
International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 38

Journal Homepage: www.ijcst.org

S. Megha Chandrika
1
, E. Suresh Babu

2
 and N. Srikanth

3

1SCIENT Institute of Technology, India
2Samskruti Engineering College, India

3Nishitha College of Engineering and Technology (JNTUH), India

Abstract— Cohesion measures in Object-oriented software

reflect particular interpretations, High cohesion positively

impacts understanding, reuse and maintenance. This paper

proposes a new measure based on analysis of the unstructured

information embedded in the source code, such as comments and

identifiers, we have the existing applications based on using the

only the structural information from the source code, attribute

references in methods to measure cohesion. The new measure

named the Conceptual cohesion of classes is the mechanisms

used to measure textual coherence in cognitive psychology and

computational linguistics, presents the principles and the

technology that stand behind the C3 measure. A large case study

on three open source software systems is presented which

compares the new measure with an extensive set of existing

metrics and uses them to construct models that predict software

faults. The case study shows that the design concepts and novel

measure captures different aspects of class cohesion compared to

any of the existing cohesion measures.

Index Terms– Cohesion, Types Cohesion and Design Concepts

I. INTRODUCTION

OFTWARE cohesion can be defined as a measure of the

degree to which elements of a module belong together

[5]. Cohesion is also regarded from a functional point of

view; in this view, a cohesive module is a crisp abstraction of

a concept or feature from the problem domain, usually

described in the requirements or specifications. Such

definitions, while very intuitive, are quite vague and make

cohesion measurement a difficult task, leaving too much room

for interpretation. Software modularization, Object-Oriented

(OO) decomposition in particular, is an approach for

improving the organization and comprehension of source

code. In order to understand OO software, software engineers

need to create a well-connected representation of the classes

that make up the system. Each class must be understood

individually and, then, relationships among classes as well.

One of the goals of the OO analysis and design is to create a

system where among them. These class properties facilitate

comprehension, testing, reusability, maintainability, etc.

The concept of software cohesion has its roots in the 1970’s

when Stevens et al. [7] started looking at inter-module metrics

for procedural software. Yourdon and Constantine later

categorized cohesion on a seven point ordinal scale from

functional at one end to coincidental at the other [9]. Since

then, various attempts in the object-oriented community have

been made to capture cohesion through software metrics [3, 4,

5]. The best known and most investigated of these metrics is

the Lack of Cohesion in Methods of a class (LCOM)

proposed by Chidamber and Kemerer (C&K) [4]. The LCOM

metric rates a class as cohesive if every method uses every

instance variable; at the other extreme, a class whose methods

use disjoint instance variables is considered Uncohesive.

This paper is organized as follows. Section 2 presents the

Cohesion using conceptual classes in object oriented systems,

Section 3 presents the Related Design concepts using

conceptual cohesion of classes in Object oriented systems,

Section 4 Presents the our proposed system Using

Conceptual cohesion of classes in object oriented systems

compares our study with other works on the subject. Section 5

concludes the paper by presenting lessons learned and future

work.

II. COHESION USING CONCEPTUAL CLASSES IN

OBJECT ORIENTED SYSTEMS

A. What is Cohesion?

Cohesion is a measure of how well the lines of source code

within a module work together to provide a specific piece of

functionality. In object-oriented programming, the degree to

which a method implements a single function; methods that

implement a single function are described as having high

cohesion.

B. Types of Cohesion

1). Method Cohesion: What has been stated in the realm of

coupling also holds true for cohesion. Since methods equal

modules to a very high degree both bracket pieces of code

implementing some functionality. We adopt the various

degrees of classical cohesion [11], [12] to describe method

cohesion. In contrast to coupling we do not even have to

change the various notions of classical cohesion considerably.

