
International Journal of Computer Science and Telecommunications [Volume 2, Issue 5, August 2011] 13

Journal Homepage: www.ijcst.org

Ms. Manisha M. Patil
1
 and Prof. U. L. Kulkarni

2

1
Dr. D. Y. Patil College of Engineering and Technology, Kolhapur, (Maharashtra), India
2
Konkan Gyanpeeth’s College of Engineering, Karjat, Dist. Raigad, (Maharashtra), India

manisha_birnale@rediffmail.com, kumeshl@rediffmail.com

Abstract—In this paper, a lightweight mechanism is proposed

to mitigate session flooding and request flooding app-DDoS

attacks on web servers. App-DDoS attack is Application layer

Distributed Denial of Service attack. This attack prevents

legitimate users from accessing services. Numbers of mechanisms

are available and can be installed on routers and firewalls to

mitigate network layer DDoS attacks like SYN-flood attack, ping

of death attack. But Network layer solution is not applicable

because App-DDoS attacks are indistinguishable based on

packets and protocols. A lightweight mechanism is proposed

which uses trust to differentiate legitimate users and attackers.

Trust to client is evaluated based on his visiting history and

requests are scheduled in decreasing order of trust. In this

mechanism trust information is stored at client side in the form

of cookies. This mitigation mechanism can be implemented as a

java package which can run separately and forward valid

requests to server. This mechanism also mitigates request

flooding attacks by using Client Puzzle Protocol. When server is

under request flooding attack source throttling is done by

imposing cost on client. Cost is collected in terms of CPU cycles.

Index Terms— DDoS Attacks, App-DDoS and Trust

I. INTRODUCTION

ISTRIBUTED Denial of Service attack means an
attempt to prevent a server from offering services to

its legitimate/genuine users. This is accomplished by attackers
by sending requests in overwhelming number to exhaust the
server’s resources, e.g. bandwidth or processing power.
Due to such DDoS attacks server slows down its responses to
clients or sometimes refuses their accesses. Thus DDoS attack
is great threat to internet today.
Now a day many of the businesses like banking, trading,

online shopping uses World Wide Web. So it is very essential
to protect the web sites from this DDoS attacks.
Traditionally, DDoS attacks were carried out at the network

layer, such as SYN flooding, UDP flooding, ping of death

attacks, which are called Net-DDoS attacks.

The intent of these attacks is to consume the network

bandwidth and deny service to legitimate users of the systems.

Many studies has noticed such type of attacks and proposed

different mechanisms, solutions to protect the network and

equipment from bandwidth attacks. So it is not easy as in the

past for attackers to launch the network layer DDoS attacks.

When the simple Net-DDoS attacks fail, attackers are

giving their way to more sophisticated Application layer

DDoS attacks [2].

 Application layer DDoS attack is a DDoS attack that sends

out requests following the communication protocol and thus

these requests are indistinguishable from legitimate requests in

the network layer. Most application layer protocols, for

example, HTTP1.0/1.1, FTP and SOAP, are built on TCP and

they communicate with users using sessions which consist of

one or many requests. As App-DDoS attacks are

indistinguishable from legitimate requests based on packets

and protocols, network layer solution cannot be used here.

Most existing scheme uses packet rate as a metric to identify

attackers. But intelligent users can adjust the packet rate based

on server’s response to evade detection. Even IP address based

filtering is not possible as attackers may hide behind proxies

or IP addresses can be spoofed.

Application layer DDoS attacks employ legitimate HTTP

requests to flood out victim’s resources. Attackers attacking

victim web servers by HTTP GET requests (HTTP flooding)

and pulling large image files from victim server in large

numbers. Sometimes attackers can run large number of queries

through victim’s search engine or database query and bring the

server down [6].

Application layer attack may be of one or combination of

session flooding attack, request flooding attack and

asymmetric attack [1]. Session flooding attack sends session

connection requests at higher rates than that of legitimate

users. Request flooding attack sends sessions that contain

more requests than normal sessions.

