
International Journal of Computer Science and Telecommunications [Volume 2, Issue 5, August 2011] 34

Journal Homepage: www.ijcst.org

Arram Sriram
1
 and Shaik Shah Nawaz

2

1,2
Department of CSE, Aurora Engineering College, Bhongir, Nalgonda, A.P, India

arram.sriram@gmail.com, shahshaik2006@gmail.com

Abstract– Service discovery has been recognized as an

important aspect in the development of service centric systems,

i.e., software systems which deploy web services. To develop such

systems, it is necessary to identify services that can be combined

in order to fulfill the functionality and achieve quality criteria of

the system being developed. In this paper, we present a

framework supporting design impelled and ranked services

detection (DIRSD) - that is the exploit of services in QOS bead

ranking order, which can provide functionalities and satisfy

properties and constraints of systems as specified during the

software design phase. Detailed system design is a compulsion

and an assumption about iterative design process that allows the

formulation of design models of service-centric systems based on

the exploited services. The framework is composed of a query

extractor, which derives queries from behavioral and structural

UML design models of service centric systems, and a query

execution engine that executes these queries against service

registries. The paper describes a prototype tool that we have

developed to demonstrate and evaluate our framework and the

results of a set of preliminary experiments that we have

conducted to evaluate it.

Index Terms– Design, UML, Services and Framework

I. INTRODUCTION

HE development of service centric systems (SCS) - that

is the construction of software systems that deploy

autonomous web services that can fulfill various

functional and quality characteristics - is increasingly

recognized as an important paradigm of software system

development [1] [2] [3].

This paradigm requires the extension of current software

development practices with new processes, methods, and tools

to support the effective discovery and composition of web

services into an SCS which, in addition to such services, may

also use legacy code or software components. Depending on

the stage that it occurs within the development life-cycle of an

SCS, web service discovery (or simply "service discovery" for

the purpose of this paper) can be distinguished into [4]: early

service discovery (ESD) - this is service discovery that occurs

in the requirements analysis phase in the development life-

cycle of an SCS and is driven by its requirements

specification, Design-Impelled and ranked service Detection

(DIRSD) - this is service discovery that occurs during the

Structural and behavioral model design of the software, and

ranked service discovery (RSD) - this is service discovery that

occurs during the deployment of an SCS and is concerned

with the replacement of existing services of an SCS that

ranked low based on QOS with a service that ranked high in

QOS during the execution of the system.

The work presented in this paper focuses on a framework to

support design-impelled and ranked service detection. This

form of service discovery requires the development of

capabilities to address some important challenges including:

(i) The extraction of service discovery queries from SCS

architecture and design models specifying the

functionality and quality properties of such systems.

(ii) The provision of a query language supporting both the

expression of arbitrary logical combinations of prioritized

functionalities and quality properties criteria for the

required services, and similarity-based queries of the form

“find a service that is similar to service X”.

(iii) The efficient matching of service discovery queries

against service specifications and return of services that

may have varying degrees of match with the queries.

(iv) The assistance to system designers to select services for

an SCS in cases where the discovery process identifies

more than one candidate services satisfying a query or

services that do not satisfy a query entirely.

(v) The integration of the discovered services into an iterative

design process in which SCS architecture and design

models may be re-formulated following the discovery of

services.

The above challenges have been identified by industrial

partners in the areas of telecommunications, automotive, and

software in an integrated European project focusing on service

centric system engineering (SeCSE) (“Electronic source,”

n.d.). These challenges constitute the main driver

underpinning the DIRDS framework that we present in this

paper.

Our framework adopts an iterative design-impelled service

detection and ranked process, and assumes the use of any

modeling language to specify structural and behavioral design

models of SCS. The framework includes a query extractor,

which derives queries from UML design models, and a query

execution engine, which performs these queries against

service registries. The execution of queries is based on a two

stage approach. In the first stage, services which satisfy certain

functional and quality criteria are located and maintained for

T

Discovering Services during Design Phase Using UML

ISSN 2047-3338

Arram Sriram et al. 35

Fig. 1. A Sample Behavioral Model of a Service Centric System

further processing. In the second stage, the fit of the services

located in the first stage with the services required by the

query is assessed by (a) computing distances between the

descriptions of the former and the latter services, and (b)

selecting the set of the former services that has the minimum

aggregate distance to the services required by the query.