In the following seven degrees of cohesion classical cohesion

adapted for method cohesion are summarized from worst to

best:

S

Conceptual Cohesion of Classes in Object Oriented

Systems

ISSN 2047-3338

S. Megha Chandrika et al. 39

• Coincident: The elements of a method have nothing in

common besides being within the same method

• Logical: The elements with similar functionality, such as

input/output handling and error handling are collected in

one method

• Temporal: The elements of a method have logical

cohesion and are performed at the same time.

• Procedural: The elements of methods are connected by

some control flow.

• Communicational: The elements of a method are

connected by some control flow and operate on the same set

of data

• Sequential: The elements of method have

communicational cohesion and are connected by a

sequential control flow

• Functional: The elements of a method have sequential

cohesion and all elements contribute to a single task of the

problem domain. Functional cohesion is the best form of

method cohesion since it fully supports the principle of

locality and thus minimizes maintenance efforts.

For the discussion of class cohesion and inheritance

cohesion we assume that all methods have functional

cohesion. The reason is that in order to determine

class/inheritance cohesion we have to investigate the

relationship between methods and instance variables. Low

cohesive methods which access most of the instance variables

could fake a high degree of class/inheritance cohesion

2) .Class Cohesion: Class cohesion describes the binding of

the elements define with in the same object class, not

considering inherited instance variables and inherited

methods. Since ignoring inheritance an object class resembles

an abstract data type and since the cohesion of abstract data

types has been analyzed in detail by Embley and Woodfield in

[14] we build our classification of various degrees of class

cohesion on that of [14] and redefine their definitions

according to the idiosyncracy of object-oriented systems.

 Abstract data types in procedure-oriented systems provide

functionality to other abstract data types or to modules which

are not abstract data types. In contrast, code in object-oriented

systems is in general a method bound to a class. Thus for

procedure-oriented systems with abstract data types we have

to argue which functionality we factor out to abstract data

types whereas in object-oriented systems we have to consider

which methods are assigned to which classes.

A further crucial difference between abstract data types in

the notion of Embley and Woodfield and classes is implied by

the concept of object identity. Whereas a single abstract data

type can export different domains an object class describes

exactly one set of objects where each object is uniquely

identified by some system-defined object identifier.

Depending on the cohesiveness of a class its objects represent

a single, semantic meaningful data abstraction or several,

more or less related data abstractions. In the following we

discuss the various degrees of class cohesion from worst, i.e.,

lowest to best i.e., highest Separable.

The cohesion of a class is rated separable if its objects

represent multiple unrelated data abstractions combined in

one object. This is often the case if the instance variables and

methods of a class can be partitioned into two or more sets

such that no method of one set uses instance variables or

invokes methods of a different set. In particular the cohesion

of an object class is rated separable if there is a method which

does neither access any instance variable nor invokes any

method of the class or there is an instance variable which is

not referenced by any of the class methods. A class with

separable cohesion should be split into several classes each

representing a single data abstraction, i.e., a single semantic

concept.

Example: Consider the object class Employee as

defined:

 Class EMPLOYEE {

 …

 (IntcomputeCompany Revenue (SET<PROJECT *)*p);

 …

 };

The method compute Company Revenue takes all projects

of a company as input parameter and computes the

accumulated revenue of that company. It neither accesses any

instance variables of EMPLOYEE nor does it invoke any

other method of EMPLOYEE. Thus the cohesion of

EMPLOYEE is separable strength. To improve its cohesion

the method computeCompany Revenue should be factored out

into a different object class, e.g., into class COMPANY.

III. COHESION AND DESIGN QUALITY IN OBJECT

ORIENTED SYSTEM

Object oriented system is a good design for imperatives to

building a quality. For this, quantification of the design

property is required. Several software metrics have been

developed to assess and control the design phase and its

products. One of the most vital criteria in Object Oriented

design is cohesion. A module is said to have a strong cohesion

if it closely characterized with one task of the problem

domain, and all its components contribute to this single task.