Asymmetric attack sends sessions with higher workload

requests. The proposed mechanism focuses the session

flooding attacks and request flooding attacks.

By considering the bandwidth and processing power of

application layer server, threshold for simultaneously

connected sessions and maximum number of requests that can

be serviced with assurance of Quality of service is decided.

Under session flooding attack the proposed mechanism rejects

D

Mitigating App-DDoS Attacks on Web Servers

ISSN 2047-3338

Ms. Manisha M. Patil et al. 14

the attackers and allocates the available sessions to legitimate

users. Under request flooding attacks the proposed mechanism

sends puzzles to the client and the requests are processed only

when client sends result back by solving the puzzles.

The proposed mechanism uses trust to mitigate session

flooding attack and Client Puzzle Protocol to mitigate request

flooding attack.

Distributed Denial of Service attacks have been increasing

in the recent times. Most of the well known sites are affected

by these kinds of attacks. Commercial sites are more

vulnerable during the business time as there will be

many genuine users accessing it, and attacker needs only

a little effort to launch DDoS attack. It is difficult to

prevent such attacks from happening and the attackers may

continue their damage using new and innovative approaches.

Proposed mechanism is a way to handle the situation without

any change at the user end and very little change at the server

end.

The idea is to assign trust value to each client according to

his visiting history and allocate available number of sessions

to users according to their decreasing order of trust values. To

improve the server performance under request flooding DDoS

attacks, attacker enforced to pay the CPU stamp fee, hence

making the attacker also to use his resources more or less

equally [4]. When a client is making legitimate requests, this

cost is negligible but when the client becomes malicious the

costs grow huge there by imposing a limit on the number of

requests that the client can send.

To clarify the idea, we can design a small hypothetical

website which will handle 500 requests per second. The

distributed attack is launched against the website using web

stress tool and it will start sending 1000 requests per second.

Then performance of website is measured without mitigation

mechanism and with mitigation mechanism.

II. RELATED WORK

S. Ranjan et al. proposed a counter-mechanism by building

legitimate user model for each service and detecting

suspicious requests based on the contents of the requests [2].

To protect servers from application layer DDoS attacks, they

proposed a counter-mechanism that consist of a suspicion

assignment mechanism and DDoS resilient scheduler DDoS

shield. The suspicion mechanism assigns continuous value as

opposed to a binary measure to each client session, and

scheduler utilizes these values to determine if and when to

schedule a session’s requests.

M. Srivatsa et el. performed admission control to limit the

number of concurrent clients served by the online service [3].

Admission control is based on port hiding that renders the

online service invisible to unauthenticated clients by hiding

the port number on which the service accepts incoming

requests. The mechanism needs a challenge server which can

be the new target of DDoS attack.

J. Yu, Z. Li, H. Chen, and X. Chen proposed a mechanism

named DOW (Defense an Offence Wall), which defends

against layer-7 attacks using combination of detection

technology and currency technology [5]. An anomaly

detection method based on K-means clustering is introduced

to detect and filter request flooding attacks and asymmetric

attacks. But this mechanism requires large amount of training

data.

Yi Xie and Shun-Zheng Yu introduced a scheme to capture

the spatial-temporal patterns of a normal flash crowd event

and to implement the App-DDoS attacks detection [9].

Since the traffic characteristics of low layers are not enough to

distinguish the App-DDoS attacks from the normal flash

crowd event, the objective of their work is to find an

effective method to identify whether the surge in traffic is

caused by App-DDoS attackers or by normal Web surfers.

Web user behavior is mainly influenced by the structure of

Website (e.g., the Web documents and hyperlink) and the way

users access web pages. In this paper, the monitoring scheme

considers the App-DDoS attack as anomaly browsing

behavior.

Our literature survey has noted that many mechanisms are

developed to service legitimate users only. Abnormalities are

identified and denied. But large amount of training data is

required. Sometimes mitigation mechanism can itself becomes

target of DDoS attack.