The remainder of this paper is structured as follows. In

Section 2, we introduce a scenario for DIRSD that we use

subsequently to demonstrate our approach. In Section 3, we

describe our DIRSD process and framework with its main

components. In Section 4, we describe the query language

used in our framework. In Section 5, we discuss the

mechanisms for the query execution and distance functions

underpinning it. In Section 6, we give an overview of the

implementation of our framework. In Section 7, we present the

results of an initial set of experiments that we have conducted

to evaluate our framework. In Section 8, we give an account of

related work. Finally, in Section 9, we summarize our

approach and outline directions for future work.

II. APPROACH OF DESIGN IMPELLED AND RANKED

SERVICE DETECTION

The sequence diagram in Fig. 1 specifies five operations,

these operations are: Get Location, Calculate Trip Time,

Check Schedule, Update Schedule, and Find POI.

The exact signatures and the types of the parameters of the

operations in the diagram of Figure 1 are specified in the class

diagram of Fig. 2.

A. Query Specification

An DIRSD query is specified by the system designer who

selects an interaction I from SyBM, creates a copy of I called

Fig. 2. Structural Model: Counter Part of the Behavioral Model in Fig. 1

query interaction (I’), selects the messages in I’ that should be

realized by operations of the services to be discovered, and

specifies various constraints on these operations (e.g.

restrictions on the number of parameters) or on the interaction

as a whole (e.g. service provider).

DIRSD query and its results are specified by using a UML

2.0 profile that we have developed (viz. DIRSD profile). The

profile defines a set of stereotypes for different types of UML

elements that may be found in (a) query interaction (e.g.,

messages), (b) results of query execution (e.g. messages,

services), or (c) SySM model of a system that are referenced

by elements of the query interaction (e.g., operations, classes

that define the types of the arguments of interaction messages)

or result parameters. The profile also contains metamodels of

the facets that may be used for specifying services (e.g. cost,

textual description). Figure 4 presents the part of the DIRSD

profile used for specifying an DIRSD query (see Section 5 for

DIRSD results). In this case, a UML package is stereotyped as

an <<query_package>>.

The messages of the interaction may be stereotyped as:

(i) query messages <<query_message>> that indicate the

service operations that should be discovered; (ii) context

messages <<context_message>> that imply additional

constraints for the query messages (e.g. if a context message

has a parameter p1 with the same name as a parameter p2 of a

query message, then the type of p1 should be taken as the type

of p2); and (iii) bound messages <<bound_message>> that are

bound to concrete operations that have been discovered by

executing DIRSD queries in previous iterations. All the

messages in a query interaction, which are not stereotyped by

any of the above stereotypes, are treated as unrelated messages

in I'. These messages should not restrict the services to be

discovered in any way and do not play any role in the query

execution apart from being copied back to the results of a

query execution. The operations corresponding to the query

messages are stereotyped as <<query_operation>>.

International Journal of Computer Science and Telecommunications [Volume 2, Issue 5, August 2011] 36

The DIRSD Profile also defines stereotype properties,

which are used to specify parameters and constraints for the

elements to which the stereotypes containing these properties

are applied. Both <<query_package>> and

<<query_message>> stereotypes can specify query

parameters. Some of these parameters are inherited from the

abstract stereotype <<query_element>>. The query parameters

specified for query_package are global (i.e., applied to the

whole query). The query parameters specified for

query_message are local (i.e., applied to specific messages of

the query interaction). The global parameters are considered as

default values in the query and can be overridden by local

parameters.

Query parameters are used to limit the search space and the

amount of information returned by the query execution engine

(e.g., the number of services to be returned), and are specified

as scalar values. Query constraints stereotyped as

<<constraint>> provide specific selection criteria for choosing

services based on their various characteristics. These

constraints can be applied for query_package, query_message,

and query_operation elements. The constraints may be

formulated in terms of UML metamodel (e.g., number of

parameters in a query operation) or facets metamodel (e.g.

textual description, cost).

The constraints include (a) the type of the constraint (hard

or soft), (b) the body of the constraint as an OCL [6]

expression, and (c) an optional weight of the constraint if the

constraint is soft (real value between 0.0 and 1.0). Hard

constraints must be satisfied by all the discovered services and

operations. Soft constraints influence the identification of the

best services/operations but may not be satisfied by all the

services/operations that are discovered. The use of OCL to

specify constraints is motivated by the fact that OCL is the

standard formal language for specifying constraints for UML

models and therefore DIRSD queries which are based on

them.

Following the specification of a query interaction, the tool

generates a DIRSD query package that contains the context

and query messages of the query, the classes that define the

types of the parameters of these messages, as well as other

classes that may be directly or indirectly referenced by these

classes. The tool automatically executes the extraction of

recursive data structures used in the parameters of the query

messages. The resulting query package is represented in XMI

2.0 − the standard XML based format for representing UML

2.0 models.