Cohesion was introduced by Yourdon and Constantine as

“how tightly bound or related the internal elements of a

module are to one another”. According to design quality,

cohesion is an attribute, not of any code, but of a design that

can be utilized to forecast reusability, maintainability, and

changeability.

A. Cohesion and Cohesion Metrics

 A class is cohesive if it cannot be partitioned into two or

more sets defined as follows. Each set contains instance

variables and methods. Methods of one set do not access

variables of another set either directly or indirectly. By way of

defining cohesion metrics, many authors have effectually

defined class cohesion. So far as the Object Oriented model is

concerned, almost all of the cohesion metrics are influenced

by the LCOM metric that is defined by Chidamber and

Kemerer. According to them, “if an object class has different

methods performing different operations on the same set of

instance variables, the class is cohesive”. The LCOM (Lack of

Cohesion in Methods) defined by them is the result gained

International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 40

from deducting the number of pairs of methods in a class

having no common attributes from the number of pairs of

methods in a class sharing at least one attribute. If the value

reached in this calculation is in the negative, the metric is set

to zero. This is one metric for assessing cohesion. Likewise,

Li and Henry defined LCOM as the number of disjoint sets of

methods accessing similar instance variables.

Hitz and Montazeri reaffirm Li’s definition of LCOM

based on the graph theory which defines LCOM as the

number of connected components of a graph. A graph consists

of vertices and edges. Vertices represent methods. There is an

edge between 2 vertices if the corresponding methods access

the same instance variable. Hitz and Montazeri propose to

divide a class into smaller, more cohesive classes, if LCOM >

1.

B. Design Quality

1). Abstraction: Abstraction is an OOP concept. It provides

a facility to hide some unimportant information and provide

us some information which is important for the client

programmers.

eg., If we consider a car which has lot of parts such as

wheels steering DVD player etc.

We need to know how to use it. We need not to know, what

is the structure of all these parts to buy and drive a car?

eg., is Television. The Television has lot of properties and

behaviors’ like height width display On, display Off etc. and

also it has chips and internal wires which enables the

television's functions.

But for working the Television we do not need to know

these internal things.

2). Architecture: The software architecture of a program or

computing system is the structure or structures of the system,

which comprise software components, the externally visible

properties of those components, and the relationships between

them. The term also refers to documentation of a system's

software architecture. Documenting software architecture

facilitates communication between stakeholders, documents

early decisions about high-level design, and allows reuse of

design components and patterns between projects.

 C. Modularity

Modularity refers to breaking down software into different

parts. These parts have different names depending on your

programming paradigm (for example, we talk about modules

in imperative programming and objects in object oriented

programming). By breaking the project down into pieces, it's

(i) easier to both FIX (you can isolate problems easier) and

(ii) allows you to REUSE the pieces.

 D. Refinement

In each step, one or several instructions of the given

program are decomposed into more detailed instructions.

This successive decomposition or refinement of specification

terminates when all instructions are expressed in terms of any

underlying computer or programming language.

Patterns are a way to describe some best practices used in

designing software applications. A pattern describes a

solution to a recurring design problem. The design patterns

are broken down into three subsections: Creational,

Structural, and Behavioral patterns.

E. Patterns

Creational patterns are used to create objects in an

application. Patterns like Factory Method are used to defer the

instantiation of an object to inherited sub classes while

Composite pattern allows for a recursive, tree structure of

containers and elements.

Structural patterns are used to design the structure of

modules in an application. For example, adapter can be used

to modify an existing module to work with a developing

module. The bridge pattern has a similar use. The composite

pattern can also be considered a structural pattern because of

the tree structure that is created.

Behavioral patterns describe how objects communicate

with each other. The observer pattern is used to notify many

classes of a change in the application. The mediator pattern

can be used to augment communication between classes,

without all of the classes knowing about each other.

F. Information Hiding

In computer science, information hiding is the principle of

segregation of design decisions in a computer program that

are most likely to change, thus protecting other parts of the

program from extensive modification if the design decision is

changed. The protection involves providing a stable interface

which protects the remainder of the program from the

implementation (the details that are most likely to change).