The need is felt to design and develop a new lightweight

mechanism that can mitigate both session flooding and

requests flooding Application layer DDoS attacks with small

amount of training data. It will service all users if and only if

resource is available and use bandwidth effectively. It will

identify the abnormalities and serve them with different

priorities.

III. LEGITIMATE USER & ATTAKER MODEL

We can build legitimate user model and attacker model with

several attack strategies of different complexities. We can

make few assumptions about web server.

Assumption 1: Under session flooding attacks, the

bottleneck is maximal number of simultaneously connected

sessions called MaxConnector. It depends on banwidth and

processing power of the server.

Assumption 2: Without attacks, the total number of session

connections of server should be much small than

MaxConnector.

Assumption 3: Under request flooding attacks, the

bottleneck is maximal number of requests in one session that

can be processed with assured quality of service.

Legitimate User Model:

Legitimate users are people who request services for their

benefit from the content of the services. So, the inter-arrival

time of requests from a legitimate user would form a certain

density distribution density (t). Here t is inter-arrival time and

density (t) is the probability a legitimate user will revisit the

website after time t. The traces collected at AT&T Labs

Research and Digital Equipment Corporation by F. Douglis et

el. [8] is used to build model density (t).

International Journal of Computer Science and Telecommunications [Volume 2, Issue 5, August 2011] 15

 Attacker Model:

The goal of session flooding DDoS attack is to keep the

number of simultaneous session connections of the server as

large as possible to stop new connection requests from

legitimate users being accepted. Attacker may consider using

following strategies when he controls lots of zombie

machines.

1. Send session connection requests at a fixed rate,

without considering response or the service ability of victim.

2. Send session connection requests at a random rate,

without considering response or the service ability of victim.

3. Send session connection requests at a random rate and

consider the service ability of victim by adjusting requests at a

rate according to the proportion of accepted session

connection requests by server.

4. First send session connection requests at a rate similar

to legitimate users to gain trust from server, then start

attacking with one of the above strategies.

5. Sends sessions containing large number of requests

than that of the legitimate user session.

IV. ASSIGNING THE TRUST VALUE

For every established connection four aspects of trusts are

recorded. They are short term trust, long term trust, negative

trust and misusing trust [1]. To evaluate visiting history of

clients, trust value is used. The client who behaves better in

history gets higher value of trust. Four aspects of trust are used

for calculating overall trust value of the client.

1) Short term trust: It estimates recent value of trust. It is

used to identify those clients who send session connection

requests at a high rate when server is under session flooding

attack.

2) Long term trust: It estimates long term behavior of client.

It is used to distinguish clients with normal visiting history

from clients with abnormal visiting history.

3) Negative trust: It is calculated by cumulating the distrust

to the client, each time clients overall trust falls below initial

trust value.

4) Misusing trust: It is calculated by cumulating the

suspicious behavior of the client who misuses his cumulated

trust.

Every time client makes session connection request, new

trust value is calculated. The calculated trust value is stored at

client side using cookies.

V. TRUST VALUE COMPUTATION

Every time when new session connection request is made

by client, new value of short term trust and long term trust is

first calculated. Short term trust relies on the interval of the

latest two accesses of the client. Long term trust is calculated

using the negative trust, average access interval and total

number of accesses. Using long term trust, short term trust just

calculated and misusing trust provided in the license, new

value of overall trust is computed.

Negative trust is computed by cumulating difference of

newly computed trust to the initial trust value each time new

trust value is smaller than initial value. The misusing trust is

computed by cumulating the difference in trust value if new

trust value is smaller than previous value.

VI. TRUST BASED SHEDULER

The session connection request first reaches to the

mitigation mechanism. Then new trust value is calculated. If it

is below the minimum value then request is directly rejected.

If it is above the minimum value then the scheduler decides

whether to redirect it to the server based upon its trust value.

If total number of ongoing sessions and number of waiting

sessions is less than the threshold value of server then all

requests are redirected to server. Otherwise requests up to

threshold value are redirected to server in decreasing order of

trust value.

This mechanism can be implemented as a package, which

can run separately and redirect scheduled requests to web

servers and thus mitigate session flooding attack.