Fig. 3. Example of the Query Execution

B. Query Execution Engine

The DIRSD query package is submitted to the query

execution engine to be processed. The execution of queries is

performed in a two-stage process. In the first stage, referred to

as filtering, the query execution engine searches service

registries in order to identify services with operations that

satisfy the hard constraints of a query and retrieves the

specifications of such services. In the second stage, referred to

as best operation matching, the query execution engine

searches through the services identified in the filtering phase,

to find the operations that have the best match with the soft

constraints of the query.

Selection of best operation matching: Detection of the best

possible matching between the operations required by a

DIRSD query and the candidate service operations identified

in the filtering stage is formulated as an instance of the

assignment problem as proposed in [7]. More specifically,

given the set of operations required by an DIRSD query Q,

Oper(Q) and the set of service operations identified in the

filtering stage, OperS(Q), an operation matching graph is

constructed with two disjoint sets of vertices V
Q
 and V

S

defined as:

Where DVk is a set of k special vertices representing

dummy operations (k = |Oper (Q)| − |OperS(Q)|). This

formulation assumes, without loss of generality, that |Oper

(Q)| > |OperS(Q)|. If this is not the case, k dummy vertices are

added to V
Q
 where k = |OperS(Q)| − |Oper (Q)|.

The set of edges of the graph, E(V
Q
,V

S
), includes all the

possible edges between the required operations in V
Q
 and the

retrieved service operations in V
S
. These edges are weighted

by a measure D(v
Q
i,v

S
j) indicating the overall distance

between v
Q
i and v

S
j where v

Q
i ∈ V

Q
 and v

S
j ∈ V

S
. This

measure is computed as the weighted sum of a set of partial

distance measures df(v
Q
 i,v

S
j) quantifying the semantic

differences between v
Q
i and v

S
j with respect to each facet f in

the descriptions of v
Q
i and v

S
j according to the following

distance function (the weights are assumed to be normalized):

if vi should not be mapped onto v
S
j where F is the set of facets

in the descriptions of operations.

Function D is defined to have a value in the range [0,1] for

all the pairs of operations drawn from Oper(Q) and OperS(Q).

In the case of comparisons between an existing operation and

a dummy operation D's value is defined to be 1. This favors

the possibility of mapping an existing operation onto a

requested operation rather than leaving without a counterpart.

Finally, D is defined to take an infinitum value (∞) in the case

of operations which − by virtue of the constraints defined in Q

− should not be mapped onto each other. This precludes the

matching of such operations when the optimal matching

between V
Q
and V

S
 is selected. Following the computation of

the D distances for all the edges of the graph, the matching

between the operations in V
Q
 and V

S
 is detected in two steps.

Arram Sriram et al. 37

In the first step, a subset O(V
Q
,V

S
) of E(V

Q
,V

S
) that is a total

morphs between V
Q
 and V

S
 (or onto morphs if |Oper(Q)| <

|OperS(Q)|)) and minimizes the function Σ(v
Q
i,v

S
j) ∈ O(V

Q

,V
S
) D(F,v

Q
i, v

S
j) is selected. O(V

Q
,V

S
) is selected using

standard algorithms for the assignment problem [7]. In the

second step, O(V
Q
,V

S
) is restricted to include only the edges

whose distance D(F,v
Q
i, v

S
j) does not exceed a threshold value

Dt. Partial distance functions. For the facets corresponding to

soft constraints defined as Boolean tests, the partial distances

df are defined as 1 if the test returns false or the facet is not

available for a specific service, and 0, otherwise. The partial

distance that is used to compare the facets specifying the

signatures of two operations is defined as:

In this formula, dL is a linguistic distance built on top of

WordNet lexicon [5] and dPS is a function computing the

distance between the sets of input or output parameters of two

operations. For two sets of parameters P1 and P2, dPS is

computed by finding the best possible morphism pm between

the elements of these sets, defined as:

Where dP(x,y) is a function that computes the distance

between two specific parameters. This distance is computed

by finding the best possible matching between the structures

of the types of the given operation parameters using a variant

of the class distance measures defined in [7].

Our operation matching framework has been designed to

support modifications to the set of facets F for service

specifications. More specifically, when new facets are added

to F, our framework could be extended to support them by

incorporating partial distance functions enabling operation

comparisons with respect to these facets.