The term encapsulation is often used interchangeably with

information hiding. Not all agree on the distinctions between

the two though; one may think of information hiding as being

the principle and encapsulation being the technique. A

software module hides information by encapsulating the

information into a module or other construct which presents

an interface. A common use of information hiding is to hide

the physical storage layout for data so that if it is changed, the

change is restricted to a small subset of the total program.

In object- oriented programming, information hiding (by

way of nesting of types) reduces software development risk

by shifting the code's dependency on an uncertain

implementation (design decision) onto a well-defined

interface. Clients of the interface perform operations purely

through it so if the implementation changes, the clients do not

have to change.

G. Refactoring

Refactoring is a disciplined technique for restructuring an

existing body of code, altering its internal structure without

changing its external behavior. Its heart is a series of small

behavior preserving transformations. Each transformation

(called a 'refactoring') does little, but a sequence of

transformations can produce a significant restructuring. Since

each refactoring is small, it's less likely to go wrong. The

system is also kept fully working after each small refactoring,

S. Megha Chandrika et al. 41

reducing the chances that a system can get seriously broken

during the restructuring. Refactoring is used to improve code

quality, reliability, and maintainability throughout the

software lifecycle. Code design and code quality are enhanced

with refactoring. Refactoring also increases developer

productivity and increases code reuse.

For example, if two methods use a similar piece of code,

the common code can be refactored into another method that

the two parent methods can then call.

IV. CONCEPTUAL COHESION OF CLASSES PROPOSED

APPROACH IN OBJECT ORIENTED SYSTEMS

A. Process of LCOM and C3

The following proposed system describes LCOM and C3

measure in more detail. There is no existing system exit using

cohesion, first we develop the LCOM formula and find out

the C3 measure and compare with structure and unstructured

data

In this paper, we introduce the concept of how to find out

cohesion in object oriented system. To identify the cohesion

in oops First we need to calculate the LCOM5 and C3

measure then compare LCOM5 and C3 measure with

Structure and Unstructured data. In this module we are going

to take the structured information like identifiers, (Example

Variables). Invocation of declared methods and declared

constructors, here the Java program should be well compiled

and it should be valid comments.

In this module deals we are going to search the declared

variables among all the classes. Because the main theme of

the declaring class variable is, it sh used in all methods. So

that the declared variables are found among all the methods.

In this module we are going to apply the LCOM5 (Lack of

cohesion in methods) formula. If the result is equal to one

means, the class is less cohesive according to the structured

information. Here we are going to retrieve the index terms

based on that comments which are present in all the methods.

Comments are useful information according to the software

engineer. In concept oriented analysis we are taking the

comments. Based on the comments we are going to measure

the class is cohesive or not.

In this module we are going to check the index terms

among the comments which are present in all the comments.

In this module we are going to apply the conceptual similarity

formula. Based on the result we can say the class is cohesive

or less cohesive according to concept oriented. In this module

we are going to compare the two results. Based on the results

we can say that cohesion according to structure oriented and

unstructured oriented.

B. Formula for LCOM and C3 Measures

LCOM5 was defined by Henderson-Sellers (1996). It

predominantly looks at the number of methods that access

each of the set of attributes or data, specifically only the

instance variables. Thus, LCOM5 does not deal with data to

data interactions and the non-instance variables. It focuses on

instance variables to method interactions. For LCOM5 having

a value of 0 is considered perfect cohesion.

Fig. 1. This idea of the figure is taken from Ref no. [10]

Formula for LCOM5

Lcom = ((((1/a)*Mu)-m)/deno);

Mu-count for fields, m-

Methods length, a-fields

Length, deno=1-m;

Lcom51 = lcom*lcom;

Lcom5 = Math.sqrt(lcom51);

V. EXPERIMENTAL RESULTS OF COHESION

MEASURES FOR OO SOFTWARE SYSTEMS

There are several different approaches to measure cohesion

in OO systems. Many of the existing metrics are adapted from

similar cohesion measures for non-OO systems (we are not

discussing those here), while some of the metrics are specific

to OO software.

