrictive in vertical than in horizontal 

direction. This filter is appropriate when the vertical direction 

should be analyzed in greater detail than the horizontal 

direction.  

IV.   IMPLEMENTING SPATIAL DATABASE ENGINE 

Spatial data represents information about the physical 

location and shapes of geometric objects (e.g point locations 

or countries, roads or lakes, etc). There are two types of spatial 

data: geometry data type supports the Euclidean (flat-earth) 

data, conforms to the open geospatial consortium features for 

SQL specification version 1.1.0. 

Geometry and geography data types support seven spatial 

data instances, are instant able we can create and work with 

these instances in a database. These instances derive certain 

properties from their root data types that distinguish them as 

points, Line strings, Polygons, Multiplegeometry or geography 

instances in a Geometry Collection. 

The Fig. 3 depicts the geometry hierarchy upon which the 

geometry and geography data types are based. The instant able 

types of geometry and geography are indicated in colour blue 

are point, multipoint, linestring, multilinestring, polygon,   

 

 

Fig. 3. The seven instance of geometry and geography data 

multipolygon and geometry collection. The geometry and 

geography types can recognize a specific instance as long as it 

is a well-formed instance, even if the instance is not defined 

explicitly using the ST point form text() method, geometry 

and geography recognize the instance as a point   as long as 

the method input is well-formed. If you define the same 

instance using the STGeom From text()  method, both 

the geometry and geography data types recognize the instance 

as a point. 

Clear idea about the spatial data types are: 

A) Geography Data Type 

The Point type for geography data type represents a single 

location where x and y represent longitude and latitude values 

respectively. The values for longitude and latitude are 

measured in degrees. Values for longitude always lie in the 

interval (-180, 180) and values inputted outside this range are 

wrapped around to fit in this range. For example, if 190 is 

inputted for longitude then it will be wrapped to the value -

170. Values for latitude always lie in the interval [-90, 90] and 

values that are inputted outside this range will throw an 

exception. 

A Multipoint is a collection of zero or more points. The 

boundary of a Multi Point instance is empty. 

A Line String is a one-dimensional object representing a 

sequence of points and the line segments connecting them. 

Fig. 4 contains examples of Line String 1 is a simple non-

closed Line String instance, 2 is a non-simple, non-closed Line 

String  instance, 3 is a closed simple Line String  is a ring, 4 is 

also a closed non-simple Line String instance ring.   A Multi 

Line String is a collection of more geometry or geography 

Line String instances. 

A Polygon is a two-dimensional surface stored as a 

sequence of points defining an exterior bounding ring and zero 

or more interior rings. 

A Polygon instance can be formed from a ring that has at 

least three distinct points. A Polygon instance can also be 

empty. The exterior and any interior rings of a Polygon define 

its boundary. The space within the rings defines the interior of 

the Polygon. 

 

 

Fig. 4. Examples of Line String 

 

 

 

Fig. 5. Polygon instance 
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Fig. 5 depicts the 1 polygon instance whose boundary is 

defined by an exterior ring, 2 is a polygon instance whose 

boundary is defined by exterior ring and two interior rings, 

area inside the interior rings is part of the exterior of polygon 

instance and 3 is a valid polygon instance its interior rings 

intersect at a single tangent point. 

A Multi polygon is a collection of more polygon instance. 

B) Connecting Edges in Geometry 

The defining data for Line String and Polygon types are 

vertices only. The connecting edge between two vertices in a 

geometry type is a straight line. However, the connecting edge 

between two vertices in a geography type is a short great 

elliptic arc between the two vertices. A great ellipse is the 

intersection of the ellipsoid with a plane through its center and 

a great elliptic arc is an arc segment on the great ellipse. 

C) Measurements in Spatial Data Types 

In the planar, or flat-earth, system, measurements of 

distances and areas are given in the same unit of measurement 

as coordinates. Using the geometry data type, the distance 

between (2, 2) and (5, 6) is 5 units, regardless of the units 

used. In the ellipsoidal or round-earth system, coordinates are 

given in degrees of latitude and longitude. However, lengths 

and areas are usually measured in meters and square meters, 

though the measurement may depend on the spatial reference 

identifier (SRID) of the geography instance. The most 

common unit of measurement for the geography data type is 

meters. 

D) Orientation of Spatial Data 

In the planar system, the ring orientation of a polygon is not 

an important factor. For example, a polygon described by ((0, 

0), (10, 0), (0, 20), (0, 0)) is the same as a polygon described 

by ((0, 0), (0, 20), (10, 0), (0, 0)). The OGC Simple Features 

for SQL Specification does not dictate a ring ordering, and 

SQL Server does not enforce ring ordering. In an ellipsoidal 

system, a polygon has no meaning, or is ambiguous, without 

an orientation. For example, does a ring around the equator 

describe the northern or southern hemisphere? If we use 

the geography data type to store the spatial instance, we must 

specify the orientation of the ring and accurately describe the 

location of the instance. 

SQL Server 2008 places the following restrictions on using 

the geography data type: 

Each geography instance must fit inside a single 

hemisphere. No spatial objects larger than a hemisphere can 

be stored. 

Any geography instance from an Open Geospatial 

Consortium (OGC) Well-Known Text (WKT) or Well-Known 

Binary (WKB) representation that produces an object larger 

than a hemisphere throws an Argument Exception. 

The geography data type methods that require the input of 

two geography instances, such as 

STIntersection(), STUnion(), STDifference(), and 

STSymDifference(), will return null if the results from the 

methods do not fit inside a single hemisphere. STBuffer() will 

also return null if the output exceeds a single hemisphere. 

E) Outer and Inner Rings Not Important in Geography Data 

Type 

The OGC Simple Features for SQL Specification discusses 

outer rings and inner rings, but this distinction makes little 

sense for the SQL Server geography data type: any ring of a 

polygon can be taken to be the outer ring. 

V.   CONCLUSION 

In this paper we clearly explain the spatial data mining for 

implementing the SQL data base engine, the spatial data 

design is having the two types of data types which are 

geometry or geography and geospatial. The geospatial 

information is open SQL specification version 1.1.0, geometry 

or geography spatial instances are collection of geometrics. 

Our analysis also represents the classifications of data mining  

which are applied for mining the process of data instances in 

spatial data bases like location, viewpoints, shapes, the spatial 

framework analysis finds the nearest neighbor visibility. This 

work describes mining activities and the different types 

measurements, data types in spatial data analysis. 
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