• Ranking:

However, service consumers are interested in not only the

functionalities of web services, but also their quality of service

(QoS) which are non-functional attributes (e.g. response time,

availability etc.) that may have impact on the quality of

service provided by Web services. If there are multiple web

services providing the same functionality in detected results of

the proposed framework the QoS ranking specified can be

used to refine the search? If the QoS claims made by service

providers are trustworthy, the service selection is simple,

either the service with lowest response time and highest

availability is selected. But the problem is that the services

provider may publish inaccurate QoS information to attract

more customers, or the published QoS information may be out

of date. To resolve this problem, it should be allowed to rate

the QoS of the web service selected by the consumers and the

aggregation of these service ratings over a specific period of

time should be taken into consideration in ranking process of

web services so that the probability of finding the best service

for a customer can be increased.

• Approach:

Web service provider provides the QoS initially at the time

of service registration. Service consumers rate the services

after its usage. The web-service ranking will be the aggregate

of initial QoS information provided by web service provider

stored in XML format and the feedback ratings by the service

consumers. The initial QoS information and feedback ratings

can be averaged to derive the ranking for the web service to be

published. Using this QoS ranking selection of appropriate

web service in business-to-business interactions can greatly

benefit.

• QoS Information

Quality of Service, or QoS, is “a combination of several

qualities or properties of a service”. It is a set of nonfunctional

attributes that may influence the quality of the service

provided by a Web service. Some QoS parameters are given

below: Availability is the probability that system is up and can

respond to consumer requests. Reliability is the ability of a

service to perform its required functions under stated

condition for a specific period of time. Performance is the

measure of the speed to complete a service request. It is

measured by latency, throughput and response time. Cost is

the measure of the cost of requesting a service.

The process of detecting web services based on the

framework discussed in related work will be initiated, if

services are found to match both the functional and QoS

requirements and ratings requirements have also been

specified, then the Web Service Broker ranks the services

based on consumer’s QoS and ratings requirements. Service

consumer then selects the web service with the highest rank.

The ranking of the web service will be done based on QOS

information available, usage frequency and communal

relation.

Fig. 4. DIRSD-Block Diagram

International Journal of Computer Science and Telecommunications [Volume 2, Issue 5, August 2011] 38

III. PROPOSED ALGORITHM FOR WEB SERVICE

MATCHING, RANKING AND SELECTION

Block diagram (Fig. 4) shows the high level algorithm for

service matching, ranking and selection:

• funMatch returns a set of services meeting the functional

requirements.

• qosMatch returns the services that meet the QoS

requirements.

• ratingMatch returns the set services whose ratings are

equal and above than rating requirements, from those

returned by method qosMatch and sort them in

descending order.

• qosRank computes the QoS ranks for those services

returned by method qosMatch and sort them in

descending order of QoS rank.

• selectService returns a set of services depending upon

the maximum number of services to be returned in

response to the discovery request.

• DIRSD Results:

The results of a DIRSD query identified by the query

execution engine (i.e. best candidate services with smallest

distances) is specified by using the DIRSD profile. Figure 6

presents the part of the DIRSD profile for DIRSD results. The

DIRSD results are represented as a UML package stereotyped

as <<results_package>.

The results_package contains a refinement of the query

interaction used by the designer to create the query together

with the structural model for the elements in the interaction,

and a number of UML packages stereotyped as

<<service_package>>, one for each candidate service

/* Algoritm for web service matching, ranking and

selection */

discoverServices(funReq, qosReq, ratingReq,

maxServices)

{

//discover services meeting the functional

requirements

funMatches = funMatch(funReq);

if QoS requirements specified

qosMatches = qosMatch(funMatches, qosReq);

else

return selectService(funMatches, maxServices,

“byRandom”);

if Rating requirements specified

Matches = ratingMatch(qosMatches, qosReq,

ratingReq);

return selectService(Matches, maxServices,

“byQoS&Rating”);

else

Matches = qosRank(qosMatches, qosReq);

return selectService(qosMatches, maxServices,

“byQoS”);

}

Fig.5. High Level Algorithm for Service Matching, Ranking and Selection

identified by the query execution engine. Each

service_package contains elements representing a concrete

discovered service together with the class diagram of all data

types and their relationships used in the XSD schemas reverse

engineered from the WSDL specification of this service. The

structural model in the results_package contains copies of all

data types from the query_package together with the mapping

(stereotyped as <<mapping_association>>) to the data types in

the service packages. This data mapping is based on the data

distances computed for each bound operation in the service

against the query message associated to the service.