Based on the underlying information used to measure the

cohesion of a class, one can distinguish structural metrics,

semantic metrics, information entropy-based metrics, slice-

based metrics, metrics based on data mining, and metrics for

specific types of applications like knowledge-based, Aspect-

oriented, and distributed systems.

The class of structural metrics is the most investigated

category of cohesion metrics and includes lack of cohesion in

methods (LCOM) 1, LCOM3, LCOM4, Co (connectivity),

LCOM5, Coh, TCC (tight class cohesion), LCC (loose class

cohesion), ICH (information-flow-based cohesion), NHD

(normalized Hamming Distance), etc.

The dominating philosophy behind this category of metrics

considers class variable referencing and data sharing between

methods as contributing to the degree to which the methods of

International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 42

a class belong together. Most structural metrics define and

measure relationships among the methods of a class based on

this principle. Cohesion is seen to be dependent on the

number of pairs of methods that share instance or class

variables one way or another. The differences among the

structural metrics are based on the definition of the

relationships among methods, system representation, and

counting mechanism. A comprehensive overview of graph

theory-based cohesion metrics is given by Zhou et al.

Somewhat different in this class of metrics are LCOM5 and

Coh, which consider that cohesion is directly proportional to

the number of instance variables in a class that are referenced

by the methods in that class.

Briand et al. defined a unified framework for cohesion

measurement in OO systems which classifies and discusses all

of these metrics.

Recently, other structural cohesion metrics have been

proposed, trying to improve existing metrics by considering

the effects of dependent instance variables whose values are

computed from other instance variables in the class. Other

recent approaches have addressed class cohesion by

considering the relationships between the attributes and

methods of a class based on dependence analysis. Although

different from each other, all of these structural metrics

capture the same aspects of cohesion, which relate to the data

flow between the methods of a class.

Other cohesion metrics exploit relationships that underline

slicing. A large-scale empirical investigation of slice-based

metrics indicated that the slice-based cohesion metrics

provide complementary views of cohesion to the structural

metrics. Although the information used by these metrics is

also structural in nature, the mechanism used and the

underlying interpretation of cohesion set these metrics apart

from the structural metrics group.

A small set of cohesion metrics was proposed for specific

types of applications. Among those are cohesion metrics for

knowledge-based, aspect-oriented systems, and dynamic

cohesion metrics for distributed applications.

From a measuring methodology point of view, two other

cohesion metrics are of interest here since they are also based

on an IR approach. However, IR methods are used differently

there than in our approach. Patel et al. proposed a composite

cohesion metric that measures the information strength of a

module. This measure is based on a vector representation of

the frequencies of occurrences of data types in a module. The

approach measures the cohesion of individual subprograms of

a system based on the relationships to each other in this vector

space. Maletic and Marcus defined a file-level cohesion

metric based on the same type of information that we are

using for our proposed metrics here. Even though these

metrics were not

Specifically designed for the measurement of cohesion in

OO software, they could be extended to measure cohesion in

OO systems. The designers and the programmers of a

software system often think about a class as a set of

responsibilities that approximate the concept from the

problem domain implemented by the class as opposed to a set

of method attribute interactions. Information that gives clues

about domain concepts is encoded in the source code as

comments and identifiers. Among the existing cohesion

metrics for OO software, the Logical Relatedness of Methods

(LORM)] and the Lack of Conceptual Cohesion in Methods

(LCSM) are the only ones that use this type of information to

measure the conceptual similarity of the methods in a class.