Fig. 1. Proposed Mechanism

Fig. 2. Module Structures

Ms. Manisha M. Patil et al. 16

VII. HANDLING REQUEST FLOOING ATTACKS

Once the mitigation mechanism for session flooding attacks

redirects requests to web server, session is started. Request

flooding attacks are those that send sessions with large number

of requests than that of legitimate users. So here numbers of

request are compared with predefined threshold and if it is less

than threshold then all requests are processed in normal way.

Otherwise some cost is imposed to the web client to make

each such request [4].

The cost can be collected in terms of CPU cycles. Here

server will send a puzzle to the client and wait for reply from

that client before the request is processed. If client does not

send reply, request will not be processed. Thus automatically

rate of requests will be decreased as client’s processer has to

spend some time to solve the puzzle. When number of

requests is less then this cost is very negligible but as number

of requests grows it will be significant. It will cause source

throttling effect. If requests are sent by compromised hosts

then they might not be able to send reply of puzzle. JavaScript

is used to implement this. When number of requests is more

than threshold, java script is invoked to send the number ‘n’

which is the product of two 4 digit prime numbers, to the

client making the request. Then client has to compute two

prime factors of ‘n’ and send back the result. When the client

sends answer, then and then only request is processed. Here

processing power of attacker’s CPU is used. This will achieve

attacker source throttling effect. Source throttling module will

calculate the value of ‘n’ by taking two prime numbers ‘p’

and ‘q’ from primes array and multiplying them.

 Algorithms to generate ‘p’ and ‘q’ values dynamically are

as follows:

Algorithm 1: Generate p

 GenerateP(NP,primes,st)

 {

 pMapValue=(st) mod NP

 p=primes[pMapValue]

 return p

 }

In the above algorithm the st represents the server’s current

time in milliseconds. As st differs for every millisecond the ‘p’

value generated will be unique for each request.

Algorithm 2: Generate q

 GenerateQ(NP,primes,cip)

 {

 cip=”A.B.C.D”

 ipMapValue=224*A+216*B+28*C+D

 qMapValue=(ipMapValue) mod NP

 q=primes[qMapValue]

 return q

 }

In the above algorithm the cip represents the clients IP

address and it is in the form of A.B.C.D. ipMapValue is the

value that is generated from the client IP address and this

value is unique for each client. So the ‘q’ value generated for

each client will be unique. The ‘NP’ in the above algorithm

represents the number of primes in ‘Primes’ array.

VIII. RESULT AND ANALYSIS

Fig. 3 shows the change of overall trusts of attackers.

Fig. 3(a) shows trusts of legitimate user. All requests are

accepted as trust is above the threshold 0.1. It shows that the

trusts of legitimate users quickly increase from 0.1 to 0.3 in

first few sessions.

For Fig. 3(b), attacker use strategy 1. He sends session

connection requests with fixed rate at one request per 30

seconds. The trust of attacker fluctuates and decreases below

the threshold after few sessions.

For Fig. 3(c), attacker uses strategy 2. He sends session

connection requests at random rate. The randomness of attack

rate causes fluctuation of the trust values as shown in figure.

For Fig. 3(d), attacker use strategy 3. He adjusts sending

rate according to the rate of accepted requests by the server.

The attack strategy increases fluctuation of trusts and most of

the times trust value goes below the threshold and session is

rejected.

For Fig. 3(e), attacker use strategy 4. First he sends session

connection requests like a legitimate user, so the trust value

increases for first few sessions. But as he starts attacking by

using strategy 2, misusing trust starts increasing and so within

next few sessions trust decreases below the threshold and

sessions are rejected.

The goal of request flooding attack is to send so many

requests in one session that server remains busy in handling

those requests and it cannot accept other legitimate user’s

requests.

Here source throttling module is invoked to send puzzle to

client, when number of requests in one session goes beyond

the threshold. Thus for each next request cost is imposed on

the client in terms of CPU cycles.