The operations in an service_package may be stereotyped as

(i) bound operations <<bound_operation>> that denote the

service operations with the best match to a query message or

the one that the designer selects as the best candidate; (ii)

candidate operations <<candidate_operation>> that reflect

another possible result for the query message, but not

necessarily the best match; and (iii) service operations;

<<service_operation>> that are all the remaining operations in

the WSDL specification of the service. The above operations

are grouped together in a UML component (contained in the

service_package) stereotyped as either <<bound_service>> or

<<candidate_services>>, depending on the existence of any

bound operations.

The interaction in the results_package refines the query

interaction by replacing query messages by bound messages

(stereotyped as <<bound_message>>) corresponding to bound

operations. When no operation is found, the query message is

not modified.

Fig. 6. DIRSD Results: Structural Information

Fig. 7. DIRSD Results: behavioral Information

Arram Sriram et al. 39

The framework allows the designer to analyse the results of

a query and select candidate operations to become bound

operations. After the designer selects a particular service from

the returned candidates, the structural model in the

results_package is automatically updated with concrete data of

the chosen service, and the interaction is modified to reflect

the binding of the services and operations. The designer may

use the results_package as a basis for a new iteration of the

DIRSD process.

Table 1: Results of query execution for message GetLocation in TripChecker

Query

Provider Service Operation Distance Rank

ViaMichelin GeocodingService getLocationsList() 0.11374 3

FIAT WNavigation getPosition() 0.14051 2

FIAT YNavigation getPosition() 0.15241 1

ViaMichelin ReverseGeocodingService getLocationsList() 0.15941 4

Table 2: Results of query execution for message weather

www.weather.gov ndfdXMLPort NDFDgenLatLonList 0.138 1

www.iswc2006.semanticweb.org WeatherPort LatLonListCityNames 0.152 2

notes.hubin411.com GetWeather getWeather 0.145 3

IV. CONCLUSION

We presented a framework to support design impelled and

ranked services detection that is integrated with iterative

UML-based system engineering design processes. Our

framework addresses the varous challenges that common

vulanrable in service detection, in particular allowing service

detection to be impelled by design decisions taken during the

development of SCS systems and fulfils the lack of processes

and tools to assist the engineering of complex and dependable

SCS. Together with industrial partners, we are conducting

large-scale experimentation of our framework taking into

consideration different types of service specifications ranging

from structural, to semantic and behavioral aspects that ranked

based on QOS.

REFERENCES

[1] Chammabasavaiah K., Holley K., and Tuggle E.M. (2003),

Migrating to a Service-Oriented Architecture. Retrieved May

22, 2006, from

http://www28.ibm.com/developerworks/webservices/library/ws

migratesoa/.

[2] Kramler G., Kapsammer E., Kappel G., and Retschitzegger W.

(2005). Towards Using UML 2 for Modelling Web Service

Collaboration Protocols, 1st Conference on Interoperability of

Enterprise Software and Applications (INTEROP-ESA '05),

Switzerland, February 21-25.

[3] Papazoglou, M. (2003). Service-Oriented Computing: Concepts,

Characteristics and Directions, Keynote for 4th International

Conference on Web Information Systems Engineering,

December 10-12.

[4] Jones S., Kozlenkov A., Mahbub K., Maiden N., Spanoudakis

G., Zachos K., Zhu X., and Zisman A. (2005). Service

Discovery for Service Centric Systems, eChallenges 2005,

Slovenia, October 19-21.

[5] M. Deubler, M. Meisinger, and I. Kruger, “Modelling

Crosscutting Services with UML Sequence Diagrams,” Proc.

ACM/IEEE Eighth Int’l Conf. Model Driven Eng. Languages

and Systems, 2005.

[6] eXist, exist.sourceforge.net, 2009.

[7] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis,

“Web Service Discovery Mechanisms: Looking for a Needle in

a Haystack,” Proc. Int’l Workshop Web Eng., Hypermedia

Development and Web Eng. Principles and Techniques: Put

Them in Use, 2004.

Shaik Shah Nawaz has received his M.Tech degree in Computer

Science. Currently, he is working as Senior Associate Professor in the

Department of Computer Science & Engineering, Aurora

Engineering College, Bhongir, Nalgonda, A.P, India. He has 18-years

working Experience in Software Industry. His areas of interests are

Software Engineering, Testing, Network Security, Computer

Networks, Wireless Communications, Data Mining and Data

Warehousing.

Arram Sriram is pursuing his M.Tech in Software Engineering

(Dept. of CSE) in Aurora Engineering College, Bhongir, Nalgonda,

A.P, India. His areas of interests are data mining and knowledge

Discovery, Software Engineering, software project management,

Testing, Network Security, unified modeling language, and Mobile

computing.