The philosophy behind this class of metrics, into which our

work falls, is that a cohesive class is a crisp implementation of

a problem or solution domain concept. Hence, if the methods

of a class are conceptually related to each other, the class is

cohesive. The difficult problem here is how conceptual

relationships can be defined and measured. LORM uses

natural language processing techniques for the analysis

needed to measure the conceptual similarity of methods and

represents a class as a semantic network. LCSM uses the

same information, indexed with LSI, and represents classes as

graphs that have methods as nodes. It uses a counting

mechanism similar to LCOM.

Fig. 2. Screen 1

Fig. 3. Screen 2

S. Megha Chandrika et al. 43

Fig. 4. Screen 3

Fig. 5. Screen 4

VI. CONCLUSION

Object-oriented systems classes in different programming

languages contain identifiers and comments which reflect

concepts from the domain of the software system. This

information can be used to measure the cohesion of software

to extract this information for cohesion measurement; this

paper defines the conceptual cohesion of classes, which

captures new and complementary dimensions of cohesion

compared to a host of existing structural metrics. Principal

component analysis of measurement results on three open

source software systems statistically supports this fact. In

addition, the combination of structural and conceptual

cohesion metrics defines better models for the prediction of

faults in classes than combinations of structural metrics alone.

Highly cohesive classes need to have a design that ensures a

strong coupling among its methods and a coherent internal

description. Latent Semantic “Indexing can be used in similar

manner to measuring the coherence of natural languages.

REFERENCES

[1]. Anquetil, N. and Lethbridge, T., "Assessing the Relevanceof

Identifier Names in a Legacy Software System", in

Proceedings of Annual IBM Centers for Advanced Studies

Conference (CASCON'98), December 1998, pp. 213-222.

[2]. Briand, L. C., Daly, J. W., and Wüst, J., "A UnifiedFramework

for Cohesion Measurement in Object-Oriented Systems",

Empirical Software Engineering, vol. 3, no. 1, 1998, pp. 65-

117

[3]. J. Bansiya, L. Etzkorn, C. Davis and W. Li. A class cohesion

metric for object-oriented designs. Journal of Object-Oriented

Programming (January), pages 47-52, 1999.

[4]. S. R. Chidamber and C.F. Kemerer. A metrics suite for object-

oriented design. IEEE Transactions on Software Engineering,

20(6): 467-493, 1994.

[5]. S. Counsell, E. Mendes and S. Swift, Comprehension of

Object-oriented Software Cohesion: the empirical quagmire

Proceedings of the 10th International Workshop on Program

Comprehension (IWPC 2002). Paris, France, pages 33-42,

2002.

[6]. Cho, E. S., Kim, C. J., Kim, D. D., and Rhew, S. Y., "Static

and dynamic metrics for effective object clustering", in

Proceedings of Asia Pacific International Conference on

Software Engineering, 1998, pp. 78 - 85.

[7]. W. P. Stevens, G. J. Myers and L. L Constantine Structured

Design. IBM Systems Journal, 13(2): 115-139, 1974.

[8]. A. Weinand, E. Gamma and R. Marty. ET++ - an object-

oriented application framework in C++,. Proceedings of

Object-oriented Programming Systems, Languages and

Applications (OOPSLA), San Diego, USA, pages 46-57, 1988.

[9]. E. Yourdon and L. Constantine, Structured Design, Prentice

Hall, 1979. Proceedings

[10]. Using the Conceptual Cohesion of Classes for Fault Prediction

in Object-Oriented Systems, IEEE Transactions on Software

Engineering Vol 34, No. 2, March/April 2008

[11]. W. Stevens G. Myres and L.Constantine. “Structured Design.”

In IBM Systems Journal .vol.13.pp.115 139.1974.

[12]. E. Yourdon and L.L. Constantine. Structured Design . Prentice

Hall.1979.

[13]. “Coherency of Classes to Measure the Quality of Object

Oriented Design an Empirical Analysis”, M.V.VIJAYA

SARADHI1, B.R.SASTRY.