(a) No attack

International Journal of Computer Science and Telecommunications [Volume 2, Issue 5, August 2011] 17

(b) Attack with Strategy 1

(c) Attack with Strategy 2

(d) Attack with Strategy 3

(e) Attack with Strategy 4

Fig. 3. Trusts Over the Number of Sessions

Fig. 4. Client’s CPU Utilization Over the Number of Requests in a Session

Fig. 5. Client’s Response Time (in milliseconds) With Solution and Without
Solution

Fig. 4 shows client’s CPU utilization against the number of

requests. When number of requests goes beyond the threshold,

client’s CPU utilization also increases due to source throttling

module.

Fig. 5 shows graph of Response time of genuine user with

and without solution. The graph shows that response time of

genuine user decreases if proposed solution is used.

IX. CONLUSION

To defend against application layer DDoS attack is pressing

problem of the Internet. Motivated by the fact that it is more

important for service provider to accommodate good users

when there is scarcity in resources, we have used lightweight

mechanism to mitigate session flooding attack using trust

evaluated from user’s visiting history. The request flooding

attack is also handled by throttling client’s CPU. Due to this

mechanism genuine user’s response time decreases and attacks

are mitigated. In future, work can be extended to mitigate

other types of application layer DDoS attacks like asymmetric

attack.

Ms. Manisha M. Patil et al. 18

REFERENCES

[1] Jie Yu, Chengfang Fang, Liming Lu, Zhoujun Li. Lightweight

Mechanism to mitigate Application layer DDoS attacks. In 4th

International ICST conference, INFOSCALE 2009

[2] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal,

Edward Knightly. DDoS Shield: DDoS-Resilient Scheduling to

Counter Application Layer DDoS Attacks. In IEEE/ACM

TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1,

2009.

[3] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu. Mitigating

application-level denial of service attacks on Web servers: A

client-transparent approach. ACM Transactions on the Web,

2008.

[4] Saraiah gujjunoori, Taqi Ali Syed, Madhu Babu J, Avinash

D, Radhesh Mohandas, Alwyn R Pais. Throttling DDoS

Attacks. In Proceedings of International Conference on Security

and cryptography (SECRYPT 2009), Milan, Italy, July 7-10,

2009.

[5] J. Yu, Z. Li, H. Chen, and X. Chen. A Detection and Offense

Mechanism to Defend Against Application Layer DDoS

Attacks. In Proceedings of ICNS’07, 2007.

[6] P. Niranjan Reddy, K. Praveen Kumar, M. Preethi. Optimising

The Application-layer DDoS Attacks for Networks. In IJCSIS

Vol. 8 No. 3, June 2010

[7] Y. Xie and S. Yu. A large-scale hidden semi-Markov model for

anomaly detection on user browsing behaviors. IEEE/ACM

Transactions on Networking, 2009.

[8] F.Douglis, A. Feldmanz, and B.Krishnamurty. Rate of change

and other metrics: a live study of the World Wide Web. In

Proceedings of USENIX Symposium on Internetworking

Technologies and Systems, 1997.

[9] Yi Xie and Shun-Zheng Yu. Monitoring the Application-Layer

DDoS Attacks for Popular Websites. In IEEE/ACM

TRANSACTIONS ON NETWORKING, VOL. 17, NO. 1,

2009.

 AUTHORS PROFILE

Ms. Manisha Mohan Patil has achieved B.E. (Computer
Science and Engineering) degree from Walchand College of
Engineering, Sangli in 2002. She is now pursuing M. E.
(Computer Science and Engineering) degree from Dr. D. Y.
Patil College of Engineering & Technology, Kolhapur,
Maharashtra.

Prof. U. L. Kulkarni has completed M.E. (Computer
Science and Engineering) degree from Walchand College of
Engineering, Sangli. He is working as a Assistance Professor
at Konkan Gyanpeeth’s College of Engineering, Karjat, Dist.-
Raigad, (Maharashtra) India. He has 11years of teaching
experience. His research areas are Artificial Neural Network,
Image Processing, and Network Security.

