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Abstract– Various external forces influence water movements 

in a homogenous sea. The topographic equations governing the 

topographic waves in a homogenous sea have been elaborated in 

this study. The computational analysis pertinent to delineating 

the topographic waves in the homogenous sea has been 

emphasized. The bottom slope and friction factor determines the 

variation trend of the resultant ocean velocity and the surface 

ocean depth and generated results for this have been presented in 

this study. 

 

Index Terms– Topographic Waves, Geotropic, Bottom Slope, 

Bottom Friction Factor and Homogenous Ocean 

 

1.   INTRODUCTION 

HE ocean surface is an example of a complex wave 

motion formed by the action of wind. The displacement 

of a fluid particle from equilibrium position and action of 

a restoring (gravitational) force on the particle produces a 

wave like motion in the ocean called an internal wave. 

The motion of ocean water is strongly influenced by the 

spatial variation in homogeneity of the wind field over the 

ocean surface and the topography of the ocean bottom. 

Topographic waves are modeled using a primitive-equation 

ocean model. 

Various external forces influence water movements in a 

homogenous sea. These comprise major forces that maintain 

the ocean currents including air currents, the changes in 

atmosphere pressure at the surface of the sea and the periodic 

tide-generating astronomic forces. The changes in atmospheric 

pressure are transmitted through the entire mass of water down 

to the ocean bottom and this give rise to horizontal pressure 

differences and the formation gradient currents. The air 

currents result to two fold effects consisting of the tangential 

force of the ocean(wind stress) which produces a surface 

current transmitted by the effect of viscosity(turbulence) to the 

water layers waves also constitute water movements in the 

direction of the wind. 

Internal forces arise from the vertical and horizontal 

disturbances of mass within the ocean. These differences in 

the mass distribution both in the horizontal and vertical 

directions are the consequences of changes in the heat content 

(temperature) and in the salinity. 

 

A. Equation of Motion 

The product of mass and acceleration equals the vector sum 

of forces as asserted by Newton’s second law of motion. This 

statement is invariably called the equation of motion. 

The important forces which drive the large-scale motion are 

the force of gravity, the Coriolis force, pressure gradient force 

and frictional forces. The centrifugal force of earth’s rotation 

is usually included in gravity. The three dimensional 

acceleration of a particle is described by the vector equation of 

motion, which contains the following terms: 

Particle acceleration = Coriolis term + Presure gradient term 

+ Gravity trems + frictional term and expressed as; 
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where dc/dt is the acceleration of a unit mass due to 

accumulated effects per unit mass of the Coriolis force �2� 	 
, the pressure gradient force -1/ρ�P, the force of 
gravity g and F, the generalized force due to frictional effects. 

The above equation can be written as; 
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II.   METHODOLOGY 

The governing equations of the topographic waves in a 

homogenous sea have been vividly delineated in this 

investigation. The computational analysis of the governing 

equations was treated by deriving the pertinent analytic 

expressions. 

The salient features of the pertinent equations were unveiled 

and the input parameters requisite for the computational task 

were stated. 

III.   DISCUSSION 

Many types of waves involving different physical factors 

exist in the ocean. An analogy could be made to an elementary 

spring-mass system, thus all waves must be associated with 

some kind of restoring force equivalent to an elementary 
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spring-mass system or simple pendulum, and as a result it is 

convenient to make a crude classification of ocean waves. 

A. Topographic Waves and Dynamics of Ocean Bottom 

Small bottom irregularities can turn an otherwise steady 

geostrophic flow into slow moving waves. The dynamics of an 

ocean with bottom slope is elaborated here. 

For simplicity an homogenous ocean is considered in a 

domain with periodic boundaries in y and a weak uniform 

bottom slope in the x direction as delineated by pertinent 

equations below: 

Emphasizing the vertically integrated continuity equation: 
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By substituting )�+, ,, -� � ./ � 0+ � 1�+, ,, 2� 
into equation (1.4) above gives; 
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By substituting equation (1.5) into equation (1.4) yields; 
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From linear theory and requirement of a gentle slope, the 

continuity equation is written as follows: 
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The corresponding linear vertically integrated momentum 

equations are: 
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The extra term α0u in the continuity equation, related to the 

bottom slope will allow the existence of slow waves similar to 

the planetary waves due to the variation of th Coriolis 

parameter. This system contains both small and large terms. 