[14]. M.W. Berry, “Large Scale Singular Value Computations,”

Int’l J. Supercomputer Applications, vol. 6, pp. 13-49, 1992.

[15]. J. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object-

Oriented System,” Proc. Symp. Software Reusability, pp. 259-

262, Apr. 1995.

[16]. L.C. Briand, J.W. Daly, V. Porter, and J. Wu¨ st, “A

Comprehensive Empirical Validation of Design Measures for

Object-Oriented Systems,” Proc. Fifth IEEE Int’l Software

Metrics Symp., pp. 43-53,Nov. 1998.

[17]. L.C. Briand, J.W. Daly, and J. Wu¨ st, “A Unified Framework

for Cohesion Measurement in Object-Oriented Systems,”

Empirical Software Eng., vol. 3, no. 1, pp. 65-117, 1998.

[18]. L.C. Briand, S. Morasca, and V.R. Basili, “Property-Based

Software Engineering Measurements,” IEEE Trans. Software

Eng., vol. 22, no. 1, pp. 68-85, Jan. 1996.

[19]. L.C. Briand, J. Wu¨ st, J.W. Daly, and V.D. Porter, “Exploring

the Relationship between Design Measures and Software

Quality in Object-Oriented Systems,” J. System and Software,

vol. 51, no. 3,pp. 245-273, May 2000

International Journal of Computer Science and Telecommunications [Volume 2, Issue 4, July 2011] 44

[20]. H. Kabaili, R.K. Keller, F. Lustman, and G.Saint-Denis,

“Class Cohesion Revisited: AnEmpirical Study on

Industrial Systems,” Proc. Fourth Int’l ECOOP Workshop

Quantitative Approaches in Object-Oriented Software

Eng., pp. 29-38, 2000.

[21]. H. Kabaili, R.K. Keller, and F. Lustman,“Cohesion as

Changeability Indicator in Object-Oriented Systems,”

Proc. Fifth European Conf. Software Maintenance and

Reeng., 2001.

[22]. W. Li and S. Henry, “Object-Oriented Metrics that Predict

Maintainability,” J. Systems and Software, vol. 23, no. 2,

pp. 111-122, 1993.

[23]. M. Linton, P.R. Calder, and J.M. Vlissides,“InterViews: A

C++ Graphical Interface Toolkit,” Technical Report CSL-

TR-88-358, Stanford Univ.,

1988,ftp://interviews.stanford.edu/pub.

[24]. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.

Lorensen, Object-Oriented Modeling and Design. Prentice

Hall, 1991.

[25]. W. Stevens, G. Myers, and L. Constantine, “Structured

Design,” IBM Systems J., vol. 12, no. 2, 1974.

[26]. R. Subramanyam and M.S. Krishnan, “Empirical Analysis

of CK Metrics for Object-Oriented Design Complexity:

Implifications for Software Defects,” IEEE Trans.

Software Eng., vol. 29, no. 4, pp. 297-310, Apr. 2003.

 Ms. S. Megha Chandrika, Assistant

Professor from SCIENT Institute of

Technology, B.Tech Computer science

from Nizam Institute of Engg & Tech

(JNTUH) and M Tech Software

Engineering From GuruNank Engg College

(JNTUH) has 6 years of experience in

Academic. Guided many UG & PG

engineering students. Papers was published

in National & International journals, areas

of interest are Software Engineering, Data Mining, Software

Testing, Compiler design, Web Applications and Unified Modeling

Languages.

Mr. E. Suresh Babu, Assistant Professor

from Samskruti Engg College, B.Tech from

Vathslaya Institute of Scie & Tech

(JNTUH) M.Tech from SKTRCE

(JNTUH). His areas of interest include Data

Mining, and Software Engineering,

Software Testing Methodology and

Network Security.

N. Srikanth, Pursuing M.Tech Software Engineering from Nishitha

College of Engg & Tech (JNTUH). His areas of interest include

Mobile Computing, Networks, and Software Engineering.