The large ones (terms including f,g and H0) comprise the 

otherwise steady geostrophic dynamics. In the presence of the 

small term α0u, the time derivatives come into play, but are 

still expected to be small. Thus based on this smallness, we 

can take as a small approximation, the geostrophic balance: 
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By substituting equations (2.4) in the small time derivatives of 

equations (2.2) and (2.3), we obtain; 
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From equation (2.3); 
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Similarly for v; 
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By replacement of the component in the continuity equation 

(2.1) yields a single equation for � as follows; 
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By substituting equations (3.7), (3.4) and (2.9) into equation 

(2.1) yields; 
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where ? � C9DB:  . This is the Rossby radius. 

The solution of equation (3.91) gives; 
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Substitution of equations (3.93) – (3.98) into equation (3.91) 

above gives the dispersion relation expressed as; 
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These waves exist on their own due to the existence of the 

bottom slope α0, hence they are called topographic waves. 

Without the presence of the bottom slope α0, the flow would 

be steady and geostrophic. 

IV. COMPUTATIONAL ANALYSIS 

Having delineated the governing equations of the 

topographic waves in a homogenous ocean previously, the 

computational procedure required to in solving the differential 

equations are listed subsequently. 

The linear, vertical integrated momentum equations are: 
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Geostrophic balance requires;  � N ��9:� "3"%  . 
These equations would be solved numerically by adopting a 

numerical scheme (leap frog) in time placed in a 2-D 

staggered grid (Arakawa Grid) whose complete scheme is 

listed as follows: 

�OPQRS��OPQTS@∆� � 8 V7O,PRSQ K7ORS,PRSQ K7OPQ K7ORS,PQ
W X-gY3ORS,P�3OTS,P@∆$ Z                                   

                                                    ………..(4.2 )  

for the u equation centered at ujk . 
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for the v equation centered at vjk . 

For the � equation centered at �jk , the boundary conditions 
are periodic at y=0 and y=Ly, and no slip condition at the 

walls x=0 and x=Ly. This subsequent expression is 

implemented by updating at every time step the t tangential 

velocities inside the boundaries to a value equal to the 

negative of the velocity at the point immediately outside the 

boundary. 

The shuffling of the time levels is done by changing the 

indices and not the variables it solves, i.e; �save=�+1, �+1=�+2, �+2=�save respectively. A forcing term 
(wind) is included in the program to start the currents; the 

wind is shut down after one day. 

• Input: 

The input parameters required to run the program in the 

model are as follows: 

∆t = 305 

Kmax = 40 

Jmax =20 

∆x/2 =∆y/2 =5km 

Ly = 400km, Lx = 200km 

H0 = 100m 

Τ
x
= 0 

[% �  \ [ sin `@a%bc; d0              e f 1 hi,     j   e k 1 hi,  
α=0 

The values of the bottom slope α and bottom friction factor 

can be obtained, the results for α = 0, r= 0 and n = 180 are 

listed in the Table 4. 

Table 4: 

C 

(m/s) 

���� 
(m) 

3.00 2.40 

4.86 4.80 

8.96 9.60 

10.61 12.00 

14.82 17.00 

6.63 2.40 

7.52 7.20 

11.67 14.00 

6.27 4.80 

6.59 7.20 

 

C represents the resultant ocean wave velocity; � is the 
surface ocean depth. 

V.   CONCLUSION 

The resultant ocean velocities and corresponding surface 

ocean depths are presented in table 4.0 from this investigation. 

The values of α and r are zero respectively in this 

investigation, which determine the variation trend of the ocean 

wave velocity with the surface ocean depth. 
